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Abstract We study the concept of financial bubbles in a market model endowed
with a set P of probability measures, typically mutually singular to each other. In this
setting, we investigate a dynamic version of robust superreplication, which we use
to introduce the notions of bubble and robust fundamental value in a way consistent
with the existing literature in the classical case P = {P}. Finally, we provide concrete
examples illustrating our results.
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Introduction

Financial asset price bubbles have been intensively studied in the mathematical litera-
ture in recent years. The description of a financial bubble is usually built on two main
ingredients: the market price of an asset and its fundamental value. As the first is sim-
ply observed by the agent, the modeling of the intrinsic value is where the differences
between various approaches arise. In the classical setup, where models with one
prior are considered, the main approach is given by the martingale theory of bubbles,
see Biagini et al. (2014); Jarrow et al. (2010); Loewenstein and Willard (2000) and

J. Mancin (�) · F. Biagini
Workgroup Financial and Insurance Mathematics, Department of Mathematics, Ludwig-Maximilians
Universität, Theresienstraße 39, 80333 Munich, Germany
e-mail: mancin@math.lmu.de

F. Biagini
Department of Mathematics, University of Oslo, Box 1053, Blindern, 0316 Oslo, Norway
e-mail: biagini@math.lmu.de

http://crossmark.crossref.org/dialog/?doi=10.1186/s41546-017-0026-3&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:mancin@math.lmu.de
mailto:biagini@math.lmu.de


Page 2 of 29 Biagini and Mancin

Protter (2013). According to this theory, the fundamental value is defined as the
expected sum of future discounted payoffs under a risk neutral measure. Other
approaches within the martingale framework make use of further assumptions,
such as portfolio constraints or defaultable claims, to explain how a bubble origi-
nates in the market, see Biagini and Nedelcu (2015); Hugonnier (2012) and Jarrow
et. al. (2012). Recently, however, another definition has been proposed in Herdegen
and Schweizer (2016), where the fundamental value is assumed to be given by the
superreplication price of the asset.

In this paper, we aim to contribute to the existing literature by introducing a frame-
work for the formation of bubbles under model uncertainty. We consider a continuous
(discounted) asset price S in a market endowed with a set P of local martingale mea-
sures for S, which are possibly mutually singular to each other and support a time
consistent sublinear expectation. Each one of these priors is to be interpreted as a
possible law for the dynamics of S.

The market price will still be exogenous, but the fundamental value S∗ will have
a fairly different interpretation from the classical literature and generate unexpected
consequences. We describe in fact S∗ by mean of the conditional sublinear expecta-
tion of the terminal value of S. By using the characterisation of sublinear operator of
Theorem 1, S∗ represents in this way a maximal fundamental value, taking in account
of each fundamental value under the different priors. Proposition 1 then shows that
aggregation can be done on the set of probability measures having the same family
of null sets up to time t, i.e. sharing the same view on the “impossible” events up to
time t. A financial interpretation and a strong link with the classical literature on
bubble is then provided by Theorem 4, where we study the problem of dynamic
superreplication, by extending Theorem 3.2 in Nutz (2015) to the dynamic case. This
result provides an extension of the approach of Herdegen and Schweizer (2016) to
the case of mutually singular priors.

The resulting bubble, defined as S−S∗, has P-local submartingale dynamics under
each P-market for P ∈ P . This generalizes in a natural way the local-martingale
dynamics which an asset price bubble displays in classical models under equiva-
lent priors. Furthermore it allows to describe the birth of a bubble and its growth
in size in a static model, i.e. without changing the investor’s risk neutral measure
over time, similarly to the approach of Herdegen and Schweizer (2016). The same
submartingale behavior is in fact described for some cases also in Biagini et al.
(2014), but it is the result of a smooth shift from an equivalent pricing measure to
another. To the best of our knowledge this description of bubbles is new, as it dis-
tinguishes itself also from the robust setting outlined in Cox et al. (2016), where
bubbles arise as a consequence of constraints on possible trading strategies in a
different setup.

Another interesting feature of our model is the way a bubble is perceived by
investors affected by less uncertainty, who are endowed with a smaller set of prob-
abilities P ′ ⊆ P . It might in fact happen that a bubble is not seen as such for
some particular priors. Alternatively stated, the asset originating the bubble may be
a (uniformly integrable) P-martingale for some P ∈ P . In this regard, our results
represent an extension of the setting of Herdegen and Schweizer (2016), where
market bubbliness excludes the existence of a true martingale measure.
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Finally, we investigate the notion of no dominance, proposing its robust coun-
terpart in the model uncertainty framework and studying its consequences on the
concept of bubble.

The paper is organized as follows. In “The setting” section, we outline the notation
and present an alternative characterization of the conditional sublinear expectation
operator in Proposition 1. In “Bubbles under uncertainty” section, after reviewing the
existing literature, we discuss and study our concept of robust fundamental value,
bubble under uncertainty, and robust no dominance, illustrating our results through
concrete examples. In “Infinite time horizon” section, we examine the situation in
which the time horizon is not bounded. In the Appendix finally, we study the problem
of dynamic superreplication.

The setting

We consider a family P of probability measures, typically non-dominated, on � =
D0

(
R+,Rd

)
, the space of càdlàg paths ω = (ωs)s≥0 in Rd with ω0 = 0 endowed

with the topology of weak convergence. We denote with F the Borel σ -field on �.
Given a F-measurable function ξ , we are interested in sublinear expectations

ξ �→ E0(ξ) := sup
P∈P

EP[ξ ],

inducing time consistent conditional sublinear expectations. For this reason, some
conditions have to be enforced both on the set of priors and on the random variables
we take into account. Given a stopping time τ of the filtration F := {Ft }t≥0 generated
by the canonical process, the main technical issue is to guarantee that the conditional
sublinear expectation operator

Eτ (ξ) = ess sup
P′∈P(τ,P)

EP′ [ξ |Fτ ] P − a.s. for all P ∈ P, (1)

where the essential supremum is taken with respect to the probability measure P and
P(τ,P) denotes the set of probabilities {P′ ∈ P : P

′ = P on Fτ } first introduced in
Soner et al. (2013), is well-defined. This problem is solved in the literature by means
of different approaches, generally by shrinking the set of priors P or by requiring
strong regularity of the random variables, see Cohen (2012); Nutz and Soner (2012);
Nutz and Van Handel (2013); Peng (2010), and Soner et al. (2011b). We choose to
place ourselves in the context of Nutz (2015), as it generalizes the frameworks of
G-expectation and random G-expectation and provides some tractability of stopping
times, which remains an open question in the G-setting.

For the sake of completeness, we then summarize the notation and the hypoth-
esis we enforce on the set P , as stated in Nutz (2015), together with the notation
introduced thereby. We start with the definition of polar set.

Definition 1 A set is called polar if it is (F,P)-null for all P ∈ P . The collection
of all polar sets is denoted by NP .
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Let P(�) be the set of all probability measures on (�,F) equipped with the
topology of weak convergence. For any stopping time τ , the concatenation of ω, ω̃ ∈
� at τ is the path

(ω ⊗τ ω̃)u := ωu1[0,τ (ω))(u) + (
ωτ(ω) + ω̃u−τ(ω)

)
1[τ(ω),∞)(u), u ≥ 0.

Given a function ξ on � and ω ∈ �, we define the function ξτ,ω on � by

ξτ,ω(ω̃) := ξ(ω ⊗τ ω̃), ω̃ ∈ �.

For any probability measure P ∈ P(�), there exists a regular conditional proba-
bility distribution {Pω

τ }ω∈� given Fτ , i.e., Pω
τ ∈ P(�) for each ω, while ω �→ P

ω
τ (A)

is Fτ -measurable for any A ∈ F and

EPω
τ
[ξ ] = EP[ξ |Fτ ](ω) for P − a.e. ω ∈ �,

whenever ξ is F-measurable and bounded. Moreover, P
ω
τ can be chosen to be

concentrated on the set of paths that coincide with ω up to time τ(ω),

P
ω
τ {ω′ ∈ � : ω′ = ω on [0, τ (ω)]} = 1 for all ω ∈ �.

We define the probability measure P
τ,ω ∈ P(�) by

P
τ,ω(A) := P

ω
τ (ω ⊗τ A), A ∈ F, where ω ⊗τ A := {ω ⊗τ ω̃ : ω̃ ∈ A}.

We then have the the identities

EPτ,ω [ξτ,ω] = EPω
τ
[ξ ] = EP[ξ |Fτ ](ω) for P − a.e. ω ∈ �. (2)

We next recall, as in Nutz and Van Handel (2013), some basic notions from the
theory of analytic sets. A subset of a Polish space is called analytic if it is the image
of a Borel subset of another Polish space under a Borel-measurable mapping. In
particular, any Borel set is analytic. The collection of analytic sets is stable under
countable intersections and unions, but, in general, not under complementation and
therefore does not constitute a σ -algebra.

For each (s, ω) ∈ R+ × � we fix a set P(s, ω) ⊆ P(�). Assume that

P(s, ω) = P(s, ω̃) if ω|[0,s] = ω̃|[0,s],

and P(0, ω) = P for all ω ∈ �. We next define the universal completion of a σ -field.

Definition 2 Given a σ -field G, the universal completion of G is the σ -field G∗ =
∩PGP, where P ranges over all probability measures on G and GP is the completion
of G under P.

We then state Condition (A) from Nutz (2015).

Assumption 1 Let (s, ω̄) ∈ R+ × �, let τ be a stopping time such that τ ≥ s and
P ∈ P(s, ω̄). Set θ := τ s,ω̄ − s.

(i) Measurability: The graph {(P′, ω) : ω ∈ �, P
′ ∈ P(τ, ω)} ⊆ P(�) × � is

analytic.
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(ii) Invariance: We have Pθ,ω ∈ P(τ, ω̄ ⊗s ω) for P-a.e ω ∈ �.
(iii) Stability under pasting: If ν : � → P(�) is a Fθ -measurable kernel and

ν(ω) ∈ P(τ, ω̄ ⊗s ω) for P-a.e ω ∈ �, then the measure defined by

P̄(A) =
∫ ∫

(1A)θ,ω(ω′)ν(dω′; ω)P(dω), A ∈ F (3)

is an element of P(s, ω̄).

Exploiting the previous conditions, by Proposition 3.1 in Nutz (2015) we have the
following

Theorem 1 Let σ ≤ τ be stopping times and ξ : � → R̄ be an upper semianalytic
function1. Then, under Assumption 1 the function

Eτ (ξ)(ω) := sup
P∈P(τ,ω)

EP[ξτ,ω], ω ∈ � (4)

is F∗
τ -measurable and upper semianalytic. Moreover,

Eσ (ξ)(ω) = Eσ (Eτ (ξ))(ω) for all ω ∈ �. (5)

Furthermore,

Eτ (ξ) = ess sup
P′∈P(τ,P)

EP′ [ξ |Fτ ] P − a.s. for all P ∈ P, (6)

where P(τ,P) = {P′ ∈ P : P
′ = P on Fτ }, and in particular,

Eσ (ξ) = ess sup
P′∈P(σ,P)

EP′ [Eτ (ξ)|Fσ ] P − a.s. for all P ∈ P . (7)

We finally call P-martingale or robust martingale, an adapted stochastic process
M = (Ms)s≥0 such that E0(Mt ) is finite for every t and

Mt = Et (MT ) P − q.s.

for any T ≥ t . The particular P-martingales for which also (−M) is a P-martingale
are called P-symmetric martingales.

We now provide another characterization of the conditional sublinear expectation
given in (6). To this end, given an arbitrary P ∈ P and a stopping time τ , we introduce
the set

Peq(τ,P) := {
P

′ ∈ P : P
′ ∼ P on Fτ

} ⊇ P(τ,P) (8)

of the measures in P which are equivalent to P restricted to Fτ . In the case in which
P is composed by local martingale measures relative to some price process S and
every prior P describes a complete market model, it holds Peq(τ,P) = P(τ,P), but
in general the inclusion in (8) is strict.

1An R̄-valued function f is called upper semianalytic if { f > c} is analytic for each c ∈ R.
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Proposition 1 Let τ be a stopping time and ξ : � �→ R̄ an upper semianalytic
function. Then under Assumption 1 for every P ∈ P it holds

Eτ (ξ) = ess sup
P′∈Peq(τ,P)

EP′ [ξ |Fτ ] P − a.s.

Proof It is sufficient to prove

ess sup
P′∈P(τ,P)

EP′ [ξ |Fτ ] ≥ ess sup
P′∈Peq(τ,P)

EP′ [ξ |Fτ ] P − a.s. (9)

as the reverse inequality is evident. Let for P ∈ P
AP := {ω ∈ � | Eτ (ξ)(ω) = ess sup

P′∈P(τ,P)

EP′ [ξ |Fτ ](ω)}.

It follows from Theorem 1 that

Eτ (ξ) − ess sup
P′∈P(τ,P)

EP′ [ξ |Fτ ]

is F∗
τ -measurable, so that AP ∈ F∗

τ ⊆ FP
τ . This implies that there exist F ∈ Fτ and

N ∈ N P
τ (see Ash (1972) page 18), where

N P

τ := {N ⊂ � | ∃ C ∈ Fτ such that N ⊂ C and P(C) = 0},
such that AP = F ∪ N and for every Q ∈ Peq(τ,P)

1 = P

(
AP

)
= P(F) = Q(F) = Q

(
AP

)
.

This implies that for all Q,P′ ∈ Peq(τ,P)

Eτ (ξ) ≥ EP′ [ξ |Fτ ] Q − a.s.

since by (4) and (2) it holds

Eτ (ξ) ≥ EP′ [ξ |Fτ ] P
′ − a.s.

Hence we have
Eτ (ξ) ≥ ess sup

P′∈Peq(τ,P)

EP′ [ξ |Fτ ] P − a.s. (10)

because Eτ (ξ) is defined ω per ω in (3), i.e. it is independent of the choice of Q,P′ ∈
Peq(τ,P). Inequality (9) holds for every Q ∈ Peq(τ,P), i.e. in particular for the
initially chosen probability P ∈ P .

Example 1 We illustrate the result of Proposition 1 in the case where the filtration
is generated by a finite partition of �. In particular, we consider a toy model with
time horizon T = 2. Given a Polish space �, we set �t := �t to be the t-fold
Cartesian product of � for t ∈ {0, 1, 2} with the convention that �0 is a singleton.
Let then FT = B(�T ) and F1 = σ(A1, . . . , An), where (Ai )i=1,...,n is a partition of
� and n ∈ N.

Similarly to Bouchard and Nutz (2015) we assume that for each t ∈ {0, 1} and
ω ∈ �t we have a nonempty set Pt (ω) := P(t, ω) ⊆ P(�) of probability measures
such that Pt admits a universally measurable kernel Pt : �t → P(�) with Pt (ω) ∈
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Pt (ω) for all ω ∈ �t . Therefore, we can consider a set of priors P for this two-period
market such that for every P ∈ P and A ∈ FT it holds that

P(A) =
∫

�

∫

�

1A(ω1, ω2)P1(ω1; dω2)P0(dω1),

where ω = (ω1, ω2) indicates a generic element in �T and Pt (·) ∈ Pt (·), for t ∈
{0, 1}. Alternatively stated, every P ∈ P is of the type

P = P0 ⊗ P1, (11)

for some P0(·) ∈ P0(·) and P1(·) ∈ P1(·).
Given a FT -measurable function ξ and a prior P ∈ P , it holds that

EP [ξ |F1] =
n∑

i=1

E
[
ξ1Ai

]

P(Ai )
1Ai . (12)

Every term on the right side of (12) can be further rewritten as

E[ξ1Ai ]
P(Ai )

=
∫
�

∫
�
1Ai (ω1, ω2)ξ(ω1, ω2)P1(ω1; dω2)P0(dω1)∫
�

∫
�
1Ai (ω1, ω2)P1(ω1; dω2)P0(dω1)

=
∫
�

∫
�
1Ai (ω1)ξ(ω1, ω2)P1(ω1; dω2)P0(dω1)∫
�

∫
�
1Ai (ω1)P1(ω1; dω2)P0(dω1)

(13)

=
∫
Ai

∫
�

ξ(ω1, ω2)P1(ω1; dω2)P0(dω1)
∫
Ai
P0(dω1)

=
∫
Ai

ξP1(ω1)P0(dω1)
∫
Ai
P0(dω1)

,

(14)

where ξP1(ω1) := ∫
�

ξ(ω1, ω2)P1(ω1; dω2). As ξP1(ω1) is constant on Ai , we denote

for simplicity ξP1(ω1) = ξ
Ai
P1

for ω1 ∈ Ai . It follows from (14) that

E[ξ1Ai ]
P(Ai )

= ξ
Ai
P1

∫
Ai
P0(dω1)

∫
Ai
P0(dω1)

= ξ
Ai
P1

,

from which EP[ξ |F1] = ∑n
i=1 ξ

Ai
P1
1Ai . Because of (11), a probability P′ ∈ P can be

written as P′ = P
′
0 ⊗ P

′
1. This implies that, in order to have P′ ∈ P(1,P), we must

enforce a constraint for the component P′
0, while P

′
1 is arbitrary. The same argument

holds for P̄ ∈ Peq(1,P). Hence it follows that

ess sup
P′∈P(1,P)

EP′ [ξ |F1] = ess sup
P̄∈Peq(1,P)

E
P̄
[ξ |F1] P − a.s.

for all P ∈ P .

Finally we define the filtrations G = (Gt )0≤t≤T , where

Gt := F∗
t ∨ NP

and G+, the smallest right-continuous filtration that contains G.
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Bubbles under uncertainty

Here, we begin our study of financial bubbles under model uncertainty.In order to be
consistent with the classical literature, we consider a discounted risky asset given by
a non-negative, Rd -valued, F∗-adapted, and P-q.s. continuous process S = (St )t≥0.
Let τ > 0 q.s. be a stopping time describing the maturity of the risky asset and Xτ

be the final payoff or liquidation value at time τ . The bank account S0 is assumed to
be constant and equal to 1. The wealth process W = (Wt )t≥0 generated from owning
the asset is given by

Wt := St1{τ>t} + Xτ1{τ≤t},

see also Jarrow et al. (2007).
In the standard literature on bubbles it is usually assumed that the No Free Lunch

With Vanishing Risk condition (NFLVR) holds. When working in the context of
multiple priors models the situation becomes more involved. In fact, there does
not yet exist a robust counterpart to NFLVR. There is actually just one well stud-
ied concept of arbitrage (arbitrage of the first kind (NA1)) in the continuous time
setting under uncertainty introduced in Biagini et al. (2017). However in Biagini
et al. (2017), the existence of absolutely continuous martingale measures requires
introducing a stopping time ζ that causes a jump to a cemetery state, which is
invisible under all P ∈ P but may be finite under some Q ∈ Q, where Q is
an appropriate set of local martingale measures. Therefore, despite the possibility
to start with a family P of physical measures, the results of Biagini et al. (2017)
require to reserve some particular care to the tractability of ζ . This is one of the
reasons why, while working in the setting outlined, we assume the following for
simplicity.

Assumption 2 We consider a family P of probability measures, possibly non
dominated, satisfying Assumption 1 and such that the wealth process is a Q-local
martingale for every Q ∈ P . Thus, the set P is made of local martingale measures,
enforcing NFLVR under all Q-market.

By doing this we guarantee at the same time that W is justified by no arbitrage
arguments under all probability scenarios.

In order to have a better understanding of what should be the right notion of asset
fundamental value under model uncertainty, we first present a short survey on how
this concept is modeled in the classical literature of financial bubbles.

For simplicity, we will start by considering a finite time horizon. Let then T ∈ R+
be such that τ ≤ T . We note that in this case, Wt = St for every t ∈ [0, T ], if
Xτ = Sτ , which will be assumed throughout this section. Moreover, we assume ST to
be measurable with respect to the Borel σ -field on �T , in order to be able to compute
its conditional sublinear expectation.

Finally we conclude by providing some definitions by following Nutz (2015).
We denote with L(S,P) the set of all Rd -valued, G-predictable processes
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H = (Ht )t∈[0,T ] such that the stochastic integral process
(∫ t

0 HsdSs
)

t∈[0,T ] is

well-defined2 for all P ∈ P .

Definition 3 (see Nutz (2015), Section 3.2) We say that a G-predictable process

H ∈ L(S,P) is admissible if
(∫ t

0 HsdSs
)

t∈[0,T ] is a P-supermartingale for every

P ∈ P . We denote by H the set of all admissible processes.

Classical setting for bubble modeling

In the classical setting the elements of P are assumed to be all equivalent to a
probability measure P, i.e., P = Mloc(S), where Mloc(S) denotes the set of the
equivalent local martingale measures for S. Under this assumption there are two main
approaches for defining the fundamental value of a financial asset. In the setting of
Biagini et al. (2014); Jarrow et al. (2007), and Jarrow et al. (2010), the fundamental
value is defined as the asset’s discounted future payoffs under a risk neutral measure.

This means that if Q ∈ Mloc(S), the fundamental value S∗,Q =
(
S∗,Q
t

)

t∈[0,T ] under

Q is given by

S∗,Q
t = EQ[ST |Ft ]

for every t ∈ [0, T ], where T is a fixed finite time horizon. For any Q ∈ Mloc(S) the
non-negative process

βt := St − S∗,Q
t

is called the Q-bubble. The concept of bubble depends on the following distinction

Mloc(S) = MU I (S) ∪ MNU I (S),

where MU I (S) is the class of measures Q ≈ P such that S is a uniformly integrable
martingale under Q and MNU I (S) = Mloc(S) \ MU I (S).

The market bubbliness thus is built upon the investor’s views: if she acts accord-
ingly to a Q ∈ MU I (W ), then she would see no bubble; on the contrary, if
Q ∈ MNU I (W ) is perceived to be the right market view, then there would be an
asset bubble. In this sense, the concept of bubble is dynamic: bubbles are born or
burst depending on how the investor changes her perspectives on the market.

If the market is complete the situation simplifies. As Mloc(S) is made of a unique
element (and it must exist if the usual NFLVR condition holds), either there is a bub-
ble from the beginning or there is no bubble at all. This result agrees with the second
main approach to financial bubbles (see Herdegen and Schweizer (2016) and the ref-
erences therein), in which the fundamental value coincides with the superreplication

2
∫ t

0 HsdSs denotes the usual stochastic (Itô) integral under the probability P. Note that this definition
avoids aggregation issues since the property must hold for each P.
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price. Denoting by L
0+(Ft ) the set of Ft -measurable random variables taking P-a.s.

values in [0, ∞), the superreplication price is given by

πt (S) := ess inf

{
v ∈ L

0+(Ft ) : ∃ θ ∈ � with v +
∫ T

t
θudSu ≥ ST P − a.s.

}

(15)
for t ∈ [0, T ] and � denoting the class of F-predictable and S-integrable processes.
Given the duality (see Kramkov 1996)

πt (S) = ess sup
Q∈Mloc(S)

EQ[ST |Ft ], (16)

where the essential supremum of the family of random variables EQ[ST |Ft ], Q ∈
Mloc(S), is taken under P, if there exists a bubble in a complete market, then the
superreplication price must be lower than the actual price of the asset observed in the
market.

Differences between the two approaches emerge in the context of incomplete mar-
kets. Given the superreplication duality (16), as soon as MU I (S) �= ∅, then there is
no bubble. The concepts of bubble itself and bubble birth change. It might be that the
superreplication price and the market price are equal at t = 0, but they may differ at
a later time t > 0 (see Example 3.7 in Herdegen and Schweizer (2016)): at time t is
the bubble is born. Here the “bubble misprice” on an asset is given by the fact that
we can get the same wealth at the end, but by exploiting an investment strategy with
a lower initial price. Still, we cannot profit from this opportunity because its gener-
ating strategy is not admissible: we need to go short on the asset and long on the
superreplicating strategy to generate a sure profit at terminal time but by doing this
we also face the risk of unbounded losses in (0, T ). In this setting, if a bubble exists
then it is perceived by any investor, independently from the particular choice of the
pricing measure Q ∈ Mloc(S).

Finally, we present an interesting result that links the two settings described above.
We prove that if there is no Q ∈ Mloc(S) that excludes the presence of a bubble in
the sense of Biagini et al. (2014) or Jarrow et al. (2010), then there is also a bubble
in the case when fundamental values are given by superreplication prices.

Proposition 2 Let S = (St )t∈[0,T ] be a continuous, non-negative, adapted process
in a filtered probability space (�,F,F,P), where the filtration F = (Ft )t∈[0,T ]
satisfies the usual conditions. If Mloc(S) = MNU I (S), then there is a t ∈ [0, T )

such that with positive probability

St > ess sup
Q∈Mloc(S)

EQ[ST |Ft ].

Proof We argue by contradiction. If we suppose that

St = ess sup
Q∈Mloc(S)

EQ[ST |Ft ]
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for every t ∈ [0, T ], the process π(S) defined in (16) is a Q-local martingale for each
Q ∈ Mloc(S). This implies, according to Theorem 3.1 in Kramkov (1996), that the
minimal superreplicating portfolio V = (Vt )t∈[0,T ], where

Vt = sup
Q∈Mloc(S)

EQ[ST ] +
∫ t

0
HsdSs

and H is a predictable, S-integrable process, is non-negative, and self-financing and
thus that there exists Q̄ ∈ Mloc(S) ∩ MU I (S) (see Kramkov 1996, Section 3.2),
contradicting the hypothesis.

Remark 1 It is also possible to obtain the same result when, instead of consider-
ing Mloc(S), we look at

P = {Q ∈ P(�) | Q � P, S is a Q-local martingale}. (17)

In this context, ifP is m-stable3, it is possible to define the asset fundamental value as

S∗
t = ess sup

Q∈P
EQ[ST |Ft ],

for any t ∈ [0, T ] (for this result we refer to Delbaen (2006)). As the measures in P
which are equivalent to P are dense in P (see again Delbaen (2006)), it holds

S∗
t = ess sup

Q∈P
EQ[ST |Ft ] = ess sup

Q∈Mloc(S)

EQ[ST |Ft ],

so that Proposition 2 also applies in this case.

Robust fundamental value

We start this section with a discussion on suitable requirements for defining a bubble
under uncertainty. We note that when P = Mloc(S), the model should collapse into
one of the two approaches mentioned in the previous section. This already tells us
that the fundamental value under uncertainty should be defined in terms of some
conditional expectation.

A first attempt would be to define the existence of an asset bubble when there
exists a Q-bubble for at least one Q ∈ P in the classical sense of “Classical setting
for bubble modeling” section. However, this would imply that any classical bubble
will turn into a bubble under uncertainty. To overcome this problem, it is crucial to
introduce a meaningful concept for the fundamental value S∗ = (S∗

t )t∈[0,T ] under
uncertainty. We could set

S∗
t = EQ[ST |Ft ] Q − a.s. (18)

3P defined in (17) is m-stable if for elements Q0 ∈ P , Q ∈ P such that Q ∼ P, with associate martingales

Z0
t = E

[
dQ0

dP |Ft

]
and Zt = E

[
dQ
dP |Ft

]
, and for each stopping time τ , the element L defined as Lt = Z0

t

for t ≤ τ and Lt = Z0
T Zt/ZT for t ≥ τ is a martingale that defines an element in P . We also assume that

every F0-measurable non-negative function Z0 such that EP[Z0] = 1, defines an element dQ = Z0dP
that is in P .
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for each Q ∈ P . In this way we would be consistent with the existing literature
and recover the traditional setup of Jarrow et al. (2010) when P consists of only
one probability measure. This class of Q-fundamental values cannot eventually be
aggregated (this is already the case with the G-setting, see Soner et al. 2011a). In this
setting, we could define a bubble as the situation in which

Q(S∗
t < St ) > 0

for each Q ∈ P and some t > 0. Alternatively stated, we would say that the asset S is
a P-bubble if it is a Q-bubble for every Q ∈ P . However, this seems to be too strong
of a requirement.

There is also a deeper issue, which is peculiar to the nature of our framework. In
a market model that is intrinsically incomplete, it is not immediate to transpose the
concept of “risk neutral expectation of future discounted payoffs” from the classical
setting to the modeling under uncertainty, because of the absence of a linear pricing
system. We refer to Beissner (2012) for a discussion on linear pricing systems and
the fundamental theorem in the context of uncertain volatility. For a thorough analy-
sis on the foundations of financial economics under Knightian Uncertainty, see also
Burzoni et al. (2017). The first naive definition of fundamental value under uncer-
tainty that we propose above is actually linked to this notion, as it coincides with the
approach of Jarrow et al. (2010) when P reduces to a singleton.

Definition 4 We call robust fundamental value the process S∗ = (S∗
t )t∈[0,T ],

where

S∗
t = ess sup

Q′∈P(t,Q)

EQ′ [ST |Ft ], Q − a.s. (19)

for every Q ∈ P , with P(t,Q) = {Q′ ∈ P : Q
′ = Q on Ft }.

Theorem 1, Proposition 1, and Theorem 4 play a fundamental role in our specifi-
cation of the robust fundamental value. Definition 4 is motivated by the intuition that
in presence of uncertainty we should consider a maximal fundamental value, taking
in account of each fundamental value under the different priors. This can be only
achieved if aggregation of the conditional expectations is possible, which is guaran-
teed by the results of Theorem 1. Furthermore, Theorem 1 ensures that the resulting
robust fundamental value is sub-linear, which extends the classical concept of linear
pricing operator. This sublinearity property plays a fundamental role in allowing an
arbitrage-free setting, see again Beissner (2012) and Burzoni et al. (2017). We then
obtain by Proposition 1 that the aggregation can be done on the set of priors having
the same family of null sets up to time t, i.e. sharing the same view on the “impossi-
ble” events up to time t. This result extends Theorem 1, where aggregation is done on
the set of probability measures coinciding up to time t, i.e. exactly sharing the same
view on all measurable sets up to time t. A financial interpretation and a link to the
classical literature on bubble is then provided by Theorem 4, which shows when S∗
coincides with the superreplication value.

This is the case in the G-expectation framework. The same holds true for S∗
0 or

when the sublinear operator is right-continuous, see for example Theorem 8, if the
family P is saturated.
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Definition 5 (see Nutz 2015, Section 2) A setP of probability measures on (�,F)

is called saturated if the following condition is satisfied: for all P ∈ P , if Q is a
sigma-martingale measure for S equivalent to P, then Q ∈ P .

If the family P is saturated, we have that by Theorem 3.2 in Nutz (2015)

S∗
0 = inf

{
x ∈ R : ∃ H ∈ H with x +

∫ T

0
HsdSs ≥ ST Q − a.s. for all Q ∈ P

}
,

see also Appendix for further details. In this way our approach extends in a natural
way the setting of Herdegen and Schweizer (2016) to the case of mutually singular
priors.

Furthermore we also have a strong link to the literature in the classical case, as we
show in the following proposition.

Proposition 3 Let P = Mloc(S), then the robust fundamental value (19)
coincides with the classical superreplication price, i.e.,

ess sup
Q∈Mloc(S)

EQ[ST |Ft ] = ess sup
Q′∈Mloc(S,t,Q)

EQ′ [ST |Ft ] q.s., (20)

where Mloc(S, t,Q) := {Q′ ∈ Mloc(S) | Q′ = Q on Ft }.

Proof We prove that

ess sup
Q∈Mloc(S,t,Q1)

EQ[ST |Ft ] = ess sup
Q′∈Mloc(S,t,Q2)

EQ′ [ST |Ft ] q.s. (21)

for every Q
1,Q2 ∈ Mloc(S) by a measure pasting argument similar to Proposition

9.1 in Delbaen (2006). This suffices to conclude as

ess sup
Q∈Mloc(S)

EQ[ST |Ft ] ≥ ess sup
Q′∈Mloc(S,t,Q)

EQ′ [ST |Ft ],

but (21) also guarantees

ess sup
Q∈Mloc(S)

EQ[ST |Ft ] ≤ ess sup
Q∈Mloc(S)

{

ess sup
Q′∈P(t,Q)

EQ′ [ST |Ft ]
}

= ess sup
Q′∈Mloc(S,t,Q)

EQ′ [ST |Ft ].

Assume Q2 ∈ Mloc(S) \Mloc(t,Q1), otherwise the claim is trivial. We note that

dQ

dP

∣
∣
∣∣Ft = dQi

dP

∣
∣
∣∣
Ft

:= Zi
t ,

for every Q ∈ Mloc
(
S, t,Qi

)
, i = 1, 2. This is clear as, for every A ∈ Ft , it must

hold

EP[Zi
t 1A] = EQi [1A] = Q

i (A) = Q(A) = EQ[1A] = EP

[
dQ

dP

∣
∣∣
∣
Ft

1A

]

.
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Now, define

Zs := Z1
s 1{s≤t} + Z1

t
Z2
s

Z2
t
1{t<s},

which is the Radon-Nykodim derivative of an ELMM, as proven in Proposition
9.1 in Delbaen (2006). The measure Q

′ associated to (Zs)s∈[0,T ] thus belongs to
Mloc(S, t,Q1) and satisfies

EQ′ [ST |Ft ] = EP[ST ZT |Ft ]
Zt

=
EP

[
ST Z1

t
Z2
T

Z2
t

∣∣
∣
∣Ft

]

Z1
t

= EP

[
ST Z2

T

∣∣Ft
]

Z2
t

= EQ2[ST |Ft ].

This shows that for every Q ∈ Mloc
(
S, t,Q2

)
there exists a Q′ ∈ Mloc

(
S, t,Q1

)

such that EQ′ [ST |Ft ] = EQ[ST |Ft ]. This is enough to establish (21).

Remark 2 Note that in Proposition 3 we can consider quasi-sure equalities as
P = Mloc(S).

We now introduce the notion of bubble in this setting.

Definition 6 The asset price bubble β = (βt )t∈[0,T ] for S is given by

βt := St − S∗
t , (22)

where S∗ is defined in (19).

It then follows that the asset price bubble is different from zero if there exists a
stopping time τ such that

Q(Sτ > S∗
τ ) > 0

for a Q ∈ P . It is not necessary to have a bubble under all scenarios to have a bub-
ble under uncertainty. The parallel with the notion of robust arbitrage now becomes
evident. As S is a non-negative Q-local martingale, hence a Q-supermartingale, we
have

St ≥ S∗
t , Q − a.s.

for every t ∈ [0, T ] and Q ∈ P . There is now a bubble in the market at a stopping
time τ if there exists a scenario (a probability measure Q̄ ∈ P) such that the robust
fundamental value is smaller than the market value with positive probability and
all probabilities that coincide with Q̄ on Fτ agree on this view. In the case of no
duality gap, our definition of bubble extends the approach where fundamental prices
are given by superreplication prices as in Herdegen and Schweizer (2016) to the
framework under uncertainty.

Saturation, as from Definition 5, however, is a condition that we do not enforce on
our model, but which is automatically satisfied if every Q-market is complete. In all
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other cases the occurrence of a bubble may be caused either by a difference between
the market price and the superreplication price or by a duality gap in

sup
Q∈P

EQ[ST ] ≤ inf{x ∈ R : ∃ H ∈ H with x +
∫ T

0
HsdSs ≥ ST Q − a.s. for all Q ∈ P}.

This second situation is precisely the one considered in Cox et al. (2016) in order
to detect a bubble. This means that S∗ can always be viewed at least as the worst
model price, among the models considered by the investor.

Properties and examples

Lemma 1 The bubble β is a non-negativeQ-local submartingale for everyQ ∈ P ,
such that βT = 0 q.s. Moreover, if there exists a bubble, S is not a P-martingale.

Proof This immediately follows from Definition 4, as β is the difference between
a Q-local martingale and a Q-supermartingale.

The local submartingale characterization is not at all a contradiction as it may seem
at first sight. In fact, as opposed to non-negative local supermartingales, non-negative
local submartingales do not have to be true submartingales. There are a variety of
examples of local submartingales with nonstandard behavior, such as decreasing
mean, as shown in Elworthy et al. (1999) and Pal and Protter (2010). To mention
a clear example, it suffices to consider the class of non-negative local martingales:
such processes are non-negative local submartingale and also supermartingales.

We present an example of a bubble by adapting one result of Cox and Hobson
(2005) to the context of G-expectation.

Remark 3 We highlight that in Example 2, 3, and 4 the asset price S is a Q-

local martingale for every Q ∈ P under the completed filtration F
Q =

{
FQ

t

}

t≥0
.

However, being a non-negative process adapted to F
∗ ⊆ F

Q, S is also a Q-local
martingale with respect to the filtration F

∗, thanks to a result from (Stricker 1977)
that we report in the formulation of Theorem 10 from Föllmer and Protter (2011).

Theorem 2 Let X be a non-negative local martingale for G and assume that X is
adapted to the subfiltration F ⊆ G. Then, X is also a local martingale for F.

Example 2 Let P = PD as in Proposition 7, where D = [σ 2, σ 2] ⊂ R+ \ {0}. Let
S0 = s > 0 and

St = s +
∫ t

0

Su√
T − u

dBu, t ∈ [0, T ). (23)

The process in (23) is well defined for any t ∈ [0, T −ε], for ε > 0, as a consequence
of the results of Luo and Wang (2014). We show that S is a price process with a
bubble by showing that S is a non-negativeQ-local martingale for everyQ ∈ P , with
terminal value equal to zero. To this purpose, let us fix a prior Q. We have that

St = se
∫ t

0 ϕsdBs− 1
2

∫ t
0 ϕsd〈B〉s , t ∈ [0, T ).
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The stochastic integral
∫ ·

0 1/
√
T − sdBs is a Q-local martingale on [0, T ), such

that the quadratic covariation is
[∫ ·

0
1/

√
T − sdBs,

∫ ·

0
1/

√
T − sdBs

]

u
≥ −σ 2 ln

[
1 − u

T

]
,

and continuous on [0, T ). Using the same argument as in Lemma 5 from Jarrow et al.
(2007), which exploits the Dubins-Schwarz theorem together with the law of the
iterated logarithm, we can argue that

lim
u→T

Su = 0 Q − a.s. (24)

Hence, we set ST = 0 so that S is q.s. continuous on [0, T ]. This follows as
the set {ω ∈ � : limu→T Su �= 0} is polar: the existence of Q ∈ P such that
Q(limu→T Su �= 0) > 0 is in fact in contradiction with (24). Hence, S is not a Q-
martingale for any Q ∈ P as EQ[ST ] = 0 < EQ[S0], and in particular it is not a
robust martingale.

Another example comes from adapting the concept of the Bessel process to the
context of model uncertainty.

Example 3 We consider P = PD, where D ⊂ R3×3 consists of the matrices
(ai, j )i, j=1,2,3 such that ai, j = 0 for all i �= j , a1,1 = a2,2 = a3,3 ∈ [1, 2] in order to
fix some values.

Let B = (Bt )t∈[0,T ] = (
B1
t , B

2
t , B

3
t

)
t∈[0,T ]. We consider the process given by

f (B) = ( f (Bt ))t∈[0,T ], where B0 = (1, 0, 0) and f (x) = ‖x‖−1. As f is Borel-
measurable, we can compute the sublinear expectation E0( f (Bt )) for any t ∈ [0, T ],
according to Theorem 1. It is a well known result that f (B) is a strict Q-local mar-
tingale for all Q ∈ PD (see for example Revuz and Yor 1999, Exercise XI.1.16). To
prove that the price process has a bubble, it suffices to show that f (B) is not a PD-
martingale. This can be done using an argument from Föllmer and Protter (2011),
where the inverse three-dimensional Bessel process is projected on the filtration gen-
erated by the first component of the Brownian motion. Theorem 14 from Föllmer and
Protter (2011) in particular proves that

EP

[
1

‖Bt‖
]

= 2�

(
1√
t

)
− 1, (25)

where � is the cumulative distribution function of a standard normal random vari-
able. Using the invariance by rotation of the Brownian motion it is possible to show
that, for Wσ = σB where σ ∈ R and W now issued at a generic point x ∈ R3, the
equality (25) generalizes to

EP

[
1

‖Wσ
t ‖

]
= 1

‖x‖
(

2�

( ‖x‖
σ
√
t

)
− 1

)
. (26)

Let us now consider a prior Q ∈ PD and a sequence Bn of processes such that

EQ

[
‖BT − Bn

T ‖2
2

]
−→ 0, for n −→ ∞, (27)
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and Bn
ti − Bn

ti−1
∼ N

(
0, (ti − ti−1)σ

2
ti−1

)
, where ti = T i

n and σ ti−1 is a D-valued,
Fti−1-measurable function. We can now compute

EQ

[
1

‖Bn
T ‖

]
= EQ

[
EQ

[
1

‖Bn
T ‖

∣
∣
∣Ftn−1

]]
=EQ

[

EQ

[
1

‖Bn
T − Bn

tn−1
+ Bn

tn−1
‖
∣
∣
∣Ftn−1

]]

= EQ

[
1

‖Bn
tn−1

‖
(

2�

( ‖Bn
tn−1

‖
[σ tn−1]11

√
tn − tn−1

)
− 1

)]

≤ EQ

[
1

‖Bn
tn−1

‖
(

2�

( ‖Bn
tn−1

‖√
tn − tn−1

)
− 1

)]

= EQ

[

EQ

[
1

‖B̃n
T ‖

∣∣
∣Ftn−1

]]

= EQ

[
1

‖B̃n
T ‖

]

,

where [σ tn−1]11 stands for the first entry of the diagonal matrix σ tn−1 whose elements
different from zero are all equal and B̃n is the process where σ tn−1 is replaced by the
identity matrix in R3×3. We can iterate the previous computation by noting that

EQ

[
1

‖Bn
T ‖

]
≤ EQ

[
1

‖B̃n
T ‖

]

= EQ

[

EQ

[
1

‖B̃n
T ‖

∣∣
∣Ftn−2

]]

= EQ

[

EQ

[
1

‖Bn−1
T + (

BT − Btn−1

) − Bn−2
T + Bn−2

T ‖
∣
∣∣Ftn−2

]]

= EQ

[
1

‖Bn
tn−2

‖
(

2�

( ‖Bn
tn−2

‖
[σ tn−2 ]11

√
tn−1 − tn−2 + √

tn − tn−1

)
− 1

)]

≤ EQ

[
1

‖Bn
tn−2

‖
(

2�

( ‖Bn
tn−2

‖√
tn − tn−1 + √

tn−1 − tn−2

)
− 1

)]

.

After n iterations we finally obtain

EQ

[
1

‖Bn
T ‖

]
≤ 2�

(
1

∑n
i=1

√
ti − ti−1

)
−1 = 2�

(
1√
nT

)
−1 −→ 0 for n → ∞.

(28)
We can use this result to show that

sup
Q∈PD

EQ

[
1

‖BT ‖
]

< sup
Q∈PD

EQ

[
1

‖B0‖
]

= 1 (29)

thus proving that f (B) is not a robust martingale. If we denote with ( f m)m∈N
a sequence of bounded and continuous functions converging increasingly to f, the
convergence (27) ensures that

EQ

[
1

f m(Bn
T )

]
−→ EQ

[
1

f m(BT )

]
for n → ∞.
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On the other hand, as f dominates f m and because of (28), EQ

[
1

f m (BT )

]
< c, with

0 < c < 1, for m big enough. It is then possible to use monotone convergence to
prove

EQ

[
1

f m(BT )

]
−→ EQ

[
1

‖BT ‖
]

< c for m → ∞.

As this holds for every Q ∈ PD, we obtain (29).

In both Example 2 and 3, the risky asset is a strict Q-local martingale for every
Q ∈ P . This means that the bubble in those cases is perceived under all priors which
are possible in the model.

By slightly modifying the framework of Example 3, we are able to obtain a bubble
that is a Q̄-martingale for a particular Q̄ ∈ P . Thus, despite the existence of a bubble,
an investor endowed only with the prior Q̄ would not detect it. This is one of the main
novelties of our model: when a bubble arises it will be identified by an agent whose
significative sets are those with positive probability under any Q ∈ P; alternatively
stated, this agent considers negligible only the polar sets, i.e., those A ∈ F such that
Q(A) = 0 for all Q ∈ P . However, an investor affected by less uncertainty, who
neglects only the Q̄-null sets, will not spot the bubble.

Example 4 We consider P = PD as in Example 3, but now we choose D in a way
to allow for a degenerate case, where there exists Q̄ ∈ P such that the canonical
process is constantly equal to its initial value. We do this by considering the same
setup as in Example 3, but choosing a1,1 = a2,2 = a3,3 ∈ [0, 2]. Exactly as in
Example 3, f (B) is a Q-local martingale for every Q ∈ P . However, under the
“degenerate prior” Q̄, associated to a volatility constantly equal to 0, every process
turns deterministic. This implies in particular that f (Bt ) = f (B0) = 1 Q̄-a.s. for
every t ∈ [0, T ], which in turn ensures that f (B) is a true Q̄-martingale, while being
a strict Q-local martingale for all Q ∈ P \ {Q̄}.

The examples regarding financial bubbles are usually obtained by showing spe-
cific asset dynamics with strict local martingale behavior. We give here an example of
a bubble in uncertainty setting by focusing our attention on the choice of probability
measures considered in the uncertainty framework.

Example 5 We adopt here the financial model introduced in Nutz and
Soner (2012). The major difference with respect to the setting presented in
“The setting” section is that we consider the set PS of laws

Q
α := Q0 ◦ (Xα)−1, where Xα

t :=
∫ t

0
α

1/2
s dBs, t ∈ [0, T ]. (30)

In (30), Q0 denotes the Wiener measure, while α ranges over all the F-
progressively measurable processes with values in S

+
d satisfying

∫ T
0 |αs |ds < ∞

Q0-a.s. Here S
+
d ⊂ Rd×d represents the set of all strictly positive definite matrices

and the stochastic integral in (30) is the Itô integral under Q0. The set P is asked to
be stable under pasting, according to the following definition.
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Definition 7 The set P is stable under F-pasting if for allQ ∈ P , σ stopping time
taking finitely many values, � ∈ Fσ and Q1,Q2 ∈ P(σ,Q), the measure Q̄ defined
by

Q̄(A) := EQ [Q1(A|Fσ )1� + Q2(A|Fσ )1�c ] , A ∈ FT (31)

is again an element of P .

Otherwise we leave all the other definitions stated in the preceding sections
unchanged. Consider a risky asset S such that there exists a Q

α̃ ∈ PS for which the
asset is a strict Qα̃-local martingale. For example, we can take S to be the process
described in Example 2. We then study how a bubble is generated in this model. To
this purpose we consider a subset P ⊆ PS given by those Qα ∈ PS for which

αs = α̃s for s ∈ (t, T ] Q0 − a.s.

for some t ∈ (0, T ). With such requirement, the set P is stable under pasting, accord-
ing to Definition 7, thanks to the same proof of Lemma 3.3 in Nutz and Soner (2012).
In other words, we are considering a subset of PS where there is no uncertainty after
time t, and where the volatility on (t, T ] implies a strict local martingale behavior
under at least one prior. It follows that, for every s > t ,

ess sup
Q∈P(s,Qα̃ )

EQ[ST |Fs] = E
Qα̃ [ST |Fs] < Ss,

thus implying the presence of a bubble.

We now investigate another interesting relation between robust and classical
bubbles. The arguments in “Robust fundamental value” section clarified that the
existence of Q ∈ P and t ∈ [0, T ) such that

St > ess sup
Q′∈P(t,Q)

EQ′ [ST |Ft ]

implies the presence of a bubble in the classical sense for all the Q
′-markets with

Q
′ ∈ P(t,Q). This is evident for at least two situations: when every Q-market admits

a unique ELMM or when fundamental prices are described as the expected value of
future discounted payoffs. However, we now show that the reverse is not true, i.e., the
presence of a bubble with respect to some Q ∈ P does not determine the existence of
a bubble under uncertainty. We do that by showing that set of priors Q ∈ P for which
S is a strict local martingale cannot be a singleton. To show this result we consider
the setting outlined in Example 5. This choice allows at the same time to ease the
computations as well as to infer some conclusions about the framework outlined in
“The setting” section, as both models can describe the G-setting.

Proposition 4 Consider the financial model introduced in Example 5. If Q̄ is the
pasting ofQ,Q1, andQ2 at the stopping time σ and � ∈ Fσ , as in (31), it holds that

E
Q̄
[Y |Fτ ] = EQ

[
EQ1[Y1�|Fσ ]|Fτ

] + EQ

[
EQ2[Y1�c |Fσ ]|Fτ

]
(32)

for any positive FT -measurable random variable Y and stopping time τ such that
τ(ω) ≤ σ(ω) for every ω ∈ �.
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Proof We follow a procedure similar to Lemma 6.40 in Föllmer and Schied (2011)
to prove (32). Let τ be a stopping time and Y a positive FT -measurable random
variable. By (31) we have that

E
Q̄
[Y ] = EQ

[
EQ1[Y |Fσ ]1� + EQ2[Y |Fσ ]1�c

]
,

so that, for every positive Fτ -measurable random variable ϕ, we can study the value
of

E
Q̄
[Yϕ1{τ≤σ }]. (33)

The expectation in (33) can then be written as

E
Q̄
[Yϕ1{τ≤σ }] = EQ

[
EQ1 [Yϕ1{τ≤σ }|Fσ ]1� + EQ2 [Yϕ1{τ≤σ }|Fσ ]1�c

]

= EQ

[
EQ1 [Yϕ1{τ≤σ }1�|Fσ ] + EQ2 [Yϕ1{τ≤σ }1�c |Fσ ]]

= EQ

[
EQ

[
EQ1 [Y1�|Fσ ]|Fτ

]
ϕ1{τ≤σ } + EQ

[
EQ2 [Y1�c |Fσ ]|Fτ

]
ϕ1{τ≤σ }

]

= E
Q̄

[
EQ

[
EQ1 [Y1�|Fσ ]|Fτ

]
ϕ1{τ≤σ } + EQ

[
EQ2 [Y1�c |Fσ ]|Fτ

]
ϕ1{τ≤σ }

]

= E
Q̄

[(
EQ

[
EQ1 [Y1�|Fσ ]|Fτ

] + EQ

[
EQ2 [Y1�c |Fσ ]|Fτ

])
ϕ1{τ≤σ }

]
.

(34)
Hence, we can conclude that if τ ≤ σ the equality (32) holds.

No dominance

In this section, we investigate the implications of no dominance in our market model.
This as a concept first appeared in Merton (1973). It is natural to transpose this
concept to our setting with uncertainty, as we do in the following definition.

Definition 8 Consider a market model under a set of priors P . The i-th security
Si is undominated on [0, T ] if there is no admissible strategy H ∈ H such that

Si0 +
∫ T

0
HsdSs ≥ SiT P − q.s.

and there exists a Q ∈ P such that

Q

(
Si0 +

∫ T

0
HsdSs > SiT

)
> 0.

A market satisfies robust no dominance (RND) on [0, T ] if each Si , i ∈ {1, . . . , d},
is undominated on [0, T ].

Definition 8 coincides with Definition 2 of Jarrow and Larsson (2012) for the
classical situation in which a unique prior Q exists.

Remark 4 It is important to note that, as in the classical case, if Si is undominated
on [0, T ], it also undominated on [0, T ′], for T ′ < T . Let Hi be given by

Hi = (0, . . . , 0, 1, 0, . . . , 0),
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with 1 in position i. The trading strategy Hi is admissible, being Si a Q-local mar-
tingale for every Q ∈ P . If there would be a dominating strategy H on [0, T ′], by
applying the strategy K = H1{t≤T ′} + Hi1{t>T ′}, we would obtain

Si0 +
∫ T

0
KsdSs = SiT + Si0 +

∫ T ′

0
HsdSs − SiT ′ ≥ SiT q.s.,

together with the existence of a Q ∈ P such that

Q

(
Si0 +

∫ T

0
KsdSs > SiT

)
> 0.

The ND assumption plays a key role in the classical literature on bubbles. We just
mention two results by recalling that, if enforced, this concept rules out bubbles in the
complete market models described by Jarrow et al. (2007); moreover, ND is precisely
the ingredient needed to exclude bubbles in the setting of Herdegen and Schweizer
(2016), where fundamental values are modeled with superreplication prices. Similar
results can also be obtained in the present framework.

Lemma 2 Suppose that for eachQ ∈ P theQ-market model is complete. If robust
no dominance holds, then there exists no bubble.

Proof Observe that, if each Q-market is complete, the results of Nutz (2015)
guarantee the duality

sup
Q∈P

EQ[ST ] = inf{x ∈ R : ∃ H ∈ H with x +
∫ T

0
HsdSs ≥ ST Q − a.s. for all Q ∈ P}.

(35)
In the presence of a bubble, the superreplicating strategy would then dominate S, in
contradiction with RND.

Hence, in the general case, under RND any bubble would be the result of a duality
gap in (35), which is the case considered in Cox et al. (2016).

We remark how in general RND does not imply NFLVR for every Q-market, Q ∈
P . It is in fact well known that ND is stronger than NFLVR in the single prior setting,
but it is a priori not necessary that RND implies ND for every Q-market.

Infinite time horizon

Here we study the case of an infinite time horizon. This is done for the sake of
completeness, since we prove that in this context bubbles under uncertainty can be
robust martingales. Let τ > 0 q.s. be a stopping time describing the maturity of the
risky asset. To reflect the impossibility for the investor to consume the final payoff
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of S in the case {τ = ∞}, we generalize the definition of robust fundamental value
established in (19) by setting

S∗
t =

(

ess sup
Q′∈P(t,Q)

EQ′ [Sτ1{τ<∞}|Ft ]
)

1{t<τ }, Q − a.s. (36)

for every t ≥ 0 and Q ∈ P . The fundamental value (36) includes the finite time
horizon case (19) and is well defined, as shown in the following proposition.

Proposition 5 The fundamental value (36) is well defined. In addition, St∧τ

converges to Sτ q.s. for t → ∞.

Proof Fixed Q ∈ P , we know that Wt := St∧τ , t ≥ 0, is a Q-supermartingale,
which then converges Q-a.s. to Sτ for t → ∞, because of the classical supermartin-
gale convergence theorem (see Dellacherie et al. 1982, V.28 and VI.6). Therefore,
St∧τ → Sτ q.s., thanks to the same argument used in Example 2, and Sτ is Borel mea-
surable. Hence, Sτ1{τ<∞} is a Borel measurable random variable and we can compute
its sublinear conditional expectation. Moreover, as W is a robust supermartingale, by
Fatou’s Lemma we obtain

E0(Sτ ) = E0

(
lim inf
t→∞ St∧τ

)

= sup
Q∈P

EQ

(
lim inf
t→∞ St∧τ

)
≤ sup

Q∈P
lim inf
t→∞ EQ (St∧τ )

= sup
Q∈P

lim inf
t→∞ EQ (Wt ) ≤ sup

Q∈P
EQ (W0) < ∞,

which guarantees E0(Sτ1{τ<∞}) < ∞.

We also introduce the notion of robust fundamental wealth, by defining the process
W ∗ = (W ∗

t )t≥0, where

W ∗
t : = S∗

t + Sτ1{τ≤t} =
(

ess sup
Q′∈P(t,Q)

EQ′ [Sτ1{τ<∞}|Ft ]
)

1{t<τ } + Sτ1{τ≤t}

= ess sup
Q′∈P(t,Q)

EQ′ [Sτ1{τ<∞}|Ft ], Q − a.s.
(37)

for all Q ∈ P . A bubble is defined as in the finite time horizon case, i.e.,

βt = St − S∗
t = Wt − W ∗

t ,

for every t ≥ 0. As a consequence, the case τ = ∞ q.s. implies the presence of a
bubble under uncertainty. As argued in Jarrow et al. (2007), the bubble appearing in
this situation is analogous to fiat money, a terminal value obtained at ∞. We report
here Example 2 from Jarrow et al. (2007) to clarify this point.
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Example 6 Let St = 1 for all t ∈ R+ be fiat money. Since money never matures,
we have τ = ∞, Sτ = 1 and S∗

t = 0 q.s. for all t ≥ 0. As

βt = St − S∗
t = 1 q.s.

this means that the entire value of the asset comes from the bubble.

We summarize these results in the following proposition.

Proposition 6 It holds:

(i) In the case there exists a Q̄ ∈ P and t ≥ 0 such that Q̄′(τ = ∞) = 1 for all
Q̄

′ ∈ P(t, Q̄), there exists a bubble.
(ii) The bubble β is a Q-local submartingale for every Q ∈ P .
(iii) The wealth process W can be a P-symmetric martingale also in the presence

of a bubble.

Proof The proof of (i) follows from (37), noting that

W ∗
t = 0 Q̄ − a.s.,

as by hypothesis
Sτ1{τ<∞} = 0 Q̄

′ − a.s.

for all Q̄′ ∈ P(t, Q̄). The local submartingale property follows from the definition of
bubble and from Assumption 2. The wealth process can be a P-symmetric martingale
as it can be seen in Example 6.

Appendix

Superhedging duality

In the framework of “The setting” section, we now study the problem of robust super-
replication of a contingent claim in a dynamical setting. The following results are of
independent interest, but they also play an important role for studying financial bub-
bles under model uncertainty, as explained in “Robust fundamental value” section.
We consider, as done in Nutz (2015), an asset price process S which is Rd -valued,
G+-adapted with càdlàg paths. We first present a brief recap regarding the duality
result proved in Nutz (2015).

By Theorem 3.2 in Nutz (2015) we have that, if the set P is saturated

sup
P∈P

EP[f]=min{x ∈ R : ∃ H ∈H with x+∫ T
0 HsdSs ≥ f P−a.s. for all P ∈ P},

(38)
where f is an upper semianalytic, GT -measurable function such that E0(| f |) < ∞.

We begin by introducing some notations.

Definition 9 A real-valued, F-adapted process with càdlàg paths is calledP-local
supermartingale if it is a local supermartingale with respect to

(
P,FP+

)
for all P ∈ P .
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As remarked in Nutz (2015), the choice of FP+ in Definition 9 is the most general
one. In fact an F-adapted and right-continuous process which is a local supermartin-
gale with respect to (P, F̃), for some F ⊆ F̃ ⊆ F

P+, is also a local supermartingale
with respect to

(
P,FP+

)
.

We now state a version of the optional decomposition theorem needed to show
(38).

Theorem 3 (Theorem 2.4 from Nutz 2015) Let P be a nonempty, saturated set of
local martingale measures for S. If Y is a P-local supermartingale, then there exists
an F-predictable process H which is S-integrable for every P ∈ P and such that

(
Yt −

∫ t

0
HsdSs

)

t∈[0,T ]
is increasing P-a.s. for all P ∈ P . (39)

It is important to remark that the choice of the filtration in Theorem 3 is completely
arbitrary. However, it is also evident from (39) that Y and S must be measurable with
respect to the same filtration.

Dynamic superhedging

We now focus on the study of the superreplication price at time t ∈ (0, T ] of a
GT -measurable contingent claim.

Theorem 4 Suppose that P is a nonempty, saturated set of sigma martingale
measures for S satisfying Assumption 1. Moreover, let f be an upper semianalytic, GT -
measurable function such that E0(| f |) < ∞. Consider the process Y = (Yt )t∈[0,T ]
given by the modification on a polar set of the process

Y ′
t = lim sup

r↓t, r∈Q
Er ( f ), ∀ t ∈ [0, T ]. (40)

Then, we have that for each t ∈ [0, T ], Yt = πP
t P-a.s. for each P ∈ P , where

πP

t = ess infP{ct ∈ Gt+ | ∃ H ∈ H with ct+
∫ T

t
HsdSs ≥ f P

′−a.s. for all P′ ∈ P}

for4
P ∈ P . In particular, if ct ∈ Gt+ is such that there exists H ∈ H with ct +∫ T

t HsdSs ≥ f P − a.s. for all P ∈ P , then Yt ≤ ct q.s.

Proof The claim is obtained by proving the two quasi sure inequalities πt ≤ Yt
and πt ≥ Yt . The first one can be shown as in the proof of Theorem 3.2 in Nutz
(2015). In fact, Theorem 3 applied with the σ -algebra GT and the filtration G+ yields
a process H ∈ H such that

Yt −
∫ t

0
HsdSs ≥ YT −

∫ T

0
HsdSs P − a.s. for all P ∈ P . (41)

4Here ess infP denotes the essential supremum with respect to the probability measure P. We use this
notation only when it is not clear under which prior the essential supremum is taken.
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Being YT = f q.s. (see Theorem 3.2 in Nutz (2015)), we can argue from (41) that

Yt +
∫ T

t
HsdSs ≥ f P − a.s. for all P ∈ P,

from which follows Yt ≥ πt q.s. On the other hand, let be given a Gt+-measurable
random variable π̄t such that there exists a process H ∈ H with the property that

π̄t +
∫ T

t
HsdSs ≥ f q.s.

For any rational number r ∈ [t, T ] ∩ Q it holds that

Er
(

π̄t +
∫ T

t
HsdSs

)
≥ Er ( f ) q.s. (42)

From (42), exploiting the supermartingale property of
(∫ t

0 HsdSs
)

t∈[0,T ], we can

deduce that

π̄t +
∫ r

t
HsdSs ≥ Er ( f ) q.s.

By the right continuity of
(∫ t

0 HsdSs
)

t∈[0,T ], we then have

π̄t = lim sup
r↓t,r∈Q

(
π̄t +

∫ r

t
HsdSs

)
≥ lim sup

r↓t,r∈Q
Er ( f ) = Y ′

t q.s.

and

π̄t ≥ Y ′
t q.s. (43)

We can conclude from (43) that π̄t ≥ Yt q.s., thanks to the definition of Y, which
completes the proof.

Remark 5 We do not include time 0 in our analysis as this case is already solved
in Nutz (2015). Moreover, in his proof the author cleverly overcomes a subtle problem
deriving from a direct application of Theorem 4 with t = 0: the result would be
an initial portfolio value which is G0+-measurable, while it is desirable to have it
deterministic as obtained in Theorem 3.2 in Nutz (2015).

Unfortunately it is not possible to extend this result for t > 0, i.e. to obtain that
Yt is Gt -measurable for t > 0, in the more general framework we considered in this
section. This problem already arises for the dynamic super hedging duality shown in
Proposition 4.5 in Nutz and Soner (2012) in a less general context than ours. We now
outline why, following the proof of Theorem 3.2 in Nutz (2015). More precisely, we
show that it is not always possible to prove that the conditional sublinear expectation
is a version of the dynamic superreplication price. Given an upper semianalytic func-
tion f with E0(| f |) < ∞, the issue lies in the possibility to find a process H ∈ H
such that

Et ( f ) +
∫ T

t
HsdSs ≥ f q.s.,
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which is equivalent to show that Yt ≤ Et ( f ) P-a.s. for every P ∈ P , where Y is a
modification of the process defined in (40). To this end, fix P ∈ P . It follows from
Theorem VI.2 in Dellacherie et al. (1982) that

EP[Yt |Ft ] ≤ Et ( f ) P − a.s.

Therefore, with the same argument as in Proposition 1, we obtain

ess sup
P′∈Peq(t,P)

EP′ [Yt |Ft ] ≤ Et ( f ) P − a.s.

Let then πP
t be the smallest Ft -measurable random variable dominating Yt P-a.s.

To reach the same conclusion as in Nutz (2015), we would need to prove that

πP

t ≤ ess sup
P′∈Peq(t,P)

EP′ [Yt |Ft ] P − a.s. (44)

However, thanks to Theorem 2.1.6 in Tutsch (2006),

πP

t = ess sup
Q

EQ[Yt |Ft ],

where the supremum is taken over all the probability measures Q on Ft that are
equivalent to P, which contradicts (44) already in the simple case of a complete
market with unique prior.

Of course, a sufficient condition to immediately achieve the equality Y = E( f )
q.s. would be the right continuity of the process E( f ), because of (40). However,
such a property does not hold in general. As a concrete model in which the sublinear
operator is not right-continuous, we refer to Example 4.6 in Nutz and Soner (2012).

The superreplication problem is namely solved in a more satisfactory way in the
G-framework. It is an important result of Nutz and Van Handel (2013) that the G-
expectation framework can be incorporated in the model described above. More
precisely, consider the set of martingale measures

M = {P ∈ P(�) : B is a local P-martingale},
where B = (Bu)u≥0 with Bu(ω) = ωu denotes the canonical process, and its subset

Ma = {P ∈ M : 〈B〉P is absolutely continuous P-a.s.},
where now 〈B〉P is the Rd×d -valued quadratic variation process of B under P and
absolute continuity refers to the Lebesgue measure. We report here Proposition 3.1
from Nutz and Van Handel (2013).

Proposition 7 The set

PD = {P ∈ Ma : d〈B〉Pt /dt ∈ D P × dt − a.e.},
where D is a nonempty, convex, and compact subset ofRd×d , satisfies Assumption 1.

It is indeed well known (see Nutz and Van Handel 2013) that the sublinear
expectation

ED
0 (ξ) := sup

P∈PD

EP[ξ ] (45)
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yields the G-expectation on the space of quasi continuous functions in L
1
G , where for

all β ≥ 1

L
β
G :={X is a B(�T ) − measurable real function: X has a quasi continuous version,

lim
n→∞ ED

0

(|X |β1{|X |>n}
) = 0}

and B(�T ) is the Borel σ -algebra of �T , see Peng (2007).
Given a FT -measurable claim f ∈ L

β
G , β > 1, it is easy to show that πt = ED

t ( f ),
for every t ∈ [0, T ]. The crucial difference is that the literature on G-expectation pro-
vides a G-martingale representation theorem and not only an optional decomposition
result.

Remark 6 For simplicity, thanks to the results of Proposition 7 we will denote
with EG[ f ] := ED

0 ( f ) the G-expectation of a random variable in L
1
G and with

EG [ f |Ft ] := ED
t ( f ) the relative conditional G-expectation at time t.

Theorem 5 (Theorem 4.5 of Song 2011) Let β > 1 and H ∈ L
β
G(FT ). Then the

G-martingale M with Mt := EG(H |Ft ), t ∈ [0, T ], has the following representation
Mt = X0 +

∫ t

0
θsdBs − Kt ,

where K is a continuous, increasing process with K0 = 0, KT ∈ Lα
G(FT ), θ ∈

Mα
G(0, T )5, ∀α ∈ [1, β), and −K is a G-martingale.

In the G-setting, obtaining the dynamic superreplication price of f follows from the
decomposition of the G-martingale (EG[ f |Ft ])t∈[0,T ]. Showing that πt ≥ EG[ f |Ft ]
q.s. is analogous to what is done in Theorem 4, while using Theorem 5 we get

EG[ f |Ft ] = EG[ f ] +
∫ t

0
θsdBs − Kt ,

for every t ∈ [0, T ] and suitable processes θ and K. It is then apparent that

EG[ f |Ft ] + ∫ T
t θsdBs = EG[ f ] + ∫ T

0 θsdBs − Kt

≥ EG[ f ] + ∫ T
0 θsdBs − KT = f,

giving the increasing property of K, from which we can argue πt ≤ EG[ f |Ft ].
We conclude by providing the following result from Biagini and Zhang (2017),

which shows sufficient conditions for having right-continuity of the sublinear
operator.

Proposition 8 (Proposition 2.6 of Biagini and Zhang 2017) If P is a tight family
satisfying Assumption 1 and X is an upper semianalytic function which is bounded
and continuous on a set A ∈ B(�) such that P(Ac) = 0 for every P ∈ P , then the
process (Et (X))t≥0 is càdlàg.

5The space Mα
G(0, T ) is defined as the completion under the norm ‖η‖Mα

G (0,T ) =
EG

[(∫ T
0 |ηs |2ds

)p/2
]1/p

of the collection of processes η of the form ηt = ∑n−1
j=0 ξ j1{[t j ,t j+1)}(t), where

{t0, . . . , tn} is a partition of [0, T ] and ξ j is a Ft j -measurable, cylindrical random variable.



Page 28 of 29 Biagini and Mancin

Acknowledgements The authors would like to thank two anonymous referees for a very careful reading

and a number of helpful comments that helped to sensibly improve the quality of the paper.

Authors’ contributions

Both authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

References

Ash, R: Real analysis and probability. Academic Press, New York (1972)
Beissner, P: Coherent Price Systems and Uncertainty-Neutral Valuation. Working Paper 464, Center for

Mathematical Economics, Bielefeld University (2012)
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