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Abstract

Large-scale integration of wind power generation decreases the equivalent inertia of a power system, and thus
makes frequency stability control challenging. However, given the irregular, nonlinear, and non-stationary
characteristics of wind power, significant challenges arise in making wind power generation participate in system
frequency regulation. Hence, it is important to explore wind power frequency regulation potential and its
uncertainty. This paper proposes an innovative uncertainty modeling method based on mixed skew generalized
error distribution for wind power frequency regulation potential. The mapping relationship between wind speed
and the associated frequency regulation potential is established, and key parameters of the wind turbine model are
identified to predict the wind power frequency regulation potential. Furthermore, the prediction error distribution
of the frequency regulation potential is obtained from the mixed skew model. Because of the characteristics of
error partition, the error distribution model and predicted values at different wind speed sections are summarized
to generate the uncertainty interval of wind power frequency regulation potential. Numerical experiments
demonstrate that the proposed model outperforms other state-of-the-art contrastive models in terms of the refined
degree of fitting error distribution characteristics. The proposed model only requires the wind speed prediction
sequence to accurately model the uncertainty interval. This should be of great significance for rationally optimizing
system frequency regulation resources and reducing redundant backup.

Keywords: Inertial response, Primary frequency control, Error distribution, Mixed skew generalized error distribution,
Uncertainty modeling

1 Introduction
With the increasing penetration of renewable energy be-
ing connected to the grid through converters, the inertia
of the power system continues to decline [1]. Wind
power can affect the stable operation of the grid because
of its inherent intermittency, randomness and volatility,
none of which is conducive to system frequency stability
[2].
Furthermore, the decoupling of wind turbine rotor

speed and system frequency renders it unable to perform
a natural frequency response [3]. Replacing conventional

power plants with wind farms deteriorates the frequency
response performance of the system, leading to fre-
quency fluctuation and control challenges [4]. However,
with auxiliary frequency regulation control, wind tur-
bines can actively support sudden changes in system
power imbalance for a few seconds [5]. Growing concern
over power system frequency stability issues have neces-
sitated a series of guidelines and standards, which clearly
stipulate that wind turbines should participate in fre-
quency regulation [6–9]. Consequently, to maintain the
stable and economic operation of a power system,
exploiting the potential of wind turbine frequency regu-
lation has far-reaching significance.
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Distinct from the slow dynamic behavior of traditional
thermal power units, wind turbine possesses excellent
regulating capability. Owing to its small single-unit cap-
acity, large adjustable range of rotor speed, and small
equivalent inertia time constant, a wind turbine can pro-
vide fast and flexible auxiliary frequency regulation [10].
Currently, typical methods for wind power to participate
in system frequency response mainly include inertia re-
sponse and primary frequency regulation [4]. It has been
shown that the setting of the variable frequency control
parameters is imperative to the system frequency dy-
namic characteristics and contribution of wind power
[11]. An augmented system frequency response model
for the evaluation of wind power regulation contribution
has been developed based on small signal analysis theory
[12]. Reference [13] conducts a value assessment on
wind power reserve capacity for primary frequency sup-
port, while the injecting power of inertia response is de-
rived through the second-order Taylor expansion in
[14]. However, such a simplified analysis method can
only be effective in scenarios with small disturbances
and low wind speed fluctuations. The impact of the
droop gain on the transient and steady-state behaviors
of the frequency dynamics is thoroughly analyzed in
[15], while [16] studies the equivalent virtual inertia time
constant of wind farms through a simplified model of
doubly-fed wind turbines, and quantitative
characterization of its virtual inertial response
capabilities.
All the above methods characterize the potential of

wind power frequency response from the perspective of
energy conservation or power variation. The quantitative
analysis and evaluation of the frequency regulation cap-
ability is mainly based on the simplification that treats
the entire wind farm as a single equivalent unit. Driven
by the typical sources of disturbance like the wake effect
in a wind farm, the operating status of the turbines be-
comes more uncertain and unpredictable. In addition,
the above analysis only discusses the specific active
power controls, whereas with the diversified develop-
ment of frequency regulation requirements, more ad-
vanced and efficient control strategy is the mainstream
trend [17]. Therefore, rather than limiting to a single
fixed control strategy, research on wind power frequency
regulation capability should take into account the poten-
tial maximum contribution to the system frequency for
each wind turbine in the wind farm. Accurate perception
of the wind power frequency regulation potential can
provide a real-time baseline for system scheduling. As
the wind turbines often deviate from the Maximum
Power Point Tracking (MPPT) point because of the fluc-
tuation of wind speed, traditional analysis methods are
unable to capture the uncertainty of wind turbine fre-
quency regulation potential in real operation.

Significant efforts have been made on the wind power
forecast error distribution and fluctuation characteris-
tics[18, 19]. Similarly, given that wind power frequency
regulation is a process of short timescales, its uncertainty
characterization can be described by an ultra-short-term
prediction error probabilistic distribution, with the gen-
eral assumption that the prediction error obeys some
specific form of distribution, such as a Gaussian, beta or
t distribution [20]. Since the distribution of ultra-short-
term forecast errors may have multiple peaks, a single
conventional error distribution model cannot deal with
them. To overcome such shortcomings, a mixed distri-
bution model has emerged as an effective solution for
describing the irregular characteristics of the probability
distribution. The mixed distribution model is a mixture
of multiple single linearly weighted distribution models,
such as mixed Gaussian, t, and skew distributions [21,
22]. However, the shape parameter of a single model has
limited ability in making adjustments for fitting, and
thus cannot fully describe the characteristics of the spike
and the thick tail of a diverse distribution. Another typ-
ical method of uncertainty modeling is through scenario
generation employing artificial intelligence [23]. For ex-
ample, reference [24] constructs a deep generative adver-
sarial network to generate scenarios pertaining to
uncertain renewable energy output. However, such a
deep-learning-based modeling method needs a signifi-
cant amount of training time and has a special require-
ment regarding the sample quality. It is not suitable for
short-term applications such as frequency regulation un-
certainty modeling.
The rest of the paper is organized as follows. Section 2

presents the proposed modeling framework for the un-
certainty modeling of wind power frequency regulation
potential. In Section 3, the mapping relationship be-
tween that potential and the wind speed time series is
derived. In Section 4, a Mixed Skew Generalized Error
Distribution (SGED) model and a novel probability dis-
tribution model parameter estimation method are pro-
posed to accurately describe the characteristics of the
prediction error of the potential. The methodology of
uncertainty interval generation based on error distribu-
tion is also detailed. In Section 5, case studies are carried
out to validate the effectiveness of the proposed method
in comparison with other typical methods. Finally, Sec-
tion 6 draws the conclusions.

2 Proposed modeling framework
The uncertainty modeling of wind power frequency
regulation potential consists of two stages: quantitative
analysis of frequency regulation potential and uncer-
tainty interval generation. In the first stage, based on the
mechanism of the regulation, the key indicators affecting
the potential of wind power frequency response are
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identified including the maximum kinetic energy and
power reserve. An ideal mapping relationship between
the frequency regulation potential and the wind speed
sequence is then established.
Parameter identification using the operating data col-

lected via a Supervisory Control and Data Acquisition
(SCADA) system realizes the frequency regulation po-
tential prediction pertaining to the wind speed sequence.
This is compared to the obtained real data to generate
the prediction error. The prediction accuracy can be im-
proved by introducing error compensation.
In the second stage, a probability density fitting model

is used to study the distribution characteristics of the
prediction error. The fitting results are used to calculate
the uncertainty interval of the wind power frequency
regulation potential at different confidence levels. Based
on the proposed modeling framework, the evaluation of
wind power frequency regulation potential can further
optimize the control strategies of wind turbines and
wind farms, and guide the allocation of system frequency
regulation reserve resources. The overall workflow of the
proposed modeling framework is outlined in Fig. 1.

3 Quantitative analysis method of wind power
frequency regulation potential
3.1 Principle of wind power frequency regulation
Frequency regulation of the wind participating system
mainly involves inertia response and primary frequency
regulation. For the inertia response, the wind turbine
can present droop and inertia characteristics when the

frequency fluctuates, and the typical virtual inertia con-
trol is given as [11]:

ΔP ¼ − kpΔ f þ kd
df
dt

� �
ð1Þ

where ΔP is the auxiliary power for the inertia response,
and kp and kd are the proportional and differential coef-
ficients of the controller, respectively.
Virtual inertia control essentially responds to system

frequency change by releasing rotor kinetic energy ΔE,
which can be defined as:

ΔE ¼ H ω2
opt−ω

2
del

� �
ð2Þ

where ωopt and ωdel respresent the rotor speed operated
in MPPT mode and in the lower limit of frequency regu-
lation, respectively. H is the equivalent inertia time con-
stant of the wind turbine [16].
However, the stored rotational kinetic energy of wind

turbines is limited and cannot cope with the frequency
drop during large disturbances. In addition, excessive re-
lease of rotor kinetic energy can trigger low-speed pro-
tection and cause a second drop in system frequency.
Therefore deloading strategies based on preserving wind
power output margin are widely considered for primary
frequency support.
For the primary frequency regulation, the Proportional

Curtailment Strategy (PCS) [13] is usually adopted for
the wind turbine. For a power reserve level of d%, the

Fig. 1 Overall workflow of the proposed modeling framework
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primary frequency regulation reserve power PPRC can be
expressed as:

PPRC ¼ 1
2
d%ρπR2CPv

3 ð3Þ

where CP is the wind turbine power coefficient, ρ is the
air density, v and R represent the input wind speed and
the radius of the wind turbine, respectively.
For the power reserve level d%, the wind turbine has a

reserve power margin for frequency regulation through
overspeed and pitch control modes. As shown in Fig. 2,
during the frequency regulation period, the power
injected by the wind turbine into the grid includes both
reserved power release by decreasing the pitch angle and
additional rotor kinetic energy due to overspeed.
Because of the different energy conversion mecha-

nisms, there exists a fundamental difference between in-
ertia response and primary frequency regulation [16].
Therefore, wind power frequency potential should be
characterized by the releasable rotor kinetic energy and
power reserve.
We note that when we wish to calculate the frequency

regulation potential in real operating scenarios, the wind
speed sequence has strong temporal and spatial regular-
ity. Also, the predicted wind speed time-series value is
easy to obtain [25]. Based on the mapping relationship
between the established wind speed sequence and the
frequency regulation potential, assuming a fixed speed
wind turbine model, the changes in the wind power fre-
quency regulation potential under different influencing
factors can be calculated considering (2) and (3), as
shown in Fig. 3. As the wind power coefficient model of
each wind turbine will vary significantly, the relevant
parameter identification needs be performed.

3.2 Identification of wind power coefficient
As mentioned above, wind power frequency regulation
potential involves the dynamic relationship between the
output power of the wind turbine, the rotor speed and
the operating wind speed [26]. To calculate the fre-
quency regulation potential, we adopt a wind power

coefficient model with eight independent parameters as
in [27]:

Cp λ; βð Þ ¼ c1
λi
−c2β−c3β

c4−c5

� �
e−

c6
λi

1
λi

¼ 1
λþ c7β

−
c8

β3 þ 1
λ ¼ ωR=v

8>>>><
>>>>:

ð4Þ

The parameter identification problem can be trans-
formed into the form of an optimization problem as:

min
XN
i¼1

Pk ið Þ−Pr ið Þ½ �2

s:t: cmin≤c j≤cmax j ¼ 1; 2; :::8

ð5Þ

where Pk(i) is the ith calculated value obtained by (4),
Pr(i) is the actual power, and N is the total number of
samples.

3.3 Calculation method of frequency regulation potential
In this section, the method for predicting the wind
power frequency regulation potential is introduced and
the definition of frequency regulation potential predic-
tion error is then provided.
With the identified wind power coefficient CP, the op-

timal tip speed ratio λopt can be calculated accordingly:

∂Cp λ; β ¼ 0ð Þ=∂λ ¼ 0 ð6Þ
Considering the wind turbine operating boundary

characteristics, the maximum rotor kinetic energy ΔEmax

that can be drawn from the wind turbine can be further
derived as:

ΔEmax ¼ H
λoptv
R

� �2

−ω2
min

" #
ð7Þ

where λopt is the optimal tip speed ratio, and ωmin is the
lower limit unit value of the rotating speed in the fre-
quency regulation. Equation (7) provides the mapping
relationship between the wind speed sequence and the

Fig. 2 Schematic diagram of primary frequency regulation of
wind power

Fig. 3 Wind power frequency regulation potential, (a)
Maximum rotor kinetic energy, (b) Primary frequency
regulation reserve power
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maximum releasable rotor kinetic energy. This decou-
ples rotor kinetic energy and rotor speed.
From (6) and the identified λopt, the predicted max-

imum releasable rotor kinetic energy ΔEp can be calcu-
lated, while the actual sampled rotor speed is used in (7)
to obtain the maximum releasable rotor kinetic energy
ΔEr. The error ΔEerr0 can thus be expressed as:

ΔEerr0 ¼ ΔEp−ΔEr ð8Þ
The adopted wind power coefficient model involves

multiple nonlinear regression relationships with wind
speed v, rotor speed ω and pitch angle β. In the above
calculation for the maximum releasable rotor kinetic en-
ergy, the transformation relationship between v and ω is
derived. To obtain a complete wind power characteristic
curve and calculate the primary frequency regulation re-
serve power, the procedures for establishing the relation-
ship between v and β are used. A cubic polynomial
fitting of the β-v curve is also performed by the least
squares method:

β vð Þ ¼ b0 þ b1vþ b2v
2 þ b3v

3 ð9Þ
Then the predicted reserve value Pdep for primary fre-

quency regulation can be expressed as:

Pdep ¼
1
2
d%ρπR2CP λopt; 0

� �
v3; v≤vN

1
2
d%ρπR2CP ωmaxR=v; β vð Þð Þv3; v≥vN

8><
>:

ð10Þ
The mathematical connection between the reserve

power and v under the known d% can be established by
(10). Considering the adoption of deloading control, the
power reference value is multiplied by d% to achieve
sub-optimal operation. Research has shown that wind
turbines can accurately track the reduced power refer-
ence value [11]. Therefore, for a wind turbine with the
current optimal active power output of Pr, the actual pri-
mary frequency regulation power Pder at the reserved
load shedding level d% can be expressed by d%Pr. The
corresponding prediction error Perr0 can then be
expressed as:

Perr0 ¼ Pdep−Pder

d%PN
ð11Þ

where PN is the rated power of the wind turbine.
Considering the time variability of wind speed in the

operating environment, the wind turbine will deviate
from the MPPT state from time to time, leading to large
fitting errors. In addition, the proposed calculation
method of frequency regulation potential is based on the
wind speed prediction sequence, so its prediction error
and model parameter fitting error will accumulate in the

calculation process, increasing the uncertainty of wind
power frequency regulation [28]. Hence, a fitting error
compensation method is proposed. After compensation,
the overall wind power frequency regulation potential
error distribution will be more symmetrical, which is
beneficial to the fitting of the error distribution. The
error model can be expressed by a polynomial expres-
sion as:

Efit vð Þ ¼ d0 þ d1vþ d2v
2 þ d3v

3 ð12Þ

Then the forecast errors of the wind power frequency
regulation potential after error compensation can be
expressed as:

ΔEerr ¼ ΔEerr0‐Efit1 vð Þ ð13Þ

Perr ¼ Perr0‐Efit2 vð Þ ð14Þ

where ΔEerr and Perr are the errors of the maximum re-
leasable rotor kinetic energy and the predicted reserve
power after compensation, respectively. Efit1(v) and
Efit2(v) are the corresponding error compensation
models.

4 Error distribution characteristics of wind power
frequency regulation potential
The characteristics of wind power volatility and inter-
mittency [29 ]make the frequency regulation potential
full of uncertainty. In terms of the error distribution
characteristics of forecast values, a corresponding distri-
bution fitting model is established to realize a refined
modeling and characterization of the uncertainty of wind
power frequency regulation potential. To enhance the
accuracy of uncertainty interval modeling, error distribu-
tion modeling and parameter estimation methods are
presented.

4.1 Mixed skew generalized error distribution model
Wind power frequency regulation is a short process on a
second time-scale, and only ultra-short-term prediction
can meet the demand for its uncertainty characterization.
The proposed method for the case of the time series sub-
ject to an ultra-short-term process is multi-peak and
biased. Therefore, the error in the predicted frequency
regulation potential will accumulate and multiply with the
model fitting error. To achieve an accurate description of
the prediction error, a mixed SGED model is proposed for
the error distribution characteristics.
The SGED distribution introduces additional shape

parameters in Generalized Error Distribution (GED) to
describe the skewness of the distribution. This is espe-
cially suitable for an asymmetric distribution. SGED’s
probability density function can be expressed as [30]:

Yan et al. Protection and Control of Modern Power Systems            (2021) 6:22 Page 5 of 13



f x; μ; σ; k; λð Þ ¼ C
σ
e

− 1
1− sign y−μþδσð Þλ½ �k θk σk y−μþδσj jk

� �
ð15Þ

where k describes the tail of the income distribution,
and

C ¼ k
2θ

Γ
1
k

� �−1

θ ¼ Γ
1
k

� �1
2

Γ
3
k

� �‐12

S λð Þ−1

δ ¼ 2λAS λð Þ−1
S λð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3λ2−4A2λ2

p
A ¼ Γ

2
k

� �
Γ

1
k

� �‐12

Γ
3
k

� �‐12

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð16Þ

When k < 2, the SGED has a thicker tail than the
Gaussian distribution, and vice versa for k > 2. The value
range of λ is [− 1,1], and refers to the skew parameter. If
λ > 0, it indicates that the tail of the distribution is
skewed to the right, and is skewed to the left for λ < 0
[31] (Table 1).
The mixed SGED model is a linear combination of

multiple skew distributions. The probability density
function of a mixed distribution model based on a skew
distribution with K components can be expressed as:

f M x; μ1;…; μK ;σ1;…; σK ;k1;…; kK ;λ1;…; λK
� �

¼
XK
k¼1

ak f x; μk ; σk ; kk ; λk
� � ð17Þ

where αk is the weight coefficient of different skewness
distributions in the mixed skewness distribution, αk > 0,
and α1 + α2+ … + αK = 1. It can be proved that the mixed
model satisfies the property that the integral of the prob-
ability density function in the whole domain is 1.
Any probability density function f(x) satisfies:Z ∞

−∞
f xð Þdx ¼ 1 ð18Þ

and its mixed model form is:

f K xð Þ ¼
XK
k¼1

ak f xð Þ;
XK
k¼1

ak ¼ 1 ð19Þ

where K is the maximum number of components in the
mixed model.

Z ∞

−∞
f K xð Þdx ¼

Z ∞

−∞

XK
k¼1

ak f xð Þdx ¼
XK
k¼1

ak ¼ 1 ð20Þ

As shown in Fig. 4, the mixed skewness distribution
composed of a linear weighting of 4 SGED can more ac-
curately describe the skewness, thick tail and multimod-
ality in the error distribution. The skewness distribution
1 is mainly used for describing the skewness of the sharp
peak distribution on the left; distributions 2 and 4 focus
on describing the heavy tail on the right, and distribu-
tion 3 is a good description of the peak and valley posi-
tions of the bimodal curve. As can be seen the mixed
skew distribution model can fit various distributions well
while the K value is usually within 2 ~ 3.

4.2 Parameter estimation method of distribution model
A single distribution model has fewer parameters to esti-
mate, and the Maximum Likelihood Estimation method
(MLE) can quickly converge. However, the analytical ex-
pression of the likelihood function of the MLE method
directly used for parameter estimation of the mixed skew
distribution is too complicated and difficult to solve.
The Expectation Conditional Maximization (ECM) algo-
rithm and the Markov Chain Monte Carlo (MCMC)
method that are often used in parameter estimation of
the mixed model will also have problems such as local
convergence [32].
In order to realize an accurate estimation of the pa-

rameters of the mixed model, we propose a parameter
estimation method to solve the problems related to the
convergence of the MLE method and the selection of
the initial value of the nonlinear fitting algorithm. First,
the maximum component number K of the mixed model
is determined and used as the number of clusters. The
original data samples are clustered through the K-Means

Table 1 Special cases of mixed generalized error distribution

Shape
parameter

k = 2, λ = 0 k = 2, λ≠ 0 λ = 0, σ =
1

k≠ 2,
λ≠ 0

Distribution
type

Gaussian
distribution

Skew Gaussian
distribution

Standard
GED

SGED

Fig. 4 Generalized error distribution of mixed skewness
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algorithm, which is a simple iterative clustering algo-
rithm that uses Euclidean distance as a similarity index.
Then MLE is used to estimate the parameters of various
data samples to maximize the likelihood function, and
the initial values of the parameters of each sub-
distribution model in the mixed model are obtained.
The initial value of its weight can be calculated as:

ak0 ¼ yk=
XK
i¼1

yi ð21Þ

where yi is the amplitude of the frequency density curve
of various data samples after clustering.
A nonlinear fitting on the error probability distribution

density curve is performed so that the obtained model
parameter vector minimizes the residual sum of squares
between the probability distribution model and the dens-
ity curve, satisfying:

min
XN
i¼1

f
xiL þ xiR

2
;C

� �
−yi

� �2
ð22Þ

where C represents the parameters to be estimated in
the distribution model, and xiL, xiR represent the left and
right end points of the abscissa of the ith frequency
histogram in the distribution histogram.
The Levenberg-Marquardt (LM) algorithm is used to

solve the above-mentioned nonlinear optimization prob-
lem. This combines the advantages of the gradient des-
cent method and Newton’s method, while retaining
faster convergence speed. Despite the many merits of
the LM algorithm, it is more sensitive to the selection of
the initial value. In this paper, the initial value of the
mixed model is obtained through MLE, and alternating
MLE and LM methods can quickly converge to the opti-
mal value. The flow chart of model parameter estimation
is shown in Fig. 5.

4.3 Uncertainty interval modeling method
After obtaining the predicted error probability density
curve by fitting, the margin of the wind power frequency
regulation potential under different confidence intervals
can be obtained. With the statistical error margin, the
uncertainty interval of the frequency regulation potential
can be generated by superposing it on the predicted
value.
The static error distribution model cannot satisfy

the demand for accurate uncertainty modeling, be-
cause of the decoupling of model parameters and
time series process. The output uncertainty interval in
the relatively low prediction error section is too wide,
and the estimation result is too conservative. These
issues can be dealt with by the proposed segmented
interval modeling method. Considering that the

potential of wind power frequency regulation involves
the energy stored by the rotor and the reserve power,
both have a close coupling relationship with the wind
speed. The wind power frequency regulation potential
modeling and error compensation also link directly to
the wind speed. Hence, we propose a segmented un-
certainty interval modeling method. By dividing the
historical operating wind speed sections, the error of
the wind power frequency regulation potential under
the corresponding section is obtained, and the appro-
priate probability density fitting model is selected in
accordance with the error distribution characteristics.
Based on this, the predicted results of wind power
frequency regulation potential can be determined ac-
cording to the wind speed forecast sequence. Com-
bined with the interval error distribution model of
the wind speed forecast value, the upper and lower
bounds of the forecast error under the corresponding
confidence level are calculated, and the upper and
lower bounds of the corresponding uncertainty inter-
val Lmax and Lmin can be expressed as:

Fig. 5 Flow chart of model parameter estimation
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Lmax ¼ R f þ θ τð Þ
max vð Þ

Lmin ¼ R f þ θ τð Þ
min vð Þ

(
ð23Þ

where Rf is the predicted value of wind power frequency
regulation potential, θðτÞmaxðvÞ and θðτÞminðvÞ represent the
respective upper and lower limits of the prediction error
for the interval of the operating wind speed v under the
characterization confidence τ.

5 Results and discussion
5.1 Data source
To assess the accuracy and applicability of the above
model, this paper uses the SCADA data of a single wind
turbine in a wind farm in China from June 19 to July 11,
2015 for anlalysis. The wind turbine capacity is 1.5MW
and the data sampling interval is 1 min. The rated oper-
ating wind speed of the wind turbine is vN = 12m/s, the
lower limit of the rotor speed ωmin participating in the
frequency regulation is 0.7 p.u., the upper limit ωmax is
1.2 p.u., the reserved derating level d% is set to 10%, and
the equivalent inertia time constant of the wind turbine
is 5.04 s.

5.2 Data preprocessing
The error sample data of the wind power frequency
regulation potential has been standardized during calcu-
lation such that the outliers and large continuous miss-
ing data in the original data are eliminated. In addition,
the data is filtered according to the MPPT operating
range of the wind turbine, and data that can participate
in the frequency response time point is retained.

5.3 Model evaluation indicators
To compare the practicality of the model with other
methods, this paper adopts the probability density curve
error evaluation method to evaluate the fitting error be-
tween the probability density function and the frequency
histogram of the error distribution. To avoid redundancy
of information transmitted in the frequency histogram
and the lack of key features, the following 4 indicators
are synthetically used to evaluate the accuracy of the
model [33].

1) Mean absolute error (MAE):

MAE ¼ 1
N

XN
i¼1

y0 ið Þ−y ið Þj j � 100% ð24Þ

2) Root mean square error (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

y0 ið Þ−y ið Þð Þ2
vuut � 100% ð25Þ

3) Cosine included angle transformation Icos:

Icos ¼ 1−
Y 0 � YT

Y 0k k � Yk k ð26Þ

4) The coefficient of determination R2:

R2 ¼ 1−

XN
i¼1

y0 ið Þ−y ið Þð Þ2

XN
i¼1

y0 ið Þ−
XN
j¼1

y0 jð Þ=N
 !2 ð27Þ

In (24)–(27), N is the total length of the sequence,
y0(i) and y(i) are the actual and the fitted calculated
values of the probability density of the ith error fre-
quency interval, respectively. and Y0 and Y are the actual
and fitted values of the probability density of the error
frequency interval, respectively. The cosine included
angle transformation Icos is used to describe the similar-
ity of two vectors in space, and its value range is [0,1].
R2 is used for measuring the interpretability of the statis-
tical model used, and its value range is [0,1]. It indicates
whether the prediction error is greater or smaller than
the mean reference error when the mean is used as the
error benchmark, to reflect the fit of the model.
To verify the rationality of the predictive uncertainty

model from the perspective of probability, the interval
over-limit ratio η is used to measure the interval enve-
lope characteristics of the uncertainty model:

χ ¼ 1 θ τð Þ
min vð Þ < Rs < θ τð Þ

max vð Þ
0 other

	
ð28Þ

η ¼ 1−

XN
i¼1

χ i

N

0
BBBB@

1
CCCCA� 100% ð29Þ

where χ is a 0–1 variable, indicating whether the actual
value Rs of the wind power frequency regulation
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potential under the confidence τ falls within the uncer-
tainty interval.

5.4 Fitting of probability density of wind power
frequency regulation potential prediction error
To verify the effectiveness of the above method, the pa-
rameters in the wind energy utilization coefficient model
are identified based on the operating data, and the opti-
mal tip speed ratio calculated using (6). Because the
model is highly nonlinear and sensitive to parameters, a
Genetic Algorithm (GA) is used to solve the problem.
Once the optimal tip speed ratio λopt = 5.341 is calcu-

lated, the maximum rotor kinetic energy ΔEmax is ob-
tained using (7). Furthermore, based on (8) and (11), the
predicted values of the two frequency regulation poten-
tials are calculated. From the error statistics, the wind
power prediction errors show differences for each speed
interval. Table 2 uses 1 m/s as the interval to count the
average value μ and standard deviation σ of the primary
frequency regulation reserve prediction error in each
wind speed section. The data samples between 14 m/s
and 18m/s are small, so the segmented statistics are not
performed. It can be seen that the power reserve predic-
tion error of each wind speed segment fluctuates signifi-
cantly, and the characteristics are significantly different.
Both the error compensation strategy and error seg-

mentation characteristics modeling strategy proposed in
this paper are conducted on the test samples. The

maximum releasable rotor kinetic energy prediction
error is directly compensated by (12) and (13), while the
primary frequency regulation reserve power prediction
errors are in accordance with Table 2 and the proposed
wind speed partition results are combined with (12) and
(14) for the error compensation.
Additionally, the proposed parameter estimation

method is used to determine the model parameters.
First, the number of clusters to be clustered is deter-
mined according to the maximum releasable rotor kin-
etic energy and the frequency histogram of the peak
number of primary frequency regulation reserve power
errors. For the mixed model, when the internal compo-
nent K = 2, the model is more applicable. The error dis-
tribution rarely occurs when the number of typical peaks
is greater than 3 and the distance between the peaks is
significant. Even in such cases, there is bound to be
aliasing of peaks. Taking the probability density extreme
point as a peak, it can still be fitted by a unimodal or bi-
modal model, namely K = 2.

Table 2 Error statistical characteristics of primary frequency
regulation reserve power

v/(m/s) μ/p.u. σ/p.u.

[29, 30] 0.0376 0.0114

[30, 31] 0.0401 0.0166

[6, 31] 0.0224 0.0264

[6, 7] − 0.0141 0.0467

[7, 8] −0.0565 0.0811

[8, 9] −0.0749 0.1584

[9, 10] − 0.0842 0.223

[10–14] −0.0541 0.3214

Fig. 6 K-Means algorithm clustering results, (a) Maximum
releasable rotor kinetic energy, (b) Primary frequency
regulation reserve power

Fig. 7 The distribution of the prediction error of the
maximum releasable rotor kinetic energy

Fig. 8 The distribution of the prediction error of the primary
frequency regulation reserve power
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With K = 2, Fig. 6 depicts the clustering of maximum
releasable rotor kinetic energy and primary frequency
regulation reserve power prediction errors. It can be
seen that the K-Means algorithm can effectively adjust
the original samples according to the set K value. The
bimodal distribution shown in Fig. 6 is not weighted, so
it is more conducive to the initialization of the model
parameters by the MLE method.
The model parameter estimation method mentioned

above is used to converge the parameters of the mixed
model to the optimal value. In order to further illustrate
the accuracy of the mixed SGED in describing the error
distribution of the wind power frequency regulation po-
tential, it is compared with the mixed Gaussian distribu-
tion model, the mixed Weibull distribution, the mixed t
Location scale distribution and the mixed GED. For
model parameter estimation, all adopt the method pro-
posed in this paper.
Figures 7 and 8 show the prediction error distributions

of the maximum releasable rotor kinetic energy and pri-
mary frequency regulation reserve, respectively. Several
mixed models can well reflect the multi-peak trend con-
tained in the distribution. This proves the applicability
of the proposed parameter estimation method. Both
error distributions have the characteristics of thick tails
and tail probability density curves. These can cause lar-
ger error intervals in the prediction data. Therefore, the
fitting results of the error distribution tail are very im-
portant to the whole uncertainty modeling process. It
can be found that the ability of the other mixed models
to adjust the shape is limited, while the Mixed SGED is
more effective in describing the distribution
characteristics.
The model evaluation indicators corresponding to the

different mixed distribution models are shown in Table 3.
As can be seen, the mixed SGED has the best fitting ef-
fect on the frequency regulation potential prediction
error distribution, and the evaluation results of various
indicators are better than other distribution models,

indicating that the probability density and true value of
the mixed SGED model fitting are highly similar.
The fitting results of different scenarios for the pro-

posed error distribution are shown in Fig. 9. The fre-
quency regulation potential error distributions with
operating wind speeds between [6, 8, 30] are defined as
conditional distribution 1 and conditional distribution 2,
respectively. Figure 9 shows that the mixed SGED can fit
the distribution characteristics of the original data well.
In addition, the prediction error distribution varies sig-
nificantly in different wind speed sections. For condi-
tional distribution 1, the distribution range of wind
power frequency regulation potential prediction error is
significantly larger than that of conditional distribution
2, and is more concentrated, which can support the ra-
tionality of the proposed uncertainty modeling method
based on different wind speed zones.

Table 3 Performance comparison of different methods

Names Method MAE RMSE Icos R2

Maximum releasable rotor kinetic energy Mixed Gaussian distribution 0.0447 0.0900 0.0174 0.9525

Mixed Weibull distribution 0.0299 0.0541 0.0067 0.9828

Mixed t distribution 0.0323 0.0581 0.0078 0.9802

Mixed SGED 0.0239 0.0417 0.0040 0.9898

Mixed GED 0.0277 0.0491 0.0056 0.9859

Primary frequency regulation power reserve Mixed Gaussian distribution 0.6607 1.4609 0.2481 0.4947

Mixed Weibull distribution 0.2138 0.6901 0.0439 0.8872

Mixed t distribution 0.1254 0.1930 0.0038 0.9912

Mixed SGED 0.0518 0.0788 0.0006 0.9985

Mixed GED 0.1493 0.2566 0.0064 0.9844

Fig. 9 Error modeling for (a) Maximum releasable rotor
kinetic energy error condition distribution 1, (b) Primary
frequency regulation power reserve error condition
distribution 2, (c) Maximum releasable rotor kinetic energy
error condition distribution 2, (d) Primary frequency
regulation power reserve error condition distribution 2
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5.5 Uncertainty prediction interval generation
The predicted data of the operating wind speed of the
wind turbine 6 h before July 12, 2015 is selected to cal-
culate the predicted value of the frequency regulation
potential at the corresponding time. According to the
existing error distribution model, different confidence
levels are generated for economic dispatch of wind
power frequency regulation potential.
Figures 10 and 11 show the modeling results of the

uncertainty interval of wind speed zones. The distribu-
tion of prediction error in the high wind speed interval
diverges, with the predicted value containing obvious
fluctuations. Consequently, the generated uncertainty
interval is wider and the envelope of the true value is
better, with no obvious difference of interval width at
different confidence levels. The predicted output of wind
power frequency regulation potential in the low wind
speed section is close to the true value without signifi-
cant fluctuation, and the relative uncertainty range is
smaller. The above analysis shows that the proposed un-
certainty modeling method for wind speed division is
more accurate in describing the uncertainty of wind
power frequency regulation potential.

The η of uncertainty intervals of releasable rotor kinetic
energy and reserve power are shown in Figs. 12 and 13, re-
spectively. The wind speed segmentation modeling is
named as a proposed method for simplification, and is
compared with the mixed SGED and the GED models
which disregard the segmentation characteristics of the
error distribution. Because of the existence of abnormal
values such as wind abandonment and peak shaving that
cannot be effectively eliminated in the data preprocessing
link in the error sample, the generated interval results by
mixed SGED model and GED cannot accurately describe
the predicted value uncertainty. Thus, as the confidence
level increases, the adopted wind speed partition error
modeling method gives more accurate uncertainty interval
results, which can precisely envelop the true value in each
wind speed zone. In addition, the proposed method has
the lowest percentage of interval violations. In general, it
is conducive to a realization of the refined frequency regu-
lation reserve capacity configuration that considers wind
power participation in frequency regulation.

Fig. 10 Uncertainty interval of the maximum releasable
rotor kinetic energy

Fig. 11 Uncertainty interval of primary frequency regulation
reserve power reserve

Fig. 12 Proportion of maximum releasable rotor kinetic
energy interval over-limit

Fig. 13 Proportion of over-limit of reserve power interval for
primary frequency regulation
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6 Conclusion
This paper proposes new evaluations of wind power par-
ticipation in frequency regulation. The main conclusions
are as follows:

(1) The wind power frequency regulation potential
error compensation method proposed in this paper
effectively eliminates the adverse impacts of fitting
and prediction errors, and thus significantly
enhances the accuracy of forecasting and
uncertainty modeling.

(2) The mixed SGED model can effectively capture the
peak, waist and tail characteristics of the error
distribution, and performs significantly better than
other mixed models. In particular, the proposed
mixed distribution model parameter estimation
method can quickly converge to the optimal value
with good adaptability.

(3) Based on the SGED model and the wind speed
segmentation error modeling, the uncertainty
interval of wind power frequency regulation
potential is appropriate, which is of great
significance for providing more reliable auxiliary
information for the coordinated control and system
scheduling of multi-wind turbine systems.
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