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Abstract

In recent years, due to the economic and environmental issues, modern power systems often operate proximately
to the technical restraints enlarging the probable level of instability risks. Hence, efficient methods for voltage
instability prevention are of great importance to power system companies to avoid the risk of large blackouts. In
this paper, an event-driven emergency demand response (EEDR) strategy based on whale optimization algorithm
(WOA) is proposed to effectively improve system voltage stability. The main objective of the proposed EEDR
approach is to maintain voltage stability margin (VSM) in an acceptable range during emergency situations by
driving the operating condition of the power system away from the insecure points. The optimal locations and
amounts of load reductions have been determined using WOA algorithm. To test the feasibility and the efficiency
of the proposed method, simulation studies are carried out on the IEEE 14-bus and real Algerian 114-bus power
systems.

Keywords: Voltage stability, Emergency demand response, Whale optimization algorithm, Blackouts

1 Introduction
In recent years, serious power grid blackouts have oc-
curred throughout the world bringing with them import-
ant economic losses and affect the lives of residents.
Voltage instability incidents have been identified as con-
tributing factors in several recent worldwide blackouts
[1]. Therefore, developing efficient countermeasure tech-
niques for the prevention of voltage collapses has
attracted important aspects of power system companies
and researchers. Over the past years, several emergency
controls have been adopted to protect the system against
voltage collapses. Adjustment of Load Tap Changer
(LTC) transformer taps is the well-known emergency ac-
tion for containing voltage instability. Different emer-
gency schemes may be applied using the LTCs. One of
the popular forms of emergency actions using LTCs is

tap blocking, which is an indirect way of load reduction
[2]. Otomega et al. [3] proposed an LTC control logic
strategy that can be used in emergency voltage condi-
tions. The principle of the proposed tap-reversing strat-
egy is to inverse the tap actions once the power system
voltages fall below some threshold. Vournas and Karys-
tianos [4] discussed how tap-blocking and tap-reversing
based LTC techniques can avoid an approaching voltage
collapse, as well as the advantages and drawbacks of
these techniques. Another type of LTCs was the voltage
set-point reduction, which is based on the lowering of
the reference voltage to improve voltage stability [5].
The generation rescheduling was another technique to

prevent voltage collapse. Several approaches reported in
the literature concerning the implementation of gener-
ation rescheduling to avoid voltage instability of a power
system [6–15]. Load shedding (LS) technique was also
identified as an effective emergency action against volt-
age collapse because it results in an instantaneous volt-
age stability enhancement. However, due to the
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disturbance affected the consumers that have been shed;
this action must be the latest protection applied method.
LS techniques are generally divided into three main
types i.e., conventional, adaptive and computational
intelligence-based LS [16]. Conventional load shedding
techniques are of two types under frequency load shed-
ding (UFLS) and under-voltage load shedding (UVLS).
UFLS involve shedding determined amounts of the load
if the system frequency falls below its specified range
[16]. In the same manner, UVLS is applied by power
utilities to avoid a risk of voltage collapse and restore
voltage to its nominal value [17]. The major drawback of
the conventional LS techniques is that are limited by

their incapability to deliver optimum LS [18]. Adaptive
LS is another type of LS techniques. It is based on the
use of a power swing equation to shed the desired
amount of load as reported in [19]. Albeit the Adaptive
LS techniques improve the reliability of conventional LS,
they suffer from un-optimum LS due to the variations in
the rate of change of frequency.
The application of computational intelligence tech-

niques was another alternative for solving LS problem.
The benefits of the application of computational
intelligence in LS over the conventional ones are out-
lined in [16]. The ANN [20, 21], Adaptive neuro-fuzzy
inference system (ANFIS) [22, 23] and decision tree
technique [24] were applied to shed load of the power
system. Meta-heuristic optimization algorithms have
some applications in LS problem. Among the imple-
mented meta-heuristic methods to minimize the LS,
GA-based method [25], differential evolution (DE) algo-
rithm [26], glowworm swarm optimization (GSO) algo-
rithm [27], harmony search algorithm (HSA) [28], PSO
algorithm [29] and PSO-simulating annulling (PSO −
SA) optimization technique [30].
In recent years, under the paradigm of the smart grid,

in which the major operations are executed in a coordi-
nated and efficient manner, the focus for solving power
system problems has moved more from the supply-side
to the demand-side. Such concept is known as demand
response (DR), which the main purpose is the adjust-
ment of consumer demand to increase efficiency and re-
liability of the power system [31]. Emergency demand
response (EDR) is one of the most widely used DR pro-
grams. It is called upon when power generation is antici-
pated to experience a shortfall or during the contingency
situations [32]. In EDR programs, the EDR participants
are contractually obligated to provide a set amount of
capacity and they receive payments for being available
and face financial penalties for non-attendance. Several
works are reported in the literature on the implementa-
tion of EDR programs [33–39]. However, the application
of such programs to improve the power system security
has not been completely addressed. The only work –as
far as the author knows– discussed the use of EDR in
power system security enhancement is that of Wang
et al. [40]. In this work, an event-driven EDR strategy is
proposed to improve the operating reserves of the power
system under credible contingencies. A multistage
optimization technique based on segmentation of the
original nonlinear problem, associated with EDR pro-
gram, into a series of linear optimization problems is
proposed. However, this procedure needs to be repeated
several times until a required security margin is
achieved, which is a time-consuming task. Another dis-
advantage of the proposed strategy is that it considers all
loads in the system as EDR participants which results in

Fig. 1 Humpback whales bubble-net feeding technique

Fig. 2 The principle of prey encircling technique used by
humpback whales
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a high cost of implementation of such programs. Thus
this paper uses the recently developed optimization algo-
rithm named whale optimization algorithm (WOA) to
compute the required load reduction, during emergency
conditions, and then distribute this amount, optimally,
between customers participating in the EDR program.
Consequently, some important contributions of this
work can be listed as follows:

� Development of an Event-driven Emergency De-
mand Response (EEDR) approach based WOA
optimization algorithm to avoid a risk of large black-
outs during emergency situations.

� Application of WOA as a robust optimization
method to find the appropriate EEDR participants.

� Consideration of voltage stability margin in the
proposed EEDR strategy.

The proposed approach is investigated on IEEE 14-bus
and real Algerian 114-bus power systems showing

promising results and proving their practical efficiency
to ensure system stability under critical situations.

2 Problem formulation
One of the serious challenges for power systems is to
maintain stable operations, especially during emergency
situations. Event-driven based Emergency Demand Re-
sponse (EEDR) program is one of the solutions that used
when the security of power systems is at risk. To imple-
ment such programs, the following problems need to be
solved: (i) The selection of the appropriate EEDR partici-
pants. (ii) For each serious event, the optimal amount of
the demand reduction of each participant must be found
in order to minimize the total cost.

2.1 Selection of load buses for EEDR program
The selection of load buses for EEDR involves the deter-
mination of the suitable locations for load reduction. An
effective way to find suitable locations is to identify the
load buses having a higher impact on voltage stability.
This can be mathematically formulated as a non-linear
constrained optimization problem, where the main goal
is the determination of the optimal location for reactive
power support. Accordingly, the objective function can
be defined as below:

min Fc þ λPPloss þ λL 1=VSIminð Þð Þ ð1Þ
where Fc is the cost of the entire power system gener-
ation and it can be expressed as follows.

Fc ¼
XNg

i¼1

aiP
2
gi þ biPgi þ ci =hÞð ð2Þ

In this equation, Pgi is the real power produced by the
ith generator; ai, bi and ci are the fuel cost coefficients of
the ith generator; Ng is the number of generators in the

Fig. 3 Shrinking encircling technique

Fig. 4 Spiral updating position
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system; λP and λL are scaling factors to balance between
the objective function values and to avoid the domin-
ance of an objective over another. The values of this fac-
tors are chosen as 40 and 100, respectively, same as in
[41].
Ploss represents the real power losses and it is given by

the following equation.

Ploss ¼
XNb

i¼1

XNb

j¼1; j≠i

V 2
i þ V 2

j−2V iV j cos θi−θ j
� �h i

Y ij cosφij

ð3Þ

where Nb is the number of transmission lines; Vi, Vj, θi
and θj are the voltage magnitudes and the phase angles
of the ith and jth buses, respectively; Yij and φij are the
magnitudes and the phase angles of the lines admittance,
respectively.
VSImin is the minimum value of Voltage Stability Index

(VSI) [42]. This index is one of the most suitable indices
due to its mathematical formulation which is derived
considering all of the system margins (real, reactive and
apparent power margins) [43]. This index is formulated
as follows [42]:

Fig. 5 Framework of the proposed EEDR strategy

Fig. 6 General procedure of WOA-based weak buses identification methodology
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VSI ¼ min
Pmax−Pr

Pmax
;
Qmax−Qr

Qmax
;
Smax−Sr
Smax

� �
ð4Þ

Where

Pmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 4

s

4X
−Qr

V 2
s

X

r
ð5Þ

Qmax ¼
V 2

s

4X
−
P2
r X

V 2
s

ð6Þ

Smax ¼ 1− sin θð Þð ÞV 2
s

2 cos θð Þ2X ð7Þ

where Pmax, Qmax, and Smax are, respectively, the max-
imum transferred real, reactive and apparent powers; Vs

and Vr are, respectively, the sending and the receiving
end voltages; X is the line reactance; θ is the load power
angle.
By using VSI, stability level of all the transmission lines

can be measured and the line with the minimum value
of VSI (VSImin) is considered as the most sensitive line
to the voltage collapse [44, 45].
The objective function in (1) is subject to the equality

and inequality constraints described by the following
equations.
Equality constraints: The equality constraints repre-

sent the load flow equations, which are given below:

f
Pgi−Pdi−V i

XNbus

j¼1

V j gij cosδij þ bij sinδij
� �

¼ 0

Qgi−Qdi−V i

XNbus

j¼1

V j gij sinδij−bij cosδij
� �

¼ 0

ð8Þ

Inequality constraints: represents generator, load bus
and transmission line constraints as given below:
Generator constraints:

Fig. 7 Flowchart illustrating the process of demand
reduction amount optimization using WOA

Fig. 8 Single line diagram of the IEEE 14-bus test system
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f
Vmin

gi ≤Vgi≤V
max
gi ; i ¼ 1; 2; :::;Ng

Pmin
gi ≤Pgi≤P

max
gi ; i ¼ 1; 2; :::;Ng

Qmin
gi ≤Qgi≤Q

max
gi ; i ¼ 1; 2; :::;Ng

ð9Þ

Load bus constraints:

Vmin
li ≤V li≤Vmax

li ; i ¼ 1; 2; :::;Nlb ð10Þ
Transmission line constraints:

Sli≤S
max
li ; i ¼ 1; 2; :::;Nb ð11Þ

where Nbus is the number of buses; Ng is the number of
generator buses; Pdi and Qdi are the real and reactive
load on the ith bus, respectively; gij, bij and δij are, re-
spectively, the conductance, the admittance and the
phase difference of voltages between the ith and jth bus.
Vgi

min and Vgi
max are the minimum and maximum volt-

age limits; Vli is the load voltage of ith load bus; Sli is the
apparent power flow of ith branch and Nlb is the num-
ber of load buses.

Fig. 9 Topology of the Algerian 114-bus power system [45]

Fig. 10 Convergence characteristic of WOA in the case of
IEEE 14-bus

Table 1 Comparison of two approaches of EEDR (IEEE 14-bus)

Method Location Amount
(%)

Total
amount

Total cost
[$/hr]

Multistage method
[40]

14
9
10

30
30
10

14.22 MW,
7.06 MVAr

822.0

WOA algorithm 4
5
7
14
9

11
0
0
6
9

14.6817
MW,
2.3305
MVAr

265.2326
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2.2 Determination of demand reduction amount
During emergency situations, emergency demand re-
sponse coordinates many large energy consumers (e.g.,
large commercial and industrial sectors) for demand re-
duction. For each critical event, it must minimize the
amount of demand reduction of each participant to the
achieve a desired security margin with a minimum cost
of demand reduction. These requirements lead to a non-
linear optimization problem in which the optimization
goal is to minimize the demand reduction cost and the
constraint is that the voltage stability margin of the
power system after the demand reduction must be larger
or equal to the desired one. Other constraints, such as
power flow equations and safety operation constraints
are also considered. Combining the objective function
and all these constraints, the nonlinear optimization
problem can be defined as presented below.

min
Xm
i¼1

Ci ð12Þ

Subjected to the following constraints:

� Power system constraints described by (8–15);
� Available amounts of demand participants;
� Voltage stability margin.

where Ci is the cost for reducing demand at load bus i;
m is the number of available participants.
The cost for reducing demand is represented as fol-

lows [40]:

Ci ¼ 50þ 5
ΔSi
Si

� �2

; i ¼ 1; 2; 3; :::;m ð13Þ

where Si and ΔSi are, respectively, the load and the total
load reduction at the selected location i. The unit-price
for each load is assumed to be 50 $/hr. at the base case
and changes with a second-order polynomial function as
shown in (13).

3 Proposed EEDR-based WOA algorithm
3.1 Basic principles of WOA algorithm
Whale Optimization Algorithm (WOA) is a novel bio-
inspired optimization technique proposed by Mirjalili
and Lewis [46]. It is based on the simulation of the spe-
cial hunting method of one of the biggest baleen whales
called humpback whales. Humpback whales feed a small
prey as krill, herrings, and other small fishes near the
surface, their demeanour to find and hunt the prey is
called “bubble-net feeding”. The humpback whales dive
down and then start to create a ring of bubbles to encir-
cle the fishes, which are too frightened to pass through
the bubbles as shown in Fig. 1, in meantime the whales
swim upward to the surface through the bubble net and
swallowing a huge number of fishes in one swig. Bubble-
net feeding behaviour is mathematically modelled as
follows.

3.2 Searching for prey
Humpback whales search for prey randomly according
to the position of each other. The process of searching is
mathematically modelled as follows:

D ¼j C:Xrand−X j ð14Þ
X t þ 1ð Þ ¼ Xrand−A:D ð15Þ

where t indicates the current iteration, X is the position

Table 2 Set of the critical contingencies of IEEE 14-bus and
Algerian 114-bus systems

Power system Contingency N° Line outage VSI

IEEE 14-bus 1
2
3
4
5
Intact condition

1–2
2–3
5–6
7–9
4–7
-

0.0381
0.6468
0.6753
0.6857
0.7057
0.7573

Algerian 114-bus 1
2
3
4
5
Intact condition

63–66
81–90
85–87
81–82
87–100
-

0.1261
0.1720
0.2438
0.2950
0.3359
0.3674

Fig. 11 Voltage profiles in the case of loss of line (1–2) in the IEEE 14-bu system
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vector, Xrand is a random position vector (a random
whale) chosen from the current population. A and C are
coefficient vectors calculated as follows:

A ¼ 2a:r−a ð16Þ
C ¼ 2r ð17Þ

where a is linearly decremented from 2 to 0 along
with the iterations, r is a random vector in [0, 1].
Therefore, A is used with the random values |A| > 1
in order to guarantee the global search for the WOA
algorithm. The position of every search agent (whale)
is updated based on the random selection of search
agent [46].

3.3 Prey encircling technique
After locating the prey, humpback whales circle this prey
to start hunting them. The WOA presumes that the ac-
tual best candidate solution is the target prey or is close
to the optimum. Accordingly, the overall search agents
will renew their new positions towards the best-
determined search agent. This demeanour is represented
as follows:

D ¼j C:X� tð Þ−X tð Þ j ð18Þ

X t þ 1ð Þ ¼ X� tð Þ−A:D ð19Þ

where X* is the position vector of the best solution ob-
tained so far. Figure 2 illustrates the rationale behind
(19). The position (X, Y) of a search agent can be up-
dated, according to the position of the current best rec-
ord (X*, Y*), by adjusting the values of A and C vectors.

3.4 Bubble-net attacking technique
As aforementioned above, after locating the prey and
encircling them, humpback whales start the hunting
step using the bubble-net mechanism. Two ap-
proaches to model the bubble-net demeanor of
humpback whales are proposed. The first one is the
shrinking encircling technique. This behavior is
achieved by decrementing the value of a in (16), con-
sequently, the value of A is also decreased by a. Fig-
ure 3 shows the possible positions from (X, Y)
towards (X*, Y*) that can be achieved by 0 ≤A ≤ 1.
The second one is the spiral updating position. In
this approach the distance between the whale located
at (X, Y) and the prey located at (X*, Y*) is first cal-
culated (see Fig. 4), then the spiral equation to imi-
tate the helix-shaped movement of humpback whales
is formed as follows:

Fig. 12 VSI before and after EEDR in the case of loss of line (1–2) in the IEEE 14-bus system

Table 3 EEDR results in IEEE 14-bus and Algerian 114-bus systems in the case of line tripping

System Events Location Amount
(%)

Total
amount

Total
cost
[$/hr]

VSI

Before EEDR After EEDR

IEEE 14-bus Loss of the line (1–2) 4
5
7
14
9

47
14
4
15
35

21.4330MW,
3.6351 MVAr

446.8791 0.0381 0.3004

Algerian 114-bus Loss of the line (63–66) 89
68
92
67

4
45
2
69

6.3631 MW,
3.0578 MVAr

550.5759 0.1261 0.3000

Loss of the line (81–90) 89
68
92
67

41
0
2
0

8.4208 MW,
4.2103 MVAr

287.5827 0.1720 0.3001
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X t þ 1ð Þ ¼ D
0
:ebl: cos 2πlð Þ þ X� tð Þ ð20Þ

Where:

D
0 ¼j X� tð Þ−X tð Þ j ð21Þ

D’ indicates the distance between the ith whale and
the prey (best solution obtained so far), b is a constant
that determines the form of the logarithmic spiral, l is a
randomly chosen number in the range [− 1, 1]. The
humpback whales swim around the prey within a

shrinking circle and along a spiral path at the same time.
To model this simultaneous behavior, we suppose that
there is a probability of 50% to choose the technique
that will be used to update the position of whales during
optimization. The mathematical model is as follows:

X t þ 1ð Þ ¼ fX� tð Þ−A:D if p < 0:5
D

0
:ebl: cos 2πlð Þ þ X� tð Þ if p≥0:5

ð22Þ

3.5 Implementation of WOA in EEDR program
In this sub-section, we discussed the detailed procedure
to apply WOA based method in EEDR program. The

Fig. 13 VSI of the Algerian 114-bus system in the case of (a) loss of line (63–66), (b) loss of line (81–90)

Fig. 14 Convergence characteristic of WOA in the IEEE 14-bus system, increasing of load by: (a) 170%, (b) 190%
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proposed EEDR strategy has the objective to maintain
the voltage stability margin (VSM) in an acceptable
range and it activates when VSM leaves their permitted
ranges during the emergency conditions caused by crit-
ical contingencies. The framework of the proposed strat-
egy is shown in Fig. 5 with the following three main
steps:

(a) Computation of VSM.
(b) Selection of suitable load buses for EEDR program.
(c) Determination of demand reduction amount of

each participant.

The first step involves the calculation of the VSI de-
fined by (4). By computing this voltage stability index,
we can estimate the VSM of the system and thereby
convenient countermeasure may be taken if the index

indicates a poor VSM. In the second step, WOA
optimization algorithm is used to solve the problem of
determination of suitable locations for load reduction
represented by (1). Assuming that all the load buses in
the power system can participate in the EEDR program,
the procedure used to find the appropriate locations,
using WOA algorithm, is summarized in the flowchart
of Fig. 6. In the third step, the WOA algorithm is
adopted to seek for the amounts of load reduction of
each participant in the EEDR program. The flowchart
describing the process of demand reduction amount
optimization using WOA optimization algorithm is
shown in Fig. 7.

4 Results and discussion
In this section, the effectiveness of the proposed EEDR
strategy has been validated on the IEEE 14-bus test

Fig. 16 VSI of the IEEE 14-bus system in the case of (a) increasing of load by 170%, (b) increasing of load by 190%

Fig. 15 Convergence characteristic of WOA in the Algerian 114-bus system, increasing of load by: (a) 20%, (b) 35%
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system [47] and the real Algerian 114-bus [48] power
system. The IEEE 14-bus test system, shown in Fig. 8,
consists of 14 buses, 5 generators, and 20 lines. The Al-
gerian 114-bus system, shown in Fig. 9, contains 114
buses, 15 generators and 175 branches.

4.1 Examples on line tripping
Firstly, to validate the proposed EEDR approach, the
same scenario with that of [40] has been simulated. In

this operating scenario, the load demand of the IEEE 14-
bus system is increased by 85% from its base case oper-
ating state. After the occurrence of two lines outages
(lines from bus 2 to bus 4 and from bus 2 to bus 5), in-
sufficient VSM is detected. So the proposed strategy acts
to ensure that the VSI is no less than 0.3. Using WOA
algorithm, the buses 4, 5, 7, 14 and 9 are identified to be
the most sensitive buses in the case of IEEE 14-bus sys-
tem. These buses are taken as the appropriate locations

Fig. 17 VSI of the Algerian 114-bus system in the case of (a) increasing of load by 20%, (b) increasing of load by 35%

Table 4 EEDR results in IEEE 14-bus and Algerian 114-bus systems in the case of load increasing

System Events Location Amount
(%)

Total amount Total
cost
[$/hr]

VSI

Before EEDR After EEDR

IEEE 14-bus Increasing of load by 170% 4
5
7
14
9

43
29
9
10
21

52.6923MW,
6.9592 MVAr

419.9811 0.2109 0.3

Increasing of load by 190% 4
5
7
14
9

68
26
21
15
59

60.6080MW,
11.9255 MVAr

725.6826 0.1261 0.3001

Algerian 114-bus Increasing of load by 20% 89
68
92
67

32
0
0
0

8.8781 MW,
4.4390 MVAr

254.5213 0.2390 0.3011

Increasing of load by 35% 89
68
92
67

69
0
42
2

13.2722MW,
6.6361 MVAr

536.7319 0.1376 0.3
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for EEDR. The convergence curve of WOA algorithm
searching for the optimal load reduction at the selected
buses is shown in Fig. 10.
Table 1 shows the EEDR results obtained using the

WOA algorithm and those obtained by using the multi-
stage optimization strategies [40]. As shown in this
Table, the real and reactive powers of load buses 4, 5, 7,
14 and 9 are reduced by 11%, 0%, 0%, 6%, and 9%, re-
spectively. It is also evident from this table that better
results are obtained suing EEDR-based WOA algorithm.
To confirm the effectiveness of the proposed EEDR

strategy, some further events have been simulated.
Firstly, the line connecting the buses 1 and 2 in the IEEE
14-bus system was tripped. The loss of this line is con-
sidered as the most severe contingency as shown in
Table 2. During this contingency, the voltage magni-
tudes at all buses are within the predetermined voltage
limits as shown in Fig. 11. However, the lowest value of
VSI (VSImin) drops below the constraint of 0.3. This
would indicate that the corresponding line is closed to
its voltage stability limit and the control strategy will be
activated accordingly as shown in Fig. 12. After the ap-
plication of EEDR-based WOA, it is seen that the VSM
is enhanced. The obtained EEDR results are summarized
in Table 3. The 4th column of this Table indicates the
obtained amount of load reduction for each participant.
The 5th and 6th columns show the total amount and
the cost of load reduction, respectively. Columns 7
and 8 show, respectively, the minimum values of VSI
before and after the application of EEDR-based WOA.
It can be seen from this Table that the total reduc-
tion cost when the line 1–2 is tripped is 446.8791
[$/h], the total real and reactive powers required to
avoid a risk of voltage collapse are 21.433MW and
3.6351 MVAr, respectively.
The breadth of the study was expanded by performing

another test on the Algerian 114-bus power system. The
selected load buses, using WOA algorithm, were the buses
89, 68, 92 and 67. To perform the tests, two deferent
branch outage contingencies were chosen from Table 2.
The first one is the loss of the line between buses 63 and
66 where the minimum value of VSI was 0.1261. The sec-
ond contingency is the outage of the branch between
buses 81 and 90 where the minimum value of VSI was
0.1720. This low VSIs violation activates the proposed
EEDR. Figure 13(a) and (b) represent the Algerian power
system VSIs, concerning each event, before and after the
application of the proposed EEDR-based WOA method.
As can be expected, before the application of EEDR the
system has an insecure VSM due to the line outage con-
tingencies. However, after the application of EEDR the
VSImin successfully increased to 0.3 for the two events en-
larging the VSM. We can observe also from the Fig. 13
that VSM of the whole system is improved. The detailed

EEDR results for the above two cases are also summarized
in Table 3. It appears from these results that the proposed
EEDR strategy works satisfactorily in the case of line out-
age contingencies.

4.2 Examples on load increase
The second scenario demonstrates the performance of
the proposed strategy for the load increase. Thus, all
loads in the IEEE 14-bus system are increased by 170%
and 190% from its initial load level. Similarly, all loads in
the Algerian 114-bus power system are increased by 20%
and 35%. In these cases, the predicted values of VSI for
both test systems are less than the threshold level of 0.3.
This means that the systems have a great possibility of
voltage collapse without any remedial actions. Since in-
sufficient VSM (VSImin < 0.3) is detected, the EEDR-
based WOA strategy will be activated accordingly. Fig-
ures 14 and 15 show the convergence curves of WOA
algorithm seeking for the optimal load reduction at the
selected buses in both test systems. After the application
of the proposed EEDR, the VSI violations have been
eliminated effectively as shown in Figs. 16 and 17. In all
the above-mentioned cases, the reduction in the load
power demand is distributed among the participants as
shown in Table 4. The results depicted in Figs. 16 and
17 and Table 4 demonstrate the effectiveness of the pro-
posed EEDR-based WOA method in the improvement
of the VSM.

5 Conclusions
In this paper, an event-driven emergency demand re-
sponse (EEDR) based on whale optimization algorithm
(WOA) is proposed to improve the voltage stability of
power system as well to avoid a risk of voltage collapse.
In the proposed approach, the voltage stability margin
(VSM) is, firstly, computed using the voltage stability
index. Then, the WOA is adopted to seek for the opti-
mal locations and amounts of load reduction of each
participant in the EEDR program. The simulation results
carried out using the IEEE 14-bus and the Algerian 114-
bus power system proved the potential of the proposed
EEDR scheme in the restoration of the power system
from the emergency operating conditions. On the other
hand, the use of the proposed strategy, to reach the de-
sired VSM, results in lower demand reduction costs
compared to other methods in the literature.

6 Methods section
This paper aims to propose an event-driven emergency
demand response (EEDR) to effectively improve system
voltage stability. The main objective of the proposed
EEDR approach is to maintain the Voltage Stability Mar-
gin (VSM) in an acceptable range during emergency
conditions by driving the operating condition of a power
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system away from the insecure points. VSM is deter-
mined by computing voltage stability index (VSI) using
load flow equations. The identification of the best loca-
tions for EEDR participant is mathematically formulated
as a non-linear constrained optimization problem, where
the main goal is the determination of the optimal loca-
tion for reactive power support. The determination of
the optimal load reduction amount for each participant
in the EEDR program, to achieve the desired VSM with
the minimum cost of demand reduction, is also formu-
lated as a non-linear optimization problem. For
optimization, the recently proposed whale optimization
algorithm (WOA) is used. Computer programs are writ-
ten, using MATLAB software, from which the optimal
locations and load reduction amounts are obtained and
the results are compared.
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