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Abstract

Optimal reactive power dispatch (ORPD) is a complex and non-linear problem, and is one of the sub-problems of
optimal power flow (OPF) in a power system. ORPD is formulated as a single-objective problem to minimize the
active power loss in a transmission system. In this work, power from distributed generation (DG) is integrated into a
conventional power system and the ORPD problem is solved to minimize transmission line power loss. It proves
that the application of DG not only contributes to power loss minimization and improvement of system stability
but also reduces energy consumption from the conventional sources. A recently proposed meta-heuristic algorithm
known as the JAYA algorithm is applied to the standard IEEE 14, 30, 57 and 118 bus systems to solve the newly
developed ORPD problem with the incorporation of DG. The simulation results prove the superiority of the JAYA
algorithm over others. The respective optimal values of DG power that should be injected into the four IEEE test
systems to obtain the minimum transmission line power losses are also provided.

Keywords: Active power loss, Distributed generation, DG penetration, JAYA algorithm, Optimization problem,
ORPD, Particle swarm optimization, Variants of PSO, Transmission line losses

1 Introduction
Minimizing power loss in transmission systems is a
major area of research in power system engineering.
Voltage collapse, as another major issue, is also
attracting much research worldwide to find solutions
to improve voltage stability and thus improve the se-
curity of the power system and make power transmis-
sion more economic. Optimal reactive power dispatch
(ORPD) deals with not only the problem of increasing
power loss with the expansion of power networks but
also the increasing voltage instability problem. The
ORPD problem is a sub-problem of optimal power
flow (OPF) whose solution helps determine the opti-
mal values to the control variables such as the gener-
ator voltage, setting of the tap-changing transformer,

and the optimal value of reactive power to be injected
to compensate for the VAR demand, in order to sim-
ultaneously reduce the active power loss and improve
voltage stability. Thus, the solution to the ORPD
problem helps enhance the security of the power sys-
tem and improve its economics. However, the ORPD
problem is a complex, non-continuous and non-linear
problem, and many conventional optimization tech-
niques such as the Newton method, quadratic pro-
gramming, linear programming, and interior-point
methods, have failed to solve it since these methods
have low accuracy, high complexity, and inability to
find the local and global optima and thus result in in-
secure convergence [1–6].
Many modern stochastic and meta-heuristic tech-

niques have been applied to overcome these disadvan-
tages, such as the genetic algorithm (GA) [7], improved
GA [8], particle swarm optimization (PSO) [9], evolu-
tionary programming (EP) [10], hybrid evolutionary
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strategy [11], the seeker optimization algorithm (SOA)
[12], bacterial-foraging optimization (BFO) [13], the
gravitational search algorithm (GSA) [14], differential
evolution (DE) [15], and the artificial bee colony algo-
rithm (ABC) [16]. K. Medani et al. in [17] applied the
whale optimization algorithm which was inspired by the
bubble-net hunting technique of the humpback whales
to solve the ORPD problem, while A. M. Shaheen et al.
in [18] proposed a backtracking search optimizer (BSO)
where five diversified generation strategies of mutation
factor were applied. In [19], K. Lenin proposed an algo-
rithm named Enhanced Red Wolf Optimization which is
a hybrid of the wolf optimization (WO) and particle
swarm optimization (PSO) algorithm, to solve the ORPD
problem. In [20], an improved social spider optimization
(ISSO) was used for determining the optimal solution of
power loss in the ORPD problem. Zelan Li et al. [21]
proposed an Antlion optimization algorithm (IALO) for
a three-bus system, whereas R. N. S Mei et al. [22] used
two different algorithms, namely the Moth-Flame
Optimizer and Ant Lion Optimizer, to optimize the
ORPD problem.

This paper uses a novel algorithm, namely the JAYA al-
gorithm developed by Rao [23], to solve the ORPD prob-
lem. Many other algorithms such as PSO and different
variants of PSO, e.g., R-PSO, L-PSO, PSO-CFA, Improved
PSO Based on Success Rate (IPSO-SR) [24], Fruit Fly
optimization algorithm (FOA), and modified Fruit Fly
optimization algorithm (MFOA) are also tested along
with the JAYA algorithm. The results are compared
to determine the best algorithm in terms of conver-
gence, the ability to determine the optimal solution,
and robustness.
The main contributions of the paper are as follows:

i) Minimizing transmission line power loss by
obtaining the optimal setting of the control
variables within the system without violating the
equality and inequality constraints.

ii) Incorporating the concept of distributed generation
(DG) into the ORPD problem to study its effect and
analyze its contribution towards minimizing power
loss and increasing system efficiency in the
problem.

Fig. 1 Flow chart of the JAYA algorithm implemented on the ORPD problem
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iii) The superiority of the JAYA algorithm is
established over other algorithms reported in the
literature.

1.1 Distributed generation
Alternative sources of energy such as wind, solar,
etc. are being used currently. In many cases, such
sources of energy are used to generate power on a
small scale in areas close to the end users. The end
users consume power and any excess power is sent
back to the grid. This approach is called distributed
generation (DG) and it helps reduce coal consump-
tion, the cost of generation, and transmission line
power loss. Furthermore, the demand of consumers

in remote areas can be fulfilled from the local gener-
ation and the risk of voltage collapse is also reduced.
Much research has been carried out to increase the
utilization of DG to enhance the security and eco-
nomic growth of power systems [25–30].
In this work, DG power is supplied to the buses

along with power from conventional sources to study
the transmission line loss characteristic by solving
the ORPD problem. The DG power is injected indi-
vidually at each bus (except for the slack bus) within
a specified limit and the ORPD problem is solved to
determine the optimal values of the control variables
for minimizing transmission line losses. The control
variables chosen for the ORPD problem are the

Table 3 Simulation results on the IEEE 14 bus system using different algorithms without DG injection

Control Variables (p.u.) PSO R-PSO L-PSO PSO-CFA IPSO-SR FOA MFOA JAYA

VG1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

VG2 1.1 1.1 1.1 1.1 1.0863 1.1 1.1 1.0859

VG3 1.0701 1.0696 1.0703 1.0702 1.0578 1.1 1.1 1.0568

VG6 1.1 1.1 1.1 1.0605 1.0575 0.9 1.1 1.1

VG8 1.1 1.1 1.1 1.1 1.0726 0.95 1.1 1.1

T4–7 0.9285 0.9551 1.1 1.1 0.9685 1.1 1.1 0.9492

T4–9 1.1 1.1 0.9 0.9 1.1 0.935 1.1 1.0766

T5–6 1.1 1.0179 1.0047 1.1 1.1 1.1 1.1 1.0031

Qsc9 0.2332 0.3 0.2643 0.015 0.2134 0.000328 0.0443 0.3

Qsc14 0.0555 0.0604 0.0 0.0641 0.0634 0.000296 0.0443 0.0594

Total Ploss (MW) 12.4268 12.3585 12.4041 12.416 12.2957 12.5992 12.7531 12.2270

DE [32] ABC [32] ACOR [32] TLA [32] DE [32] MTLA [32] MTLA-DDE [32] LCA [32] CSS [32]

13.1053 12.9333 13.1226 12.9229 13.1053 12.9106 12.8978 12.9891 12.9748

BRCFF [32] BB–BC [32] PBIL [32] DDE [32] TLBO [33] BBPSO [33] BBDE [33] GBTLBO [33] MGBTLBO [33]

12.9264 13.0039 13.0008 12.9286 12.9878 12.9919 12.9973 12.4152 12.3105

PSO [17] PSO-TVAC [17] WOA [17] MDE [18] SARGA [18] RTS [18] EP [18] BSO 1 [18] BSO 2 [18]

12.381 12.279 12.255 13.0532 13.21643 13.236 13.3462 12.4633 12.4672

BSO 3 [18] BSO 4 [18] BSO 4 [18]

12.4651 12.4588 12.4699

Table 2 Typical parameters of the bus systems

Control variables IEEE 14 bus system IEEE 30 bus system IEEE 57 bus system IEEE 118 bus system

Buses 14 30 57 118

Generators 5 6 7 54

Transformers 3 4 15 9

Shunt compensators 2 3 3 14

Transmission lines 20 41 80 186

Control variables 10 13 25 77

Base Ploss (MW) 13.49 5.66 27.8637 132.45
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generator bus voltages, tap position of the tap-
changing transformer, the VAR output of the com-
pensating devices, and the injected DG active power.
Thus for an n-bus system, the ORPD problem is
solved n-1 times. The proposed algorithm is used to
determine the optimal value of DG power for each
bus in order to reduce transmission line loss for the
ORPD problem. The power losses for the n-1 buses
are compared, and the bus with the minimum power
loss and the corresponding injected DG power are
selected.

2 Problem formulation
The objective of solving the ORPD problem is the
minimization of power loss in transmission lines in-
corporating DG. The solution to this problem is to
determine the optimal values of the control variables
while simultaneously satisfying all the constraints in
the system. First, the ORPD problem is solved with-
out the incorporation of DG in the system, and
power losses for the test cases are evaluated and
compared using different optimization algorithms.
The DG is then introduced and the algorithms again
determine the power loss of the system with the
penetration of DG. The objective function remains
the same while the amount of DG power to be
injected is considered as an additional control
variable.
The objective function for the problem is expressed

as [4]:

f n ¼ min Plossð Þ ¼
XNl
k¼1

Gk V 2
i þ V 2

j − 2V iV j cosδij
� �

ð1Þ

where Nl represents the total number of transmission
lines, and the conductance of the kth branch is Gk. Vi

and Vj represent the magnitudes of the bus voltage
for buses i and j, respectively, and δ ij is the phase
difference between Vi and Vj. The different constraint

Fig. 2 Convergence characteristics of the algorithms for the
IEEE 14 bus system without DG injection

Table 4 Simulation results on the IEEE 30 bus system using different algorithms without DG injection

Control Variables (p.u.) PSO R-PSO L-PSO PSO-CFA IPSO-SR FOA MFOA JAYA

VG1 1.1 1.1 1.1 1.1 1.1 0.9757 0.95 1.1

VG2 1.1 1.1 1.1 1.1 1.1 0.95 0.95 1.0945

VG5 1.1 1.1 1.1 1.0806 1.1 0.95 0.95 1.0752

VG8 1.1 1.1 1.1 1.0821 1.0882 0.95 0.95 1.077

VG11 1.1 1.1 1.1 1.1000 1.1 1.1 0.95 1.1

VG13 1.1 1.1 1.1 1.1000 1.1 1.1 0.95 1.1

T6–9 0.9981 1.1 1.1 0.9777 0.9758 0.9 0.9 1.073

T6–10 1.1 0.9 1.1 1.1 1.1 0.9 0.9 0.9001

T4–12 0.9726 0.9729 1.0063 1.1 0.9553 0.9 0.9 0.9411

T28–27 0.9896 0.9746 0.998 1.0041 0.9644 0.9 0.9 0.9522

Qsc3 0.0 0.0 0.0 0.0 0.094958 0.0003 0.2993 0.0915

Qsc10 0.36 0.2362 0.36 0.0954 0.36 0.0005 0.2993 0.2824

Qsc24 0.0949 10.056 0.1032 0.107 0.0994 0.0003 0.2993 0.0978

Ploss (MW) 4.7915 4.7392 4.8655 4.7282 4.7190 6.2775 5.0957 4.5983

ICA [34] IWO [34] MICA-IWO [34] C-PSO [35] CI-PSO [35] LDI-PSO [35] B-DE [35] R-DE [35] SFLA [35]

4.6155 4.6287 4.5984 4.6801 4.6124 4.6124 4.6124 4.6675 4.6148

NMSFLA [35]

4.6118
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that need to be satisfied are discussed in the follow-
ing sub-sections.

2.1 Constraints
The constraints are mainly categorized into equality
constraints and inequality constraints as follows:

2.1.1 Equality constraints
These constraints depict the load flow equations as:

Pgi − Pdi − V i

XNb
j¼1

V j Gij cosδij þ Bij sinδij
� � ¼ 0

ð2Þ

Qgi −Qdi −V i

XNb
j¼1

V j Gij cosδij þ Bij sinδij
� � ¼ 0

ð3Þ
where the total number of buses is Nb, Pgi and Qgi

represent the active and reactive power generation,
and Pdi and Qdi are the active and reactive power
load demands for the ith bus, respectively. Gij and Bij

represent the conductance and susceptance between
the ith and jth buses, respectively.

2.1.2 Inequality constraints

� Generator constraints:

The active and reactive power generation of the
generator and its voltage magnitude are all set
within their limits when solving the problem, as:

Vmin
gi ≤Vgi≤V

max
gi ; i ¼ 1;…;Ng ð4Þ

Pmin
gi ≤Pgi≤P

max
gi ; i ¼ 1;…………;Ng ð5Þ

Qmin
gi ≤Qgi≤Q

max
gi ; i ¼ 1;…………;Ng ð6Þ

Fig. 3 Convergence characteristics of the algorithms for the
IEEE 30 bus system without DG injection

Table 5 Statistical analysis for case 2 of the IEEE 30 bus system

Algorithm Best (MW) Worst (MW) Mean (p.u.) Standard deviation (std.) % of Power save Average computation time (s)

C-PSO [34] 4.68017 5.69149 5.14339 2.8854 × 10− 3 17.3114 45.67

CI-PSO [34] 4.61244 4.87635 4.64732 5.834 × 10− 4 18.5081 56.76

LDI-PSO [34] 4.61243 4.93822 4.62908 4.851 × 10− 4 18.5083 49.57

B-DE [34] 4.61243 4.61333 4.61281 2.6 × 10− 6 18.5083 46.78

R-DE [34] 4.66755 4.98274 4.75088 6.54 × 10− 4 17.5344 54.07

SFLA [34] 4.61483 4.97653 4.72213 9.973 × 10− 4 18.4659 41.97

NMSFLA [34] 4.61181 4.61749 4.61264 9.8 × 10− 6 18.5192 23.06

ICA [34] 4.6155 4.6624 4.6397 2.7613 × 10− 3 18.4541 68.14

IWO [34] 4.6287 4.9206 4.7813 3.1584 × 10− 2 18.2208 70.45

MICA-IWO [34] 4.5984 4.6009 4.5991 8.006 × 10− 6 18.7562 69.04

PSO 4.7915 4.9387 4.9053 9.08 × 10−3 15.3445 50.73

R-PSO 4.7392 5.0006 4.8695 8.707 × 10−3 16.2686 50.75

L-PSO 4.8655 5.0222 4.9496 5.1176 × 10−3 14.0371 48.53

PSO-CFA 4.7282 4.9185 4.8334 6.668 × 10−3 16.4629 50.63

IPSO-SR 4.719 4.9316 4.84455 6.668 × 10−3 16.6254 51.13

FOA 6.2775 6.3832 6.3605 5.3887 × 10−3 −10.9099 49.28

MFOA 5.0957 5.1424 5.13425 1.724 × 10−3 9.97 52.79

JAYA 4.5983 4.5986 4.5984 9.4281 × 10−5 18.7579 50.44
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where, Ng represents the total number of generator
buses, Vmin

gi , Pmin
gi and Qmin

gi are the minimum limits
and Vmax

gi , Pmax
gi and Qmax

gi are the maximum limits of

the generator bus voltages, active and reactive power,
respectively. Vgi, Pgi and Qgi are the voltage, active
and reactive power generation at the ith bus,
respectively.

� Transformer constraints:

Tmin
i ≤Ti≤T

max
i ; i ¼ 1;…;NT ð7Þ

� VAR compensator constraints:

Qmin
ci ≤Qci≤Q

max
ci ; i ¼ 1;…………;NC ð8Þ

� Operating constraints:

Vmin
Li ≤VLi≤V

max
Li ; i ¼ 1;…………;NPQ ð9Þ

SLi≤S
max
Li ; i ¼ 1;…………;NL ð10Þ

Equation 7 shows the maximum and minimum
limits of the tap changing transformers, where NT

represents the number of tap-changing transformers
in the system, Ti is the transformer tap-setting

position at the ith bus and Tmin
i and Tmax

i are its
minimum and maximum limits. Equation 8 repre-
sents the limits of the reactive power to be injected
by the VAR compensators, where NC is the total
number of shunt compensators at the buses, Qmin

ci

and Qmax
ci are the minimum and maximum limits of

the reactive power injection Qci, respectively. Equa-
tions 9 and 10 represent the operating constraints of
load buses and the apparent power at the branches,
where NPQ depicts the total number of load buses,
Smax
Li is the maximum apparent power flow at the ith

bus and SLi is the apparent power at that branch.
VLi is the magnitude of the voltage at the ith load
bus and Vmin

Li and Vmax
Li are its minimum and max-

imum limits. The objective function in (1) is modi-
fied by considering the dependent variables as
constraints using penalty coefficients as:

f ¼ Ploss þ λV
XNlim

V

i¼1

V i − V lim
i

� �2 þ λQ
XNlim

Q

i¼1

Qgi −Qlim
gi

� �2

ð11Þ

The limits of V lim
i and Qlim

gi are:

V lim
i ¼ Vmin

i ; if V i < Vmin
i

Vmax
i ; if V i > Vmax

i

�
ð12Þ

Qlim
i ¼ Qmin

i ; if Qgi < Qmin
i

Qmax
i ; if Qgi > Qmax

i

�
ð13Þ

where, λV and λQ are the penalty coefficients, Nlim
V

is the number of buses for which the voltages are
outside limits and Nlim

Q is the number of buses for
which the reactive power generations are outside
limits.

Table 6 Frequency of convergence for the IEEE 30 bus system case 2 in 50 trial runs

Algorithms 4.59–4.60 4.61–4.70 4.71–4.80 4.81–4.90 4.91–5.0 5.01–5.10 5.11–5.20 > 6.01

PSO 0 0 1 30 19 0 0 0

R-PSO 0 0 11 33 6 0 0 0

L-PSO 0 0 3 25 22 0 0 0

PSO-CFA 0 0 18 27 5 0 0 0

IPSO-SR 0 0 4 29 17 0 0 0

FOA 0 0 0 0 0 0 0 50

MFOA 0 0 0 0 0 1 49 0

JAYA 50 0 0 0 0 0 0 0

Table 7 Control variable limits (p.u.) for the test cases

Limits of voltages and tap settings (p.u.)

Vmin
g Vmax

g Vmin
PQ Vmax

PQ Tmin Tmax

0.9 1.1 0.94 1.06 0.9 1.1

Limits of the reactive power sources (p.u.)

Bus No. 18 25 53

Qmin
c 0 0 0

Qmax
c 0.1 0.059 0.063
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3 JAYA algorithm
Many stochastic and meta-heuristic techniques have
been developed recently to solve this type of com-
plex and non-linear problem such as is the ORPD,
including the JAYA algorithm proposed by R.V. Rao
[23]. This algorithm has the ability to solve the
optimization problem quickly to determine the opti-
mal solution. It has a very high success and conver-
gence rate compared with other algorithms as it has
a tendency to move towards the best solution and
move away from the worst in every iteration. This

helps the algorithm to update new solutions by com-
paring it with the best without being stuck in local
optima.
Let an objective function be f(x), where ‘m’ is the

number of design variables (i.e. a = 1, 2, …, m) and
‘n’ the number of populations (b = 1, 2, …, n) for the
ith iteration. The population having the best solution
of f(x) (i.e. f(x)best) is called the best candidate and
the population having the worst solution to the ob-
jective function (i.e. f(x)worst) is called the worst. As-
suming the value for the ath variable of the bth

Table 8 Simulation results on the IEEE 57 bus system using different algorithms without DG

Control Variables (p.u.) PSO R-PSO L-PSO PSO-CFA IPSO-SR FOA MFOA JAYA

VG1 1.1 1.1 1.1 1.1 1.1 0.9127 0.9 1.1

VG2 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0991

VG3 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0888

VG6 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0834

VG8 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.1

VG9 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0848

VG12 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0806

T4–18 1.1 1.1 1.1 1.1 1.1 0.9 0.9 0.9

T4–18 1.1 1.1 1.1 1.1 1.1 0.9 0.9 0.9

T21–20 1.1 1.1 1.1 0.9918 1.1 0.9 0.9243 0.9824

T24–26 1.0036 1.1 1.015 0.9971 1.0642 0.9 0.9 0.9865

T7–29 1.1 1.1 1.1 1.1 1.1 0.9 0.9 0.9

T34–32 0.9671 1.1 0.9688 0.9662 1.1 1.1 0.9 0.9751

T11–41 1.1 1.1 1.1 1.1 1.1 0.9 0.9 0.9

T15–45 1.1 1.0046 1.1 1.1 1.0133 0.9 0.9 0.9

T14–46 1.1 1.0095 1.1 1.1 1.0176 0.9 0.9 0.9

T10–51 1.1 1.1 1.1 1.1 1.1 0.9 0.9 0.9101

T13–49 1.1 0.9823 1.0333 1.1 0.9895 0.9 0.9 0.9

T11–43 1.1 1.1 1.1 1.1 1.1 0.9 0.9 0.9

T40–56 1.1 1.1 1.1 1.027 1.1 0.9 0.9 1.0111

T39–57 1.1 1.1 1.1 0.9829 1.1 0.9 0.9 0.9841

T9–55 1.1 1.1 1.1 1.1 1.1 0.9 0.9 0.9002

Qsc18 0.0 0.0 0.0 0.10 0.0616 0.0012 0.008 0.0976

Qsc25 0.059 0.059 0.059 0.059 0.059 0.0026 0.0059 0.059

Qsc53 0.063 0.063 0.063 0.063 0.063 0.0014 0.0059 0.063

Ploss (MW) 24.8254 24.2539 24.5676 24.5873 24.2012 33.5557 23.0158 21.5481

ALC-PSO [18] BBO [18] GSA [18] CPVEI HBMO [18] HBMO [18] OGSA [18] BSO 1 [18] BSO 2 [18] BSO 3 [18]

23.39 24.544 24.439 22.78 23.24 23.43 24.5025 24.4856 24.4492

BSO 4 [18] BSO 5 [18] SGA (Ff1) [36] SGA (Ff2) [36] PSO [37] ICA [37] PSO-ICA [37] MOALO [38] DSA [39]

24.3744 24.6431 23.836 24.325 24.7742 24.1607 24.1386 26.593 23.35

BSO [40] WCA [41] GBWCA [41] GSA [42] CSA [42] MCBOA [42] BA [43] FPA [43]

24.3744 24.82 23.27 24.4922 24.2619 23.6943 24.9254 24.8419
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population in the ith iteration is represented as Ja, b,

i, the value of the variable is updated as:

J 0a;b;i ¼ Ja;b;i þ r1 Ja;best;i − Ja;b;i
�� ��� �

− r2 Ja;worst;i − Ja;b;i
�� ��� �

ð14Þ

where Ja, best, i and Ja, worst, i are the best and worst so-
lutions of the objective function of the ath variable, re-
spectively. r1 and r2 are two random numbers in the
range of [0, 1]. Thus, this equation helps the variable to
move closer to the best solution and away from the
worst solution.

3.1 Implementation of JAYA algorithm in ORPD
The procedure for the implementation of the JAYA al-
gorithm in solving the ORPD problem is shown in the
flow chart in Fig. 1, and the detailed step by step de-
scriptions are given below.

Step 1: The size of the population of the control
variables and the total number of iterations for the
problem are initialized.

Step 2: The values of the control variables are
randomly selected within their corresponding
constraint limits.

Step 3: A standard IEEE bus system is chosen and
the bus data and line data of the system are
updated using the new values from the
respective control variables. Then, the load flow
operation using the Newton-Raphson method is
executed.

Step 4: The constraints are checked and if any
constraint is violated, the control variables are
re-initialized and steps 2 and 3 are repeated. If
no constraint is violated, the power loss is
then calculated using the results from the load
flow.

Step 5: The best and worst solutions are identified
from the set of populations, i.e. the set resulting in
the least power loss is declared as the ‘best solution’
and the set with the highest power loss is declared
as the ‘worst solution’.

Step 6: The iteration cycle commences.
Step 7: The JAYA algorithm is initiated where the

control variables forming the different populations
are updated depending on the best and worst
solutions using (14).

Step 8: AC load flow is re-executed and the power
loss is calculated for all different sets of
population.

Step 9: The results are compared to accept and
reject the different sets of the control variables in
each population depending on the best solution.
The set of control variables having the best
solution is accepted and ones with the worse
solutions are updated with the previous best.
Thus, a new best solution is determined after
each iteration.

Step 10: The process continues until the iteration
reaches the maximum iteration.

Step 11: The optimal solution is obtained and the
corresponding control variables are saved.

This whole process helps obtain the optimal values of
the control variables for the best solution among all the
sets of population.

4 Simulation results and discussions
To evaluate the performance of the JAYA algorithm, it
is initially tested on 24 standard constrained bench-
mark functions (G01 – G24) and the results are com-
pared in Table 1. It shows that the proposed algorithm

Fig. 4 Convergence characteristics of the algorithms for the
IEEE 57 bus system without DG injection

Table 9 Control variable limits (p.u.) for the test cases

Limits of voltages and tap-settings (p.u.)

Vmin
g Vmax

g Vmin
PQ Vmax

PQ Tmin Tmax

0.9 1.1 0.94 1.06 0.9 1.1

Limits of the reactive power sources (p.u.)

Bus No. 5 34 37 44 45 46 48

Qmin
c −0.4 0 −0.25 0 0 0 0

Qmax
c 0 0.14 0 0.1 0.1 0.1 0.15

Bus No. 74 79 82 83 105 107 110

Qmin
c 0 0 0 0 0 0 0

Qmax
c 0.12 0.2 0.2 0.1 0.2 0.06 0.06
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Table 10 Simulation results on the IEEE 118 bus system using different algorithms without DG injection

Control Variables
(p.u.)

PSO R-PSO L-PSO PSO-CFA IPSO-SR FOA MFOA JAYA

VG1 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0801

VG4 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.1

VG6 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0932

VG8 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.1

VG10 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.1

VG12 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0896

VG15 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0882

VG18 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0886

VG19 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0869

VG24 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0912

VG25 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.1

VG26 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.1

VG27 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0812

VG31 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0755

VG32 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0813

VG34 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0989

VG36 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.096

VG40 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0784

VG42 1.1 1.1 1.1 1.1 1.1 0.9437 0.9 1.078

VG46 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0855

VG49 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0977

VG54 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0771

VG55 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0756

VG56 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0765

VG59 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0994

VG61 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0994

VG62 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0956

VG65 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.1

VG66 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.1

VG69 1.1 1.1 1.1 1.1 1.1 0.956 0.9 1.0999

VG70 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0776

VG72 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.081

VG73 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0769

VG74 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0669

VG76 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0673

VG77 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0867

VG80 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0994

VG85 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0995

VG87 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.1

VG89 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.1

VG90 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0854

VG91 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0895

VG92 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.1

VG99 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0969
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Table 10 Simulation results on the IEEE 118 bus system using different algorithms without DG injection (Continued)

Control Variables
(p.u.)

PSO R-PSO L-PSO PSO-CFA IPSO-SR FOA MFOA JAYA

VG100 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.1

VG103 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0918

VG104 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.083

VG105 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.077

VG107 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0669

VG110 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0704

VG111 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0774

VG112 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0549

VG113 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0968

VG116 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0999

T5–8 0.9905 1.1 1.1 1.1 1.1 0.9 0.9 0.9847

T25–26 1.1 1.1 1.1 1.1 1.1 0.922 0.9 1.0967

T17–30 1.1 1.1 1.1 1.1 1.1 0.9 0.9 0.9964

T37–38 1.1 1.1 1.1 1.1 0.9942 0.9 0.9 0.983

T59–63 1.1 0.982 0.9820 0.9821 0.9667 0.9 0.9 0.9806

T61–64 0.9859 0.9999 0.9999 1.0 1.1 0.9 0.9 1.005

T65–66 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.0043

T68–69 1.1 1.1 1.1 1.1 0.9257 0.9 0.9 0.9569

T80–81 0.9789 1.1 1.1 0.9766 1.1 0.9 0.9 0.9915

Qsc5 0.0 0.0 0.0 0.0 0.0 0.0000 0.0 −0.2340

Qsc34 0.0 0.0 0.0 0.0 0.0 0.0017 0.14 0.0007

Qsc37 0.0 0.0 0.0 0.0 0.0 0.0000 0.0 0.0

Qs44 0.0 0.0 0.0 0.0 0.0 0.0007 0.1 0.0566

Qsc45 0.0 0.0 0.0 0.0 0.0 0.0009 0.1 0.0979

Qsc46 0.0 0.0 0.0 0.0 0.0 0.0019 0.1 0.0467

Qsc48 0.0 0.0 0.0 0.0 0.0 0.0007 0.15 0.0015

Qsc74 0.0 0.0 0.0 0.0 0.0 0.0008 0.12 0.0080

Qsc79 0.0 0.0 0.0 0.0 0.0 0.0009 0.1604 0.1992

Qsc82 0.0 0.0 0.0 0.0 0.0 0.0005 0.1604 0.2000

Qsc83 0.0 0.0 0.0 0.0 0.0 0.0013 0.1 0.0741

Qsc105 0.0 0.0 0.0 0.0 0.0 0.0008 0.1604 0.1991

Qsc107 0.0 0.0 0.0 0.0 0.0 0.0013 0.06 0.0

Qsc110 0.0 0.06 0.06 0.0 0.06 0.0028 0.06 0.0294

Ploss (MW) 111.7172 113.7233 113.7233 112.8162 112.6259 167.0409 107.9321 105.4821

CKHA [44] PSO-TVIW
[45]

PSO-TVAC
[45]

SPSO-TVAC
[45]

PSO-CF [45] PG-PSO
[45]

SWT-PSO
[45]

PGSWT-PSO
[45]

IPGS-PSO
[45]

110.79 116.8976 124.3335 116.2026 115.6469 116.6075 124.1476 119.4271 115.0605

GSA [46] OGSA [47] CLPSO [48] EMA [49] NGBWCA
[41]

WCA [41] SARCGA [20] HEP [20] QOTLBO [20]

127.76 126.99 130.96 126.22 121.47 131.83 113.12 115.58 112.2789

TLBO [20] FPA [20] CSA [20] SSA [20] MSSA [20] HSSSA [20] SSO [20] ISSO [20] MSFS [50]

116.4003 129.6524 121.2732 125.8324 124.0818 126.6992 179.1816 114.5297 114.6251

SARCGA [51] HEP [51] ALO [21] IALO [21]

113.12 115.58 116.86 114.795
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is far superior and consistent in obtaining better re-
sults than the other well-established techniques. The
results also depict the ability of the proposed tech-
nique in obtaining better results for all the functions
under any constraints. The best and the mean values
for each function using the JAYA algorithm are very
close to each other, which implies that the algorithm
is robust and produces results with minimum devi-
ation compared to other techniques.
After obtaining this excellent performance of the

proposed algorithm on the standard benchmark
function with constraints, it is then implemented to
solve the ORPD problem. In this paper, it is tested
on the standard IEEE 14, 30, 57 and 118 bus systems
along with other algorithms from the literature. It
has also been tested to solve the minimum power
loss of the ORPD problem with and without DG
penetration, and the solutions are compared to those
using different algorithms. The software used is

MATLAB 2014b and the population size is 100 for
all the cases in the paper.
The details of the number of individual parameters

of the test systems are listed in Table 2 and the sys-
tem data of these test systems are obtained from
[31].

4.1 Minimization of active power loss without DG
injection
4.1.1 IEEE 14 bus system
The IEEE-14 bus system has five generators at buses 1
(which is the slack bus), 2, 3, 6 and 8, respectively. There
are 20 branches, and three tap-changing transformers
between the lines 4–7, 4–9 and 5–6. Reactive power is
injected at buses 9 and 14. The limits of the control vari-
ables (p.u. value) for the case study under the IEEE 14
bus system are as follows:
0.95 ≤Vg ≤ 1.1; 0.95 ≤VPQ ≤ 1.05; 0.9 ≤ Ti ≤ 1.1 and 0 ≤

Qc ≤ 0.3.
The above control variables are used to solve the

ORPD problem using the different algorithms and the
simulation results are compared in Table 3 to deter-
mine the best among them. Comparing the results in
the table and the convergence characteristics shown
in Fig. 2, it can be concluded that the JAYA algo-
rithm has produced the best solution to the ORPD
problem with a minimum loss of 12.227MW, and is
superior to the other 37 algorithms.

4.1.2 IEEE 30 bus system
In the IEEE 30 bus system, there exist six generators situ-
ated at buses 1, 2, 5, 8, 11 and 13, respectively. Bus no. 1 is
the slack bus, and there are 41 transmission lines with
four branches having tap-changing transformers. Reactive
power is injected by capacitor banks at bus no. 3, 10 and
24, respectively. The limits of the control variables (p.u.
value) are as follows:
0.95 ≤Vg ≤ 1.1; 0.95 ≤VPQ ≤ 1.1; 0.9 ≤ Ti ≤ 1.1 and 0 ≤

Qc ≤ 0.36.

Fig. 5 Convergence characteristics of the algorithms for the
IEEE 118 bus system without DG injection

Table 11 Optimum solution for the IEEE 14 bus system with DG individually injected at each bus using JAYA algorithm

Bus No. Optimal DG value and Loss Bus No. Optimal DG value and Loss Bus No. Optimal DG value and Loss

2 DG = 178.8543 MW
Loss =7.7859 MW

7 DG = 171.2628 MW
Loss =3.903 MW

12 DG = 45.3501MW
Loss =9.9391 MW

3 DG = 145.6164 MW
Loss =3.4680 MW

8 DG = 167.2458 MW
Loss =3.9819 MW

13 DG = 77.5109MW
Loss =8.2191 MW

4 DG = 190.176833 MW
Loss =2.9641 MW

9 DG = 151.8885 MW
Loss =3.9819 MW

14 DG = 66.8016MW
Loss =8.3292 MW

5 DG = 186.7737 MW
Loss =4.6521 MW

10 DG = 100.6044 MW
Loss =7.1674 MW

6 DG = 121.6318 MW
Loss =7.1825 MW

11 DG = 72.7414 MW
Loss =8.8081 MW
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The simulation results of the solution to the ORPD
problem using the different algorithms for this test case
are shown in Table 4 along with the convergence char-
acteristics in Fig. 3. It can be seen that the JAYA algo-
rithm has produced the best results under the
conditions of the control variables, resulting in the low-
est line loss of 4.5983MW.
A statistical analysis of the algorithms is shown in

Table 5 for this particular test system. The best and
worst values of the solutions of the ORPD problem
along with the mean, standard deviation (std.), per-
centage of power saved, and the average computa-
tion time of the results for the different algorithms
are compared. The results prove that the JAYA

algorithm has obtained the best solution to the
problem and is also the most consistent and robust
with small std. and the maximum reduction of
power loss of almost 18.7579% (4.5983 MW). The
time of convergence is modest and although the
simulation speed is slower than a few others, the
JAYA algorithm obtains the best solution and is
much more favorable in terms of efficiency and
economy than other methods.
In order to investigate how frequently the results

from the different algorithms converge within a dif-
ferent range of solutions, the frequency of conver-
gence for the IEEE 30 bus system under the
inequality constraints of the control variables as
mentioned earlier is compared in Table 6. It shows
the number of times each algorithm has produced
the solution within a specified range when the ORPD
problem is run for 50 times for every single algo-
rithm. The results show that the JAYA algorithm is
undoubtedly the only one to produce all the results
within the minimum range of 4.59–4.60 MW. Al-
though the MFOA technique is also consistent and
has frequently obtained the solutions within the range
of 5.11–5.20MW (49 times), the algorithm has failed
to optimize the function to lower limits. Thus, the re-
sults prove that the JAYA algorithm has the capability
of converging most frequently to the minimum
solution.

4.1.3 IEEE 57 bus system
The standard IEEE 57 bus system has seven genera-
tors situated at buses 1, 2, 3, 6, 8, 9 and 12, respect-
ively, where bus 1 is the slack bus. There are 15
branches out of a total of 80 having tap-changing
transformers connected. The reactive power compen-
sating devices are placed at buses 18, 25 and 53. The
maximum and minimum limits of the control vari-
ables are given in Table 7.
The simulation results for the ORPD problem

using the different algorithms for the test case and
the comparative convergence characteristics are
shown in Table 8 and Fig. 4, respectively. It shows
that the JAYA algorithm has reduced the power loss
to 22.67%, a much lower level than the other algo-
rithms. This is the best recorded solution for this
particular test case under the mentioned inequality
constraints.

4.1.4 IEEE 118 bus system
As the algorithm has successfully outperformed the
other algorithms reported in the literature in optimiz-
ing the ORPD problem for the IEEE 57 bus system, it

Fig. 6 Comparison of the results for the IEEE 14 bus system
using the JAYA algorithm

Fig. 7 Convergence characteristics with different DG power
placed at bus no. 4 of IEEE 14 bus system using
JAYA algorithm
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is now tested on the larger IEEE 118 bus system to
observe its performance and ability. The IEEE 118
bus system has 54 generators, 14 shunt compensators,
9 tap-changing transformers, and a total of 186 trans-
mission lines. The control variable limits are given in
Table 9. Table 10 and Fig. 5 shows the simulation
results and the convergence characteristics for the
ORPD problem using the different algorithms,
respectively.
The results show the superiority of the JAYA algo-

rithm in determining the optimal solution, thus redu-
cing the power loss to the lowest value of 105.4821
MW (20.36%) for the test case compared to all the
other algorithms without violating the limits of the
constraints. This proves the JAYA algorithm to be the
most efficient algorithms even for large scale power
systems.

4.2 Minimization of power loss with DG injection
For the second part of the paper, DG power is
injected individually at all the buses (except the slack
bus) and the power losses are calculated using the
same algorithms while keeping the constraints
unchanged. The total number of control variables for
each case without DG injection was listed in Table
2. When DG is penetrated into the system the num-
ber of control variables is increased by 1, and the

DG power to be injected is taken as an additional
control variable. The value of DG power is initially
set at 100% of the maximum load demand for all the
test cases considered in this paper. The algorithm
then determines the optimal value of DG to be
injected at each bus in order to produce the mini-
mum power loss.
Moreover, the magnitude of the voltage of the bus at

which the DG is injected is also considered as a control
variable. Thus, when the DG is injected at any PV bus,
the number of voltage control variables remains the
same but for a PQ bus, it increases by 1.
The JAYA algorithm has been proved to be the

best among all the reported algorithms in deter-
mining the minimum power loss without incorpor-
ating DG power. Thus, the proposed JAYA
algorithm is used to determine the optimal value of
DG to be injected at each bus to obtain the mini-
mum power loss for all the test systems. The re-
sults are then compared and the optimal bus is
located with the optimal value of DG to be injected
for that particular bus. The study is repeated for
all four test cases using different algorithms to de-
termine which algorithm is able to determine the
optimal value of DG at that optimal bus leading to
minimum power loss. Such work on optimization
of the ORPD problem with the concept of DG inte-
gration has not been discussed anywhere. This
helps significantly reduce the power loss of the sys-
tem that cannot be achieved using other methods
of solving the ORPD problem. Moreover, it also
encourages the use of non-conventional resources
as the results obtained in this paper describes the
details of the optimal amount of DG power to be
integrated for a particular test case at the optimal
bus location.

4.2.1 IEEE 14 bus system
The total generation of the test system is 272.6 MW
and the load demand is 259.11 MW. The control
variable limits are the same as in Section 4.1.1 for
the case with no DG. Table 11 shows the optimum
solution of the ORPD problem for minimization of
power loss when the optimal value of DG is injected
at each bus, one at a time using the JAYA algorithm.
The comparison of the results is also represented
graphically in Fig. 6. From Table 11 and Fig. 6, it is
observed that injecting the optimum DG power of
190.176833MW, which is 73.3962% of the demand, at
bus no. 4 can achieve the minimum power loss of
2.9641MW.
Table 12 and Fig. 7 illustrate the significance of

the DG power on power loss. The results show that

Table 12 Comparison of real power loss at the IEEE 14 bus
system with different DG power placed at bus no. 4 using the
JAYA algorithm

DG values (MW) 189 190.176833 (Optimal) 191.18 192

Loss (MW) 2.9643 2.9641 2.9645 2.9651

Fig. 8 Convergence characteristics of the algorithms for the
IEEE 14 bus system with DG injection
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the power loss would increase from 2.9641 MW to
2.9645 MW and 2.9651 MW for the DG power in-
creased from the optimal value of 190.176833 MW
to 191.18 MW and 192 MW respectively, and to
2.9643 MW for the DG power decreased to 189 MW.
The other reported algorithms are now used to ob-
tain the optimal value of DG at bus no. 4 and the
ORPD problem is solved by optimizing the objective

function f from (11). Here, the total number of con-
trol variables is 12 as the optimal power loss is ob-
tained when the DG is inserted at bus no. 4, which
is not a PV bus. The results and the convergence
characteristics are shown in Table 13 and Fig. 8, re-
spectively. These prove that the JAYA algorithm pro-
duces the best-optimized value compared to all the
other algorithms. The results from the two cases

Table 14 Optimum solution for the IEEE 30 bus system with DG individually injected at each bus using the JAYA algorithm

Bus No. Optimal DG value and Ploss Bus No. Optimal DG value and Ploss Bus No. Optimal DG value and Ploss

2 DG = 65.135046 MW
Ploss = 4.004 MW

12 DG = 61.407578 MW
Ploss = 3.3274 MW

22 DG = 60.513691MW
Ploss = 2.7155 MW

3 DG = 79.182062 MW
Ploss = 3.2109 MW

13 DG = 60.745933 MW
Ploss = 3.3402 MW

23 DG = 36.462869MW
Ploss = 3.3324 MW

4 DG = 98.939426 MW
Ploss = 2.3931 MW

14 DG = 26.770762 MW
Ploss = 3.8475 MW

24 DG = 44.563769MW
Ploss = 2.9653 MW

5 DG = 73.540649 MW
Ploss = 2.4196 MW

15 DG = 51.03197 MW
Ploss = 3.0366 MW

25 DG = 33.070159MW
Ploss = 3.4552 MW

6 DG = 104.34914 MW
Ploss = 1.8574 MW

16 DG = 44.027037 MW
Ploss = 3.4411 MW

26 DG = 13.511932MW
Ploss = 4.0246 MW

7 DG = 81.668016 MW
Ploss = 2.0835 MW

17 DG = 62.521769 MW
Ploss = 3.1253 MW

27 DG = 46.93759 MW
Ploss = 3.1827 MW

8 DG = 80.484846 MW
Ploss = 2.3611 MW

18 DG = 37.518044 MW
Ploss = 3.2661 MW

28 DG = 79.02644 MW
Ploss = 2.3197 MW

9 DG = 93.083964 MW
Ploss = 2.1163 MW

19 DG = 40.023052 MW
Ploss = 3.1379 MW

29 DG = 21.634628MW
Ploss = 3.6982 MW

10 DG = 79.787423 MW
Ploss = 2.4651 MW

20 DG = 41.612227 MW
Ploss = 3.1633 MW

30 DG = 22.095693MW
Ploss = 3.5042 MW

11 DG = 92.481326 MW
Ploss = 2.1247 MW

21 DG = 62.480468 MW
Ploss = 2.6492 MW

Table 13 Simulation results on IEEE 14 bus system with DG using different algorithms

Control Variables (p.u.) PSO R-PSO L-PSO PSO-CFA IPSO-SR FOA MFOA JAYA

VG1 1.1 1.1 1.1 1.1 1.1 0.95 1.1 1.1

VG2 1.1 1.1 1.1 1.1 1.1 0.95 1.1 1.0991

VG3 1.1 1.1 1.1 1.1 1.0812 0.95 1.1 1.0803

VG6 1.1 1.0534 1.1 1.0522 1.1 1.1 1.1 1.1

VG8 1.1 1.0396 1.1 1.1 1.1 1.1 1.1 1.1

V4(DG) 1.1 1.1 1.1 1.1 1.1 0.95 1.1 0.9564

T4–7 0.9511 1.0286 0.9824 1.1 0.9704 0.9 1.1 1.0847

T4–9 1.1 1.1 1.1 0.9434 1.1 0.9 1.1 0.9

T5–6 1.1 1.1 1.0112 1.1 1.006 0.9 1.1 1.0026

Qsc9 0.2309 0.3 0.3 0.0025 0.3 0.0027 0.0 0.1882

Qsc14 0.0517 0.064 0.0604 0.0648 0.0606 0.0004 0.0 0.0588

Optimum DG value
at bus no. 4 (MW)

155.11478 192.441259 192.226747 192.468381 192.414496 194.465270 210.184649 190.176833

Total Ploss (MW) 3.1288 3.1179 3.0600 3.1156 2.9660 3.9772 3.6449 2.9641
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with and without DG penetration clearly show that
the DG penetration has successfully reduced the
power loss by 78.03% compared to a reduction of
9.36% under the similar condition without DG
injection.

4.2.2 IEEE 30 bus system
The study on the IEEE 30 bus system has been per-
formed on two different cases. In the first case, the
optimal DG power is determined and the value is
then fixed to obtain the power loss. However, in the
second case, the DG power is considered variable,
representing a probabilistic approach to observe the
performance penetration of variable DG realistically
in the ORPD problem. Here, the probabilistic ap-
proach of wind power is considered for the variable
DG in the second case.

4.2.2.1 Without considering the variability of DG
power
The total active power generation of the test system is
288.7MW and the load demand is 283.4 MW. The con-
trol variable limits are the same as Section 4.1.2 with no
DG. Table 14 shows the optimal results of the ORPD
problem when DG is individually placed on each bus. As
shown, the minimum power loss for the IEEE 30 bus
system is obtained when 104.34914MW DG, which is
36.8204% of the total demand, is placed at load bus no.
6. This reduces the power loss to 1.8574MW (67.18%
reduction), whereas for the case without DG the loss
was reduced by only 18.75%.
The significance of the optimum value of DG

obtained by the JAYA algorithm is illustrated in
Table 15, which shows that when the DG value is
increased or decreased by 1 MW from the optimal
value, there is an increase in power loss. Thus, the
result obtained from the proposed algorithm is the
optimal value of DG to be injected into the system

for minimum power loss. Other reported algorithms
are then used to optimize the ORPD problem by
determining the optimal value of DG at bus no. 6
for minimum power loss. The results from Table 16
and the convergence characteristics from Fig. 9 con-
clude that the minimum power loss is obtained by
using the JAYA algorithm, indicating the superiority
of the JAYA algorithm over other reported
algorithms.

4.2.2.2 Considering the variability of DG power
In the work shown in Section 4.2.2.1, the uncertainty
of DG power was not considered. In practical cases,
the DG power is of a variable nature and thus needs
to be considered to make the study more realistic.
There are several reported cases in which the vari-
ability of renewable energy is integrated into the
ORPD problem with a maximum capacity of DG of
up to 110 MW considered at bus 6. The Weibull
probability distribution function [52], which con-
siders the stochastic nature of wind power, is used
and the variability of wind power is considered in
two ways as follows.

Case 1: Overestimated wind power

This study shows the impact of overestimated
power from the wind farm into the ORPD problem
considering the uncertainty condition. The maximum
power output from the wind farm is set as 110 MW,
as the optimal value of injected DG into the IEEE 30
bus system determined by the JAYA algorithm is
104.34914 MW. The overestimated probabilistic ap-
proach of the Weibull probability distribution func-
tion determines the more realistic nature of the
optimal wind power to be injected to minimize the
power loss in the ORPD problem using the following
equation:

Powi ¼ wf 1 − exp −
vi
c

� �k
� 	

þ exp −
vo
c

� �k
� 	� 


þ
Z W 1

0
wf − w
� �

f w wð Þdw
ð15Þ

Table 15 Comparison of power loss at the IEEE 30 bus system
with different DG power placed at bus no. 6 using JAYA
algorithm

DG values (MW) 103.34914 104.34914 (Optimal) 105.34914

Loss (MW) 1.8576 1.8574 1.8587

Table 16 Simulation results on the IEEE 30 bus system with DG injection using different algorithms

Algorithms PSO R-PSO L-PSO PSO-CFA IPSO-SR FOA MFOA JAYA

Optimum DG value at bus no. 6
(MW)

118.087165 104.493446 104.604412 104.431680 101.445626 100.164506 104.929867 104.34914

Ploss (MW) 2.2330 2.0701 2.0853 2.1283 2.0084 2.5057 2.2652 1.8574
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where, Powi represents the optimal value of injected
wind power obtained using the overestimation of the
Weibull probability distribution function, and k and
c represent the shape and scale factors referred from
[52]. wf represents the forecasted wind power and
W1 represents the actual power produced. The term
fw(w) is a probability density function of wind power
output w, whereas vi and vo are the cut-in and cut-
out wind velocities, respectively.

The analysis is carried out using the same number of
techniques as discussed earlier and the details of the cal-
culated results are shown in Table 17. The convergences
of the different algorithms for this case are compared in
Fig. 10. The results show that for the overestimation
case, the optimal value of wind power is 59.2683MW (a
reduction of 56.82% compared to the base case) as ob-
tained by the JAYA algorithm, for which the power loss
is 2.4442MW. This happens to be the lowest for this
case among all the other algorithms. Thus, the analysis
gives a realistic outcome of the penetration of wind
power for the overestimated condition.

Case 2: Underestimated wind power

In this case, the underestimated approach of the Wei-
bull probability distribution function is considered. The
maximum wind power limit is set as 110MW and the
optimal value of wind power is obtained for minimizing
the power loss for the IEEE 30 bus system. The optimal
value of the wind power using the Weibull probability
distribution function is given as

Puwi ¼ wf 1 − exp −
vr
c

� �k
� 	

− exp −
vo
c

� �k
� 	� 


þ
Z wr

w1

w −wf
� �

f w wð Þdw

ð16Þ

Fig. 9 Convergence characteristics of the algorithms for the
IEEE 30 bus system with DG injection

Table 17 Simulation results on the IEEE 30 bus system with overestimated Weibull probability distribution function of wind power
on ORPD using different algorithms

Control Variables (p.u.) PSO R-PSO L-PSO PSO-CFA IPSO-SR FOA MFOA JAYA

VG1 1.1 1.1 1.1 1.1 1.1 0.95 1.1 1.1

VG2 1.1 1.1 1.1 1.1 1.1 0.95 1.1 1.1

VG5 1.1 1.1 1.1 1.1 1.089 0.95 1.1 1.1

VG6 (DG) 1.1 1.1 1.1 1.1 1.1 0.95 1.1 1.1

VG8 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

VG11 1.1 1.1 1.0998 1.1 1.1 0.95 1.1 1.1

VG13 1.1 1.0879 1.0692 1.0807 1.1 1.1 1.1 0.95

T6–9 1.1 1.1 1.1 1.1 1.1 0.9 0.9 1.1

T6–10 1.1 1.1 1.1 1.0852 1.1 0.9 0.9 0.9

T4–12 1.1 1.0965 1.1 1.1 1.1 1.1 0.9 0.9305

T28–27 1.0351 1.0243 1.0277 1.0427 1.0219 0.9 0.9 0.9532

Qsc3 0 0 0.0008 0.0008 0 0.003 0.0819 0.0897

Qsc10 0.3241 0.2143 0.1281 0.1945 0.2827 0.003 0.0818 0.3104

Qsc24 0.0753 0.1109 0.0983 0.1173 0.1038 0.003 0.0819 0.1244

Optimum DG value at bus no. 6 (MW) 2.3931 43.4629 48.4923 58.5706 6.5336 53.6444 58.7457 59.2683

Ploss (MW) 2.6374 2.6006 2.605 2.6157 2.5767 3.236 2.7915 2.4442
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where, Puwi represents the optimal value of injected wind
power obtained using the underestimation of the Wei-
bull probability distribution function, The term vi is the
rated wind velocity and wr the equivalent rated power of
the wind farm.
The analysis is carried out using the different tech-

niques and the results are displayed in Table 18,
along with the convergence characteristics shown in

Fig. 11. The results show that for the underestimated
case of uncertain wind power, the optimal power out-
put from the wind farm is 45.856MW for a power
loss of 2.805MW (50.44% reduction compared to the
base case). This optimal result is obtained using the
JAYA algorithm and hence it is proved to be the best
in optimizing this Weibull probability distribution
function-based ORPD problem. The uncertainty of

Table 18 Simulation results on the IEEE 30 bus system with underestimated Weibull probability distribution function of wind power
on ORPD using different algorithms

Control Variables (p.u.) PSO R-PSO L-PSO PSO-CFA IPSO-SR FOA MFOA JAYA

VG1 1.1 1.1 1.1 1.1 1.1 0.95 1.1 1.1

VG2 1.1 1.1 1.1 1.1 1.1 0.95 1.1 1.1

VG5 1.1 1.0887 1.1 1.1 1.1 0.95 1.1 1.1

VG6 (DG) 1.1 1.1 1.1 1.1 1.1 0.95 1.1 1.1

VG8 1.1 1.1 1.1 1.1 1.1 0.95 1.1 1.1

VG11 1.1 1.1 1.1 1.1 1.0452 0.95 1.1 1.1

VG13 1.1 1.0722 1.1 1.1 1.1 1.1 1.1 1.1

T6–9 1.1 1.1 1.1 1.0311 1.1 0.9 0.9 1.058

T6–10 1.1 1.1 0.999 1.1 1.1 0.9 0.9 0.9766

T4–12 1.1 1.1 1.1 1.1 1.015 1.1 0.9 0.9521

T28–27 1.1 1.0321 1.1 1.1 1.004 0.9 0.9 0.9745

Qsc3 0 0.0007 0 0 0 0.0005 0.1313 0

Qsc10 0.126 0.1335 0.0907 0.1021 0.36 0.0003 0.1313 0.36

Qsc24 0.1376 0.1266 0.1429 0.1224 0.0753 0.001 0.1313 0.0945

Optimum DG value at bus no. 6 (MW) 9.6579 33.4181 16.7047 11.0877 35.7986 35.7864 50.4481 45.856

Ploss (MW) 3.1203 2.9217 3.082 3.0669 2.8972 4.0559 3.0159 2.805

Fig. 10 Convergence characteristics of the algorithms for
the IEEE 30 bus system with overestimated Weibull
probability distribution function of wind power on ORPD

Fig. 11 Convergence characteristics of the algorithms for
the IEEE 30 bus system with underestimated Weibull
probability distribution function of wind power on ORPD
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DG power shows that the actual power under the
realistic condition obtained from the wind farm is less
than that obtained from Table 14. The overestimated
output of wind power is higher than the underestima-
tion and thus gives lower power loss. The difference
in power loss is about 0.3608MW between the two
estimations considering the best solutions from the
JAYA algorithm.

4.2.3 EEE 57 bus system
The IEEE 57 bus system has a total active power gener-
ation of 1278.7MW and a load demand of 1250.8MW.

The limits of the control variables are the same as Sec-
tion 4.1.3 with no DG. Table 19 shows the complete re-
sults of ORPD for minimizing power loss for 56
different cases where the DG is individually injected at

Table 19 Optimum solution for the IEEE 57 bus system with DG individually injected at each bus using the JAYA algorithm

Bus No. Optimal DG value and Ploss Bus No. Optimal DG value and Ploss Bus No. Optimal DG value and Ploss

2 DG = 85.9022 MW
Ploss = 22.9538 MW

21 DG = 62.3349 MW
Ploss = 19.8914MW

40 DG = 66.0233MW
Ploss = 18.7275 MW

3 DG = 180.4761 MW
Ploss = 18.3962 MW

22 DG = 128.6296 MW
Ploss = 16.1145MW

41 DG = 106.9548 MW
Ploss = 18.5122 MW

4 DG = 154.6043 MW
Ploss = 18.2421 MW

23 DG = 114.9209 MW
Ploss = 16.8096MW

42 DG = 50.4274MW
Ploss = 20.214 MW

5 DG = 97.4521 MW
Ploss = 19.6006 MW

24 DG = 61.6723 MW
Ploss = 19.4454MW

43 DG = 155.9366 MW
Ploss = 16.2739 MW

6 DG = 128.7671 MW
Ploss = 18.2827 MW

25 DG = 49.9298 MW
Ploss = 20.019 MW

44 DG = 130.7442 MW
Ploss = 17.0793 MW

7 DG = 108.5867 MW
Ploss = 19.5623 MW

26 DG = 62.1794 MW
Ploss = 19.3917MW

45 DG = 164.6702 MW
Ploss = 18.7277 MW

8 DG = 95.4473 MW
Ploss = 20.9896 MW

27 DG = 59.1934 MW
Ploss = 20.364 MW

46 DG = 187.5735 MW
Ploss = 15.7753 MW

9 DG = 182.4026 MW
Ploss = 15.8598 MW

28 DG = 69.4704 MW
Ploss = 20.4721MW

47 DG = 155.3579 MW
Ploss = 15.9026 MW

10 DG = 156.9776 MW
Ploss = 16.0904 MW

29 DG = 91.2441 MW
Ploss = 20.7023MW

48 DG = 162.0502 MW
Ploss = 15.1216 MW

11 DG = 171.2313 MW
Ploss = 15.7826 MW

30 DG = 37.9154 MW
Ploss = 20.5292MW

49 DG = 164.5209 MW
Ploss = 15.22 MW

12 DG = 253.8512 MW
Ploss = 12.6387 MW

31 DG = 30.4513 MW
Ploss = 20.761 MW

50 DG = 92.749 MW
Ploss = 18.1263 MW

13 DG = 271.898815MW
Ploss = 10.7774 MW

32 DG = 38.8860 MW
Ploss = 20.3155MW

51 DG = 131.6244 MW
Ploss = 17.3217 MW

14 DG = 231.8587 MW
Ploss = 13.9697 MW

33 DG = 34.5838 MW
Ploss = 20.6314MW

52 DG = 50.9403MW
Ploss = 20.5556 MW

15 DG = 274.1193 MW
Ploss = 15.2984 MW

34 DG = 50.41 MW
Ploss = 19.4297MW

53 DG = 49.6756MW
Ploss = 20.2202 MW

16 DG = 176.7618 MW
Ploss = 17.1757 MW

35 DG = 62.3285 MW
Ploss = 18.7095MW

54 DG = 48.7095MW
Ploss = 20.7028 MW

17 DG = 137.62678 MW
Ploss = 20.5061 MW

36 DG = 78.0449 MW
Ploss = 17.9115MW

55 DG = 144.5947 MW
Ploss = 17.3363 MW

18 DG = 119.7668 MW
Ploss = 19.3995 MW

37 DG = 90.9933 MW
Ploss = 17.3753MW

56 DG = 65.5031MW
Ploss = 18.8386 MW

19 DG = 28.9124 MW
Ploss = 21.9544 MW

38 DG = 168.8586 MW
Ploss = 14.1612MW

57 DG = 48.1161MW
Ploss = 19.9331 MW

20 DG = 41.2858 MW
Ploss = 21.1097 MW

39 DG = 75.1376 MW
Ploss = 18.3595MW

Table 20 Comparison of power loss at the IEEE 57 bus system
with different DG power placed at bus no. 13 using the JAYA
algorithm

DG values (MW) 270.898815 271.898815 (Optimal) 272.898815

Loss (MW) 10.7857 10.7774 10.7797
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each bus (except the slack bus no. 1). Table 19 shows
that the power loss is minimum (i.e., 10.7774MW) when
271.898815MW DG is injected at the.
PQ bus 13, which is 21.738% of the total load de-

mand of the system. These results are again ob-
tained by the JAYA algorithm. The results from
Table 20 show the significance of the optimal value
of DG determined by the JAYA algorithm, as a
small variation can lead to increased power loss.
Other algorithms have also been used to optimize
the ORPD problem by determining the optimum
DG value at bus 13 and the results are illustrated in
Table 21 and Fig. 12.
From the results, it is concluded that the JAYA algo-

rithm results in significantly lower power loss than the
other algorithms.
The study shows that DG penetration reduces the

power loss by 61.32% compared to 22.67% without DG
penetration using the same algorithm.

4.2.4 IEEE 118 bus system
The active power generation and load demand of
the IEEE 118 bus system are 4374.9 MW and
4242.45 MW, respectively. The limits of the control
variables considered for this case are the same as
Section 4.2.4 with no DG. Bus 69 is the slack bus,

and the ORPD problems are solved using the JAYA
algorithm with the individual injection of DG power
at each of the other 117 buses. Table 22 shows the
details of the 117 solutions and indicates that the
minimum power loss of 91.4174MW is obtained
when a DG of power of 235.926829MW (5.5611% of
the total load demand) is injected at bus 40. The
penetration of DG reduces the power loss by almost
30.98% with the use of the JAYA algorithm, whereas
for the system without DG injection, the proposed al-
gorithm was only able to reduce the power loss by
20.36%.
The significance of the optimal value of DG ob-

tained by the JAYA algorithm is illustrated in
Table 23. The data from Table 24 and the conver-
gence characteristics in Fig. 13 compare the results
of the ORPD problem using different algorithms. It
shows that the results obtained using the JAYA algo-
rithm are the best of all the algorithms. In this case,
the JAYA algorithm is not stuck in local optima and
is able to optimize the problem to a much larger
extent than the others. Thus, the JAYA algorithm is
superior to other algorithms reported in the litera-
ture for all the test cases shown in this paper with
the injection of DG in optimizing the ORPD
problem.

5 Efficacy of JAYA algorithm
The efficacy of the JAYA algorithm can be explained as
follows:

i. Benchmark function – The JAYA algorithm
has been tested on 24 standard constrained
benchmark functions (G01 – G24) and the
results were shown in Table 1. It has been
proved to be the most robust and efficient
algorithm by obtaining the best solution to all
the different functions. Thus, this benchmark
test has proved JAYA to be the best of all the
algorithms reported on the optimization
problem and thus can be tested on the non-
linear and highly constrained ORPD problem.

ii. ORPD problem without DG – The JAYA
algorithm has proved to be the most efficient by
consistently providing the optimal solutions to

Table 21 Simulation results on IEEE 57 bus system with DG using different algorithms

Algorithms PSO R-PSO L-PSO PSO-CFA IPSO-SR FOA MFOA JAYA

Optimum DG value at bus no.
13 (MW)

337.506395 275.969626 275.829595 276.086357 286.388354 276.823206 541.412358 271.898815

Total Ploss (MW) 13.5103 13.3015 13.5081 13.3868 13.0453 17.6167 12.4927 10.7774

Fig. 12 Convergence characteristics of the algorithms for
the IEEE 57 bus system with DG
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Table 22 Optimum solution for the IEEE 118 bus system with DG individually injected at each bus using JAYA algorithm

Bus No. Optimal DG value and Ploss Bus No. Optimal DG value and Ploss Bus No. Optimal DG value and Ploss

1 DG = 126.691685MW
Ploss = 102.1306 MW

40 DG = 235.926829MW
Ploss = 91.4174MW

80 DG = 56.72296 MW
Ploss = 111.63 MW

2 DG = 121.389574MW
Ploss = 104.5923 MW

41 DG = 206.527776MW
Ploss = 98.5241MW

81 DG = 118.496073 MW
Ploss = 109.2481 MW

3 DG = 132.474896MW
Ploss = 106.2292 MW

42 DG = 205.316671MW
Ploss = 99.1168MW

82 DG = 79.090821MW
Ploss = 106.9809 MW

4 DG = 115.851608MW
Ploss = 104.297 MW

43 DG = 122.943056MW
Ploss = 104.8476 MW

83 DG = 28.963277MW
Ploss = 111.2587 MW

5 DG = 126.830533MW
Ploss = 102.2818 MW

44 DG = 127.95713 MW
Ploss = 105.9838 MW

84 DG = 0.285584 MW
Ploss = 109.675 MW

6 DG = 135.795184MW
Ploss = 102.7085 MW

45 DG = 152.793032MW
Ploss = 101.936 MW

85 DG = 0.262262 MW
Ploss = 106.7078 MW

7 DG = 141.976923MW
Ploss = 105.5292 MW

46 DG = 129.549348MW
Ploss = 106.5249 MW

86 DG = 0.167232 MW
Ploss = 112.0001 MW

8 DG = 137.322819MW
Ploss = 106.3051 MW

47 DG = 143.984783MW
Ploss = 106.5703 MW

87 DG = 0.693603 MW
Ploss = 109.3171 MW

9 DG = 86.098538 MW
Ploss = 108.9833 MW

48 DG = 119.983949MW
Ploss = 108.3803 MW

88 DG = 0.403614 MW
Ploss = 109.7036 MW

10 DG = 31.763133 MW
Ploss = 108.6617 MW

49 DG = 238.49512 MW
Ploss = 100.5761 MW

89 DG = 0.000003 MW
Ploss = 106.1475 MW

11 DG = 158.561438MW
Ploss = 103.3529 MW

50 DG = 128.806798MW
Ploss = 105.5056 MW

90 DG = 0.330903 MW
Ploss = 110.2137 MW

12 DG = 152.120457MW
Ploss = 102.8647 MW

51 DG = 163.27574 MW
Ploss = 102.8127 MW

91 DG = 0.316752 MW
Ploss = 109.6929 MW

13 DG = 126.151012MW
Ploss = 105.477 MW

52 DG = 136.609037MW
Ploss = 99.9051MW

92 DG = 2.233726 MW
Ploss = 108.8771 MW

14 DG = 107.545112MW
Ploss = 107.204 MW

53 DG = 150.923477MW
Ploss = 105.3903 MW

93 DG = 0.366261 MW
Ploss = 111.7052 MW

15 DG = 211.945829MW
Ploss = 98.2005 MW

54 DG = 298.042439MW
Ploss = 98.1309MW

94 DG = 27.96989 MW
Ploss = 109.041 MW

16 DG = 114.670716MW
Ploss = 104.1251 MW

55 DG = 253.003086MW
Ploss = 95.9371MW

95 DG = 56.557722MW
Ploss = 112.6194 MW

17 DG = 215.842192MW
Ploss = 103.8536 MW

56 DG = 300.090378MW
Ploss = 97.6436MW

96 DG = 75.554861MW
Ploss = 108.4198 MW

18 DG = 174.288927MW
Ploss = 104.1887 MW

57 DG = 134.914338MW
Ploss = 103.1027 MW

97 DG = 55.32614 MW
Ploss = 110.343 MW

19 DG = 208.34031 MW
Ploss = 101.3572 MW

58 DG = 151.54828 MW
Ploss = 104.0325 MW

98 DG = 43.497228MW
Ploss = 105.1687 MW

20 DG = 134.353492MW
Ploss = 104.3742 MW

59 DG = 266.252851MW
Ploss = 99.2146MW

99 DG = 28.720925MW
Ploss = 110.7502 MW

21 DG = 104.928143MW
Ploss = 107.9008 MW

60 DG = 180.029737MW
Ploss = 109.0783 MW

100 DG = 27.109957MW
Ploss = 112.093 MW

22 DG = 93.847526 MW
Ploss = 107.3988 MW

61 DG = 217.188289MW
Ploss = 110.277 MW

101 DG = 3.152974 MW
Ploss = 109.6081 MW

23 DG = 112.485273MW
Ploss = 107.6156 MW

62 DG = 148.991549MW
Ploss = 108.5313 MW

102 DG = 0.365233 MW
Ploss = 108.2081 MW

24 DG = 122.226052MW
Ploss = 103.1782 MW

63 DG = 271.532796MW
Ploss = 100.6808 MW

103 DG = 74.70484 MW
Ploss = 106.3845 MW

25 DG = 19.467003 MW
Ploss = 105.3804 MW

64 DG = 279.219469MW
Ploss = 106.4706 MW

104 DG = 85.591999MW
Ploss = 107.7868 MW

26 DG = 45.752497 MW
Ploss = 109.4005 MW

65 DG = 239.779886MW
Ploss = 106.263 MW

105 DG = 97.612459MW
Ploss = 102.0538 MW

27 DG = 131.689427MW
Ploss = 104.9029 MW

66 DG = 87.578865 MW
Ploss = 109.5058 MW

106 DG = 93.781891MW
Ploss = 109.4429 MW
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the problems for all the different bus systems. It
has successfully obtained the best solution
reported in the literature for the above four
mentioned IEEE test bus systems for the ORPD
problem.

iii. ORPD problem with DG – The JAYA
algorithm has provided the best solution to the
ORPD problem with DG compared to other
algorithms discussed above. It has obtained the
best value of DG to be penetrated to the system
to minimize the power loss for all the four test
bus systems.

iv. Statistical analysis – The statistical analysis of the
JAYA algorithm and others was tested on the IEEE
30 bus system, and the results shown in Table 5
demonstrate that the JAYA algorithm is the most

robust and has a minimum standard deviation
compared to the others.

v. Frequency of convergence – This test, which
is another method to judge the robustness of
the algorithms, was performed for the different
algorithms and the results were shown in Table
6 and its significance discussed in Section 4.1.2.
Each algorithm was run 50 times and the results
show that the JAYA algorithm has obtained the
best solution for all 50 times within the range
of 4.59–4.60 MW, thus proving to be the most
robust algorithm.

vi. Convergence speed – The convergence
characteristics from the different test cases show
that the JAYA algorithm may not be the fastest
in terms of computation time, but it provides a
good balance between convergence speed and
obtaining the best solution.

Thus, these detailed comparisons show the ability
of the JAYA algorithm to obtain the best solution
to this critical optimization problem and to outper-
form many other well established techniques in re-
spect of robustness, efficiency and, convergence
speed.

Table 22 Optimum solution for the IEEE 118 bus system with DG individually injected at each bus using JAYA algorithm (Continued)

Bus No. Optimal DG value and Ploss Bus No. Optimal DG value and Ploss Bus No. Optimal DG value and Ploss

28 DG = 124.185209MW
Ploss = 101.9163 MW

67 DG = 74.527333 MW
Ploss = 110.09 MW

107 DG = 77.445529MW
Ploss = 106.6032 MW

29 DG = 123.581598MW
Ploss = 104.5658 MW

68 DG = 346.448424MW
Ploss = 104.3674 MW

108 DG = 84.482368MW
Ploss = 110.0862 MW

30 DG = 202.292999MW
Ploss = 105.6273 MW

70 DG = 215.307567MW
Ploss = 101.3420 MW

109 DG = 73.879514MW
Ploss = 106.8489 MW

31 DG = 138.863925MW
Ploss = 106.1876 MW

71 DG = 158.006651MW
Ploss = 106.6297 MW

110 DG = 79.585522MW
Ploss = 105.6344 MW

32 DG = 162.13668 MW
Ploss = 102.2741 MW

72 DG = 90.968385 MW
Ploss = 105.4622 MW

111 DG = 50.012701MW
Ploss = 104.4401 MW

33 DG = 145.322161MW
Ploss = 99.898 MW

73 DG = 111.141505MW
Ploss = 103.8292 MW

112 DG = 72.84045 MW
Ploss = 102.0659 MW

34 DG = 265.489241MW
Ploss = 97.0874 MW

74 DG = 199.515402MW
Ploss = 100.6688 MW

113 DG = 137.217961 MW
Ploss = 106.7375 MW

35 DG = 212.607941MW
Ploss = 99.6775 MW

75 DG = 257.726006MW
Ploss = 102.4429 MW

114 DG = 128.504699 MW
Ploss = 108.2676 MW

36 DG = 218.137821MW
Ploss = 97.5311 MW

76 DG = 167.499121MW
Ploss = 100.5155 MW

115 DG = 131.714016 MW
Ploss = 100.0972 MW

37 DG = 283.577128MW
Ploss = 103.4836 MW

77 DG = 198.98593 MW
Ploss = 106.7565 MW

116 DG = 313.132375 MW
Ploss = 108.1146 MW

38 DG = 324.563925MW
Ploss = 100.3577 MW

78 DG = 166.514813MW
Ploss = 104.9669 MW

117 DG = 86.677252MW
Ploss = 105.3631 MW

39 DG = 219.426062MW
Ploss = 112.9535 MW

79 DG = 132.713358MW
Ploss = 108.0646 MW

118 DG = 180.156097 MW
Ploss = 104.5194 MW

Table 23 Comparison of power loss at the IEEE 118 bus system
with different DG power placed at bus no. 40 using the JAYA
algorithm

DG values (MW) 234.926829 235.926829 (Optimal) 236.926829

Loss (MW) 92.1347 91.4174 91.7172
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6 Conclusion
This paper has shown the effect of the penetration
of distributed generation (DG) into the ORPD prob-
lem for reducing the transmission line losses for the
very first time and has provided a unique contribu-
tion in the study of the ORPD problem. A compre-
hensive study was carried out to locate the optimal
bus and determine the corresponding optimal value
of DG to be injected to minimize transmission line
loss. The results show that power loss is minimized
to a large extent when DG is injected into the sys-
tem, establishing the advantages of the DG penetra-
tion in the optimization problem of ORPD. Using
four different IEEE standard bus systems, it shows
that if the optimal bus and value of DG are known,
the power loss can be significantly reduced and sys-
tem stability improved. This work reveals a new way
of analyzing the ORPD problem and offers encour-
agement towards the utilization of renewable re-
sources. The simulation results confirm that the
JAYA algorithm is the best and efficient among the
others reported in the literature, in terms of reliabil-
ity, robustness, consistency, and rate of convergence
in solving the ORPD problem for all the case stud-
ies. The JAYA algorithm gives consistent results
under any condition without violating any equality
and inequality constraint.
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