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Abstract

Early warning of impending instability in a power system under disturbance conditions is important for preventing of
system collapse. A measurement-based approach is proposed to assess the potential power system transient instability
problem under cascading outages. Where a measurement-based index is obtained as the estimation accuracy of a linear
autoregressive exogenous (ARX) model to estimate the dynamic response of the power system and indicate the system
stability to some extent after a disturbance. The proposed approach was verified using a set of marginally stable cases in
a 179-bus WECC equivalent power system. Then the instability early warning threshold for this system is obtained as 0.44.
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Introduction
With the interconnections of power system increasing,
the instability assessment is becoming more and more
important for safe operation of power systems. The
power system stability refers to the continuance of
intact operation following a disturbance, it depends on
the operation and the nature of the physical disturb-
ance [1, 2]. The 2003 blackout occurred in N.E. North
America is partly because of the lack of supportive
applications when the system is close to instability [3].
If power system is close to the stability limit, actions
must be taken by system operators to identify critical
states. Therefore, it is very important to have an index
for the critical situation awareness. A series of distur-
bances can increasingly stress the system, degradation
of its stability margin may finally lead to loss of stabil-
ity. Therefore, the analysis of system dynamic response
during or after the disturbance is very important to in-
dicate the potential instability of the power system [4].
The conventional methods of power system analysis

are based on numerical solution of system differential
algebraic equations. These numerical methods need
more detailed representation of the power system but
they are not suited for online application of stability
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assessment and control. There are three reasons: 1) The
power system dynamic model could not include all the
details of the power system; 2) The topology of the
power system changes all the time; 3) The long compu-
tation time of the numerical solution. With a large num-
ber of synchrophasors being deployed, it is possible to
construct power system model based purely on real-time
synchrophasor measurements, which also can make on-
line power system instability awareness feasible. Studies
have been done with the measurement data for the sys-
tem instability assessment [5–11]. Some focus on using
real-time phasor measurements with pre-existing know-
ledge obtained from computer simulation results or his-
torical events to enable real-time assessment under
disturbance conditions [8, 9]. Some use selected real-
time measurement locations to directly compute energy
functions for the potential of instability [10, 11]. An
adaptive power system equivalent method for real-time
estimation of stability margin using phase-plane trajec-
tories was proposed in [7]. This paper proposes a new
method for instability early warning only using continu-
ous high-sampling-rate measurements. In order to create
the system collapse case, the idea in [7] using a series of
disturbances to stress the system was used in this paper.
Then an index was proposed to assess the potential
instability of the system.
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The rest of the paper is organized as follows. Section
II is the introduction of the measurement-based sys-
tem dynamic response estimation model and the
model accuracy index. Section III is to implement the
proposed model accuracy index to evaluate the system
instability. Section IV is the case study of the proposed
method. Conclusion and future work are provided in
Section V.

Methodology of the proposed approach
Dynamic response estimation
A concept of dynamic response estimation for power
system was proposed in [12]. It is to estimate the dy-
namic response of the power system during or after dis-
turbances. The basic idea of the dynamic response
estimation is to identify the real-time dynamic model or
the transfer function of the power system and use the
obtained model to estimate the dynamic response of the
power system.

The ARX model structure
Two categories of measurement-based models can be
used for system identification: state-space model [13–
17], and transfer function model [18–21]. The state-
space representation is concerned not only with input
and output properties of the system but also with its
complete internal behavior [22]. In contrast, the transfer
function representation is concerned with and specifies
only the input/output behavior. Hence, the transfer
function model identification can be an alternative to
overcome the drawback of high computation burden of
state-space methods. The linear Auto Regressive Ex-
ogenous model (ARX) provides a much simpler identifi-
cation model of multi-variable system than the state-
space model or other models. The general expression of
the transfer function model structure [23] is:

A zð Þy tð Þ ¼ B zð Þ
F zð Þ u tð Þ þ C zð Þ

D zð Þ e tð Þ ð1Þ

where

A zð Þ ¼ 1þ a1z−1 þ…þ anaz
−na ;B zð Þ ¼ b1z−1 þ…þ bnbz

−nb

C zð Þ ¼ 1þ c1z−1 þ…þ cncz
−nc ;D zð Þ ¼ 1þ d1z−1 þ…þ dnd z

−nd

F zð Þ ¼ 1þ f 1z
−1 þ…þ f nf z

−nf

where t is the time index, and e(t) is a white noise, z−1

is a backward shift operator and z−1y(t) = y(t-1). na, nb,
nc, nd, nf are the orders of the signal y(t), u(t), and e(t),
respectively. If C(q) = 1,D(q) = 1 and F(q) = 1, then (1) be-
comes to be the AutoRegressive model with eXogenous
inputs (ARX) model. The mathematical structure
expression of the ARX model is also can be described by
the equation:

y tð Þ þ a1y t−1ð Þ þ⋯þ anay t−nað Þ
¼ b0u tð Þ þ b1u t−1ð Þ þ⋯þ bnbu t−nbð Þ þ e tð Þ ð2Þ

With the SISO ARX model structure (1), the multi-
input single-output (MISO) ARX model structure can
be derived:

y tð Þ þ a1y t−1ð Þ þ⋯þ anay t−nað Þ
¼

XM

j¼1
ðbj0uj tð Þ þ bj1uj t−1ð Þ þ

⋯þ bjnbjuj t−nbj
� �Þ þ e tð Þ

ð3Þ

For the simplification, (3) can be further expressed in
the vector form as:

ay tð Þ ¼
XM

j¼1
bjuj tð Þ þ e tð Þ ð4Þ

where
a ¼ 1; a1;⋯; ana½ �; y tð Þ ¼ y tð Þ; y t−1ð Þ;⋯; y t−nað Þ½ �
bj ¼ bj0; bj1;⋯; bjnaj

� �
;uj tð Þ ¼ uj tð Þ;⋯;uj t−nbj

� �� �
Because of the linear structure of the ARX model, the

model parameters of a multi-input ARX model can be
estimated by a linear Least Square (LS) approach. The
objective function is

Min J V LSð Þ ¼
XN

k¼nsþ1
ŷ kð Þ−y kÞð Þ2� ð5Þ

where N is the total data points, ŷ(k)andy(k)are the ac-
tual response and estimated response, respectively.

Model accuracy index
To evaluate the identified ARX model, a fitness criterion
can be performed [24]:

F ¼ 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ŷ −Y
� �2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ŷ −�Y
� �2q

0
B@

1
CA� 100 ð6Þ

where Y,Ŷ, �Y are the estimated response by the ARX
model, measured response by PMU/FDR, and the mean
value of the measured response, respectively. This index
is the accuracy of the model estimation in describing
system dynamic characteristics. A fitness of 100 means a
perfect fit between the estimated response and the actual
response, while a fitness of zero means the estimated
response Y is no better than the mean value of measured
response�Y .
For easier interpretation, a normalization process that

converts the accuracy index from (−∞, 100] to (0, 1] can
be performed as followed:
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A ¼ e F=100ð Þ−1 ð7Þ
where F is the fitness index defined in previous study

and A is the normalized accuracy index. The accuracy
index of instability assessment threshold can be deter-
mined as:

T ¼ Amax ð8Þ
whereAmaxis the maximum one among all the calculated
accuracy index in marginally stable cases. T is the max-
imum value of the accuracy index of the last disturbance
before instability. The accuracy represents the difference
between the actual response at the output location and
the response estimated by the ARX model.

Method for instability awareness
Capability of accuracy index for instability warning
The application of the linear ARX-structured modeling
method is under the assumption that the power system
to be modeled is relatively linear around certain oper-
ation points. Although the power system is nonlinearin
Fig. 1 Flowchart for system instability assessment
nature, the operating point of the large-scale power grid
does not change dramatically generally. The power sys-
tem shows linear characteristics most of the time and
thus ARX-structured method may have merit in bulk
power grid modeling [24]. However, when a series of
disturbances are increasingly stressing the system, the
system will become less and less stable so that the
trained ARX model will tend to be less accurate to
estimate the dynamic response under the changed top-
ology, which will be reflected as the accuracy index
becoming lower. The threshold for the instability early
warning was obtained when the system under the mar-
ginally stable situation after cascading outage. Marginally
stable means the system is pushed to the edge of the sta-
bility, no matter how small a disturbance is added to this
system, the system will collapse. The threshold is the
estimation accuracy index of the marginally stable case.

Guideline for instability early warning
While a series of disturbances are increasingly stressing
the system, degradation of its stability margin may finally



Fig. 2 WECC 179-bus model and disturbance locations
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lead to the system collapse. Continuous measurements
on the monitored variables at a high sampling rate
enable the ARX dynamic model to estimate the dynamic
response in real time, and the model accuracy index
obtained from the ARX dynamic model can indicate the
decreasing of the stability margin. Therefore, a precisely
defined threshold for instability early warning is neces-
sary. Incidents of instability on a power system are not
many, but they generally are accompanied by severe
consequences. Therefore, the off-line dynamic simula-
tion is the most convenient way to derive the threshold
of the model accuracy index.
The method developed to assess potential system in-

stability is described in Fig. 1. The basic steps of this
flowchart are:

(1)For a specific critical area, create N marginally stable
simulation cases using a sequence of line faults.

(2)For each simulation case, find the interface of the
critical area and choose the input and out channel in
each side of the interface, respectively. Then develop
an ARX model using a period of system response
data following the first disturbance.

(3)After obtaining such a model, the system responses
following the rest of the disturbance sequence are
applied to the model to perform the response
estimation.

(4)Accuracy index values are obtained after
disturbances.

(5)Repeat Step (2), (3) and (4) for N marginally stable
cases.

(6)The threshold could be determined as the largest
accuracy index of the last disturbance before
collapse in all the N marginally stable cases.

(7)Using the developed model to estimate the system
response, if the accuracy index is equal or smaller
than the threshold, a warning signal indicating
potential instability following the next disturbance
will be generated.
Case study for system instability early warning
Section III illustrated the proposed accuracy index
threshold derivation process. To validate the idea of
using the model accuracy index to early warn potential
instability, an equivalent 179-bus WECC model [25] is
used as the test system, as shown in Fig. 2. This model
is simplified but retains the main dynamics of the entire
WECC system.
Marginally stable case
Marginally stable means the system is pushed to the
edge of the stability, no matter how small a disturbance
is added to this system, the system will collapse [7].
Using the same approach as in [7] to create the mar-
ginally stable cases, a sequence of three-phase line faults
is used in this case to drive the interface between area
“0” and “1” to its marginally stable point. As an example,
a marginally stable case is created by five faults occur-
ring at different locations (C1, C2, C3, C4 and C5 in
Fig. 2). The first four clearing time of line faults was
fixed (five cycles), and the last one was adjusted to make
this case to be marginally stable, which means the sys-
tem would collapse if the clearing time of the last fault
increase by 0.001 s. A lot a simulation cases were carried
out using this method, only eight marginally instable
cases can be created. Please note that each fault is
cleared by opening the fault line. They increasingly
weaken the interface but do not break the connection.
This case can increasingly stress the operating condition
(weakening the topology around that interface) by series
of permanent faults.
The bus frequency, voltage magnitude and power angle

simulation results in one marginally stable case are shown
in Fig. 3. From Fig. 3, after five contingencies, the system
has not caused a collapse yet. However, it has been pushed
to its marginally collapse point, because if the clearing
time of the last fault is increased by 0.001 s, the system
would lose transient stability right after the last fault (in
Fig. 4). Therefore, the interface between area “0” and “1”
has been pushed to its marginally stable point.

Threshold for instability early warning
A threshold is needed to alert the system operator in
order to prevent the system being pushed to instability.



Fig. 3 Dynamics response of marginally stable case. a Voltage dynamic response after disturbance. b Frequency dynamic response after
disturbance. c Power angle dynamic response after disturbance
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The proposed threshold determination method is ap-
plied in this section by investigating the instability prob-
lem between areas “0” and other areas.

Case study and results
In this study, the inputs of the ARX model is located
in area “0” and the output is located in area “1”,
which are shown in Fig. 2. The first disturbance is
the three phase line fault occurred between area “0”
and area “1” at location “C1” marked in Fig. 1, which
is used to train the ARX model and obtain the first
accuracy index of the model. Then four disturbances
occur in every 40 s at different locations (C2, C3, C4
and C5 in Fig. 2) following the first disturbance. Fre-
quency dynamic response after every disturbance is
obtained and the accuracy index is calculated at the



Fig. 4 Dynamic responses of 29 generator buses. a Voltage dynamic response after disturbance. b Frequency dynamic response after
disturbance. c Power angle dynamic response after disturbance
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same time. The estimation results and accuracy index
calculation results are shown in Fig. 5.
As shown in Fig. 5, the system tends to be less and less

stable as more line disconnection disturbances added
into the system, which is accompanied by the accuracy
index of the system dynamic response decreasing, which
indicates that the model accuracy index can be used to
indicate the system stability to some extent.
In order to obtain the threshold of the accuracy index

for transient instability early warning, a lot of simulation
case studies were carried out, here a set of eight scenarios
was created to provide a comprehensive coverage of sta-
bility performance of the power system. The variation
trends of accuracy indices following the sequences of dis-
turbances in eight scenarios are shown in Fig. 6.
Most of the accuracy indices in all the cases decrease due

to the sequences of disturbances in Fig. 6. The difference of
the disturbance location may be the main factor for special
case 4 and case 8 why did not keep decreasing all the time.
For all the simulation cases, after the fifth disturbance, the
system is pushed to be marginally stable and most of the
accuracy index also reaches its lowest point at the same
time. The threshold can be obtained by the majority situa-
tions. It should be noted that this is a preliminary investiga-
tion on threshold value determination for system transient
instability early warning. More studies need to be done to
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Fig. 5 Dynamic response and accuracy index after contingency
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obtain further insight into the relationship between accur-
acy indices and potential instability for future work. The
study in this paper is only an example to show how to de-
rive the threshold with the proposed method.
For step 6 of the method described above, the thresh-

old for this particular application is suggested as 0.44,
the largest accuracy index value before collapses, as
shown in Fig. 6. It means when the accuracy index
reached 0.44, the system is almost stressed to its margin-
ally instable point. For other cases, events with accuracy
indices less than 0.44 are not necessarily instable, how-
ever, severe enough to alert for potential instability. This
particular threshold selection method here only gives a
“safe zone” of system operation, which means that no
emergency control action is necessary if the index is
higher than this threshold.

Conclusion
A measurement-based power system instability early
warning index was proposed. The verification results
prove that the proposed index can indicate the potential
instability of the system. The preliminary results have
shown that the instability threshold can be used to early
warn the instability caused by cascading outages. Future



Fig. 6 Accuracy variation trends following the sequences of disturbances
in 8 cases
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work will focus on how to prove the effectiveness of the
measurement-based instability early warning approach
theoretically and more studies to explore the possibility
of the application in the real power system.
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