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Abstract This paper provides sufficient conditions for the time of bankruptcy (of a
company or a state) for being a totally inaccessible stopping time and provides the
explicit computation of its compensator in a framework where the flow of market
information on the default is modelled explicitly with a Brownian bridge between 0
and 0 on a random time interval.
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Introduction

One of the most important objects in a mathematical model for credit risk is the time
τ (called default time) at which a certain company (or state) bankrupts. Modelling the
flow of market information concerning a default time is crucial and in this paper we
consider a process, β = (βt , t ≥ 0), whose natural filtration F

β describes the flow
of information available for market agents about the time at which the default occurs.
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For this reason, the process β will be called the information process. In the present
paper, we define β to be a Brownian bridge between 0 and 0 of random length τ :

βt := Wt − t

τ ∨ t
Wτ∨t , t ≥ 0,

where W = (Wt , t ≥ 0) is a Brownian motion independent of τ .
In this paper, the focus is on the classification of the default time with respect to

the filtration Fβ and our main result is the following: If the distribution of the default
time τ admits a continuous density f with respect to the Lebesgue measure, then τ is
a totally inaccessible stopping time and its compensator K = (Kt , t ≥ 0) is given by

Kt =
∫ t∧τ

0

f (s)∫∞
s

v
1
2 (2πs (v − s))− 1

2 f (v)dv
dLβ (s, 0) ,

where Lβ(t, 0) is the local time of the information process β at level 0 up to time t.
Knowing whether the default time is a predictable, accessible, or totally inaccessi-

ble stopping time is very important in a mathematical credit risk model. A predictable
default time is typical of structural credit risk models, while totally inaccessible
default times are one of the most important features of reduced-form credit risk mod-
els. In the first framework, market agents know when the default is about to occur,
while in the latter default occurs by surprise. The fact that financial markets can-
not foresee the time of default of a company makes the reduced-form models well
accepted by practitioners. In this sense, totally inaccessible default times seem to be
the best candidates for modelling times of bankruptcy. We refer, among others, to the
papers of Jarrow and Protter (2004) and of Giesecke (2006) on the relations between
financial information and the properties of the default time, and also to the series of
papers of Jeanblanc and Le Cam (2008,2009,2010). It is remarkable that in our setting
the default time is a totally inaccessible stopping time under the common assumption
that it admits a continuous density with respect to the Lebesgue measure. Both the
hypothesis that the default time admits a continuous density and its consequence that
the default occurs by surprise are standard in mathematical credit risk models, but in
the information-based approach there is the additional feature of an explicit model
for the flow of information which is more sophisticated than the standard approach.
There, the available information on the default is modelled through

(
I{τ≤t}, t ≥ 0

)
,

the single-jump process occurring at τ , meaning that people only know if the default
has or has not occurred. Financial reality can be more complex and there are actually
periods in which default is more likely to happen than in others. In the information-
based approach, periods of fear of an imminent default correspond to situations where
the information process is close to 0, while periods when investors are relatively sure
that the default is not going to occur immediately correspond to situations where βt

is far from 0.
The paper is organized as follows. In the section “The information process and

its basic properties”, we recall the definition and the main properties of the infor-
mation process. In the section “The compensator of the default time”, we state and
prove Theorem 3.2, which is the main result of the paper. In Appendix A, we pro-
vide the properties of the local time associated with the information process. In
Appendix B, we give the proofs of some auxiliary lemmas. Finally, in Appendix C,



Probability, Uncertainty and Quantitative Risk  (2017) 2:10 Page 3 of 21

for the sake of easy reference, we recall the so-called Laplacian approach developed
by Meyer (1966) (see, e.g., his book (Meyer 1966)) for computing the compen-
sator of a right-continuous potential of class (D). It is an important ingredient of the
approach adopted in this note to determine the compensator of the Fβ -submartingale(
I{τ≤t}, t ≥ 0

)
.

The idea of modelling the information about the default time with a Brownian
bridge defined on a stochastic interval was introduced in the thesis (Bedini 2012).
The definition of the information process β, the study of its basic properties, and
an application to the problem of pricing a Credit Default Swap (one of the most
traded derivatives in the credit market) have also recently appeared in the paper
(Bedini et al. 2016).

Non-trivial and sufficient conditions for making the default time a predictable
stopping time will be considered in another paper, (Bedini and Hinz 2017). Other top-
ics related to Brownian bridges on stochastic intervals (which will not be considered
in this paper) are concerned with the problem of studying the progressive enlarge-
ment of a reference filtration F by the filtration F

β generated by the information
process and further applications to Mathematical Finance.

The information process and its basic properties

We start by recalling the definition and the basic properties of a Brownian bridge
between 0 and 0 of random length. The material in this section gives a résumé of
some of the results obtained in the paper (Bedini et al. 2016), to which we shall refer
for the proofs and more details on the basic properties of such a process.

If A ⊆ R (where R denotes the set of real numbers), then the set A+ is defined as
A+ := A∩ {x ∈ R : x ≥ 0}. If E is a topological space, then B(E) denotes the Borel
σ -algebra over E. The indicator function of a set A will be denoted by IA. A function
f : R → Rwill be said to be càdlàg if it is right-continuous with limits from the left.

Let (�,F,P) be a complete probability space. We denote by NP the collection
of P-null sets of F . If L is the law of the random variable ξ we shall write ξ ∼ L.
Unless otherwise specified, all filtrations considered in the following are supposed to
satisfy the usual conditions of right continuity and completeness.

Let τ : � → (0, +∞) be a strictly positive random time, whose distribution
function is denoted by F: F(t) := P (τ ≤ t) , t ∈ R+. The time τ models the random
time at which some default occurs and, hereinafter, it will be called default time.

Let W = (Wt , t ≥ 0) be a Brownian motion defined on (�,F,P) and starting
from 0. We shall always make use of the following assumption:

Assumption 2.1 The random time τ and the Brownian motion W are independent.

Given W and a strictly positive real number r, a standard Brownian bridge βr =(
βr

t , t ≥ 0
)
between 0 and 0 of length r is defined by

βr
t = Wt − t

r ∨ t
Wr∨t , t ≥ 0 .
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For further references on Brownian bridges, see, e.g., Section 5.6.B of the book
(Karatzas and Shreve 1991) by Karatzas and Shreve.

Now, we are going to introduce the definition of the Brownian bridge of random
length (see (Bedini et al. 2016), Definition 3.1).

Definition 2.2 The process β = (βt , t ≥ 0) given by

βt := Wt − t

τ ∨ t
Wτ∨t , t ≥ 0 , (1)

will be called Brownian bridge of random length τ . We will often say that β =
(βt , t ≥ 0) is the information process (for the random time τ based on W).

The natural filtration of β will be denoted by Fβ = (Fβ
t )t≥0:

Fβ
t := σ (βs, 0 ≤ s ≤ t) ∨ NP .

Note that according to (Bedini et al. 2016), Corollary 6.1, the filtration F
β (denoted

therein by FP ) satisfies the usual conditions of right-continuity and completeness.

Remark 2.3 The law of β, conditional on τ = r , is the same as that of a standard
Brownian bridge between 0 and 0 of length r (see (Bedini et al. 2016), Lemma 2.4
and Corollary 2.2). In particular, if 0 < t < r , the law of βt , conditional on τ = r ,
is Gaussian with expectation zero and variance t(r−t)

r
:

P
(
βt ∈ · ∣∣τ = r

) = N
(
0,

t (r − t)

r

)
,

where N
(
μ, σ 2

)
denotes the Gaussian law of mean μ and variance σ 2.

By p (t, ·, y), we denote the density of a Gaussian random variable with mean
y ∈ R and variance t > 0:

p (t, x, y) := 1√
2πt

exp

[
− (x − y)2

2t

]
, x ∈ R. (2)

For later use, we also introduce the functions ϕt (t > 0):

ϕt (r, x) :=
{

p
(

t(r−t)
r

, x, 0
)

, 0 < t < r, x ∈ R,

0, r ≤ t, x ∈ R.
(3)

We notice that for 0 < t < r the conditional density of βt , conditional on τ = r , is
just equal to the density ϕt (r, ·) of a standard Brownian bridge βr

t of length r at time t.
We proceed with the property that the default time τ is nonanticipating with

respect to the filtration F
β and the Markov property of the information process β.

Lemma 2.4 For all t > 0, {βt = 0} = {τ ≤ t} , P-a.s. In particular, τ is an
F

β -stopping time.

Proof See (Bedini et al. 2016), Proposition 3.1 and Corollary 3.1.
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Theorem 2.5 The information process β is a Markov process with respect to the
filtration F

β : For all 0 ≤ t < u and measurable real functions g such that g(βu) is
integrable,

E[g(βu)|Fβ
t ] = E[g(βu)|βt ], P-a.s.

Proof See Theorem 6.1 in (Bedini et al. 2016).

As the following theorem combined with Theorem 2.5 shows, the function φt

defined by

φt (r, x) := ϕt (r, x)∫
(t,+∞)

ϕt (v, x) dF(v)
, (4)

(r, t) ∈ (0, +∞) ×R+, x ∈ R, is, for t < r , the a posteriori density function of τ on
{τ > t}, conditional on βt = x.

Theorem 2.6 Let t > 0, g : R+ → R be a Borel function such that E [|g(τ)|] <

+∞. Then, P-a.s.

E
[
g(τ)|Fβ

t

]
= g(τ)I{τ≤t} +

∫
(t,+∞)

g(r) φt (r, βt ) dF(r)I{t<τ }. (5)

Proof See Theorem 4.1, Corollary 4.1 and Corollary 6.1 in (Bedini et al. 2016).

Before stating the next result, which is concerned with the semimartingale
decomposition of the information process, let us give the following definition:

Definition 2.7 Let B be a continuous process, F a filtration, and T an F-stopping
time. Then, B is called an F-Brownian motion stopped at T, if B is an F-martingale
with square variation process 〈B, B〉t = t ∧ T , t ≥ 0.

Now, we introduce the real-valued function u defined by

u (s, x) := E
[

βs

τ − s
I{s<τ }

∣∣βs = x

]
, s ∈ R+, x ∈ R. (6)

Theorem 2.8 The process b defined by

bt := βt +
∫ t

0
u(s, βs) ds, t ≥ 0 ,

is an F
β -Brownian motion stopped at τ . The information process β is therefore an

F
β -semimartingale with decomposition

βt = bt −
∫ t∧τ

0
u (s, βs) ds, t ≥ 0 . (7)

Proof See Theorem 7.1 in (Bedini et al. 2016).
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Remark 2.9 The quadratic variation of the information process β is given by

〈β, β〉t = 〈b, b〉t = t ∧ τ, t ≥ 0 . (8)

The compensator of the default time

In this section, we explicitly compute the compensator of the single-jump process
with the jump occurring at τ , which will be denoted by H=(Ht , t ≥ 0):

Ht := I{τ≤t}, t ≥ 0. (9)

The process H, called default process, is an Fβ -submartingale and its compensator
is also known as the compensator of the F

β -stopping time τ . Our main goal con-
sists in providing a representation of the compensator of H. As we shall see below,
this representation involves the local time Lβ(t, 0) of the information process β (see
Appendix A for properties of local times of continuous semimartingales and, in par-
ticular, of β). From its representation we immediately obtain that the compensator
of the default process H is continuous. As a result, from the continuity of the com-
pensator of H it follows that the default time τ is a totally inaccessible Fβ -stopping
time.

In this section, the following assumption will always be in force.

Assumption 3.1 (i) The distribution function F of τ admits a continuous density
function f with respect to the Lebesgue measure λ+ on R+.

(ii) F(t) < 1 for all t ≥ 0.

The following theorem is the main result of this paper:

Theorem 3.2 Suppose that Assumption 3.1 is satisfied.
(i) The process K = (Kt , t ≥ 0) defined by

Kt :=
∫ t∧τ

0

f (s)∫∞
s

ϕs (v, 0) f (v)dv
dLβ(s, 0), t ≥ 0 , (10)

is the compensator of the default process H. Here, Lβ(t, x) denotes the local time of
the information process β up to t at level x.

(ii) The default time τ is a totally inaccessible stopping time with respect to the
filtration Fβ .

Proof First, we verify statement (ii) under the supposition that (i) is true. Obvi-
ously, as Lβ(s, 0) is continuous in s (see Lemma A.4), the process K given by (10)
is continuous. Consequently, because of the well-known equivalence between this
latter property and the continuity of the compensator (see, e.g., (Kallenberg 2002),
Corollary 25.18), we can conclude that the default time τ is a totally inaccessible
stopping time with respect to Fβ .
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Now, we prove statement (i) of the theorem. For every h > 0 we define the process
Kh = (

Kh
t , t ≥ 0

)
by

Kh
t := 1

h

∫ t

0

(
I{s<τ } − E

[
I{s+h<τ }|Fβ

s

])
ds

=
∫ t

0

1

h
P
(
s < τ < s + h|Fβ

s

)
ds , P-a.s. (11)

The proof is divided into two parts. In the first part, we prove that Kt − Kt0 is
the P-a.s. limit of Kh

t − Kh
t0
as h ↓ 0, for every t0, t ≥ 0 such that 0 < t0 < t . In

the second part of the proof, we show that the process K is indistinguishable from
the compensator of H. Auxiliary results used throughout the proof are postponed to
Appendix B.

For the first part of the proof, we fix t0, t such that 0 < t0 < t and notice that

Kh
t − Kh

t0
=
∫ t

t0

1

h
P
(
s < τ < s + h|Fβ

s

)
ds

=
∫ t∧τ

t0∧τ

1

h

(∫ s+h

s
ϕs (r, βs) f (r) dr∫∞

s
ϕs (v, βs) f (v) dv

)
ds,

(12)

where the last equality is a consequence of Theorem 2.6 and Definition (4) of the a
posteriori density function of τ . Later, we shall verify that

lim
h↓0

∫ t∧τ

t0∧τ

1

h

(∫ s+h

s
ϕs (r, βs) [f (r) − f (s)] dr∫∞
s

ϕs (v, βs) f (v) dv

)
ds = 0 P-a.s. (13)

So, we have to deal with the limit behaviour as h ↓ 0 of

∫ t∧τ

t0∧τ

1

h

( ∫ s+h

s
ϕs (r, βs) dr∫∞

s
ϕs (v, βs) f (v) dv

)
f (s) ds

=
∫ t∧τ

t0∧τ

1

h

( ∫ h

0 ϕs (s + u, βs) du∫∞
s

ϕs (v, βs) f (v) dv

)
f (s)ds

=
∫ t∧τ

t0∧τ

1

h

∫ h

0
p

(
su

s + u
, βs, 0

)
du g(s, βs) f (s) ds, (14)

where we have introduced the function g : (0, +∞) × R → R+ by

g (s, x) :=
(∫ ∞

s

ϕs (v, x) f (v) dv

)−1

, s > 0, x ∈ R . (15)
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In (14), we want to replace p
(

su
s+u

, βs, 0
)
with p(u, βs, 0). To this end, we estimate

the absolute value of the difference:∣∣∣∣p
(

su

s + u
, x, 0

)
− p(u, x, 0)

∣∣∣∣

= p(u, x, 0)

∣∣∣∣∣
(

s + u

s

) 1
2

exp

(
−x2

2s

)
− 1

∣∣∣∣∣

≤ p(u, x, 0)

[(
s + u

s

) 1
2
∣∣∣∣exp

(
−x2

2s

)
− 1

∣∣∣∣+
∣∣∣∣∣
(

s + u

s

) 1
2 − 1

∣∣∣∣∣
]

≤
(
(2π)

1
2 |x|

)−1
exp

(
−1

2

)(
s + 1

s

) 1
2
(

x2

2s

)
+ (2πu)−

1
2

( u

2s

)

≤ c1|x| + c2 u
1
2 , (16)

with some constants c1 and c2, for 0 ≤ u ≤ h ≤ 1 and s ∈ [t0, t], where for the
estimate of the first summand we have used that the function u �→ p(u, x, 0) has
its unique maximum at u = x2, the standard estimate 1 − e−z ≤ z for all z ≥ 0
and that (s + 1)s−1 ≤ 1 + t−1

0 as well as for the estimate of the second summand

the inequalities p(u, x, 0) ≤ (2πu)− 1
2 and |

√
s+u

s
− 1| ≤ u

2s . Putting x = βs , and
integrating from 0 to h, and dividing by h, for 0 ≤ u ≤ h ≤ 1 and s ∈ [t0, t], from
(16) we obtain

1

h

∫ h

0

∣∣∣∣p
(

su

s + u
, βs, 0

)
− p (u, βs, 0)

∣∣∣∣ du g(s, βs) f (s)

≤
(
c1|βs | + c2 h

1
2

)
g(s, βs) f (s)

≤ (c1|βs | + c2) c3 C(t0, t, βs),

where C(t0, t, x) is an upper bound of g(s, x) on [t0, t] continuous in x (see
Lemma B.2) and c3 is an upper bound for the continuous density function f on [t0, t].
The right-hand side is integrable over [t0, t] with respect to the Lebesgue measure
λ+. On the other side, by the fundamental theorem of calculus, we have that, for
every x �= 0,

lim
h↓0

1

h

∫ h

0
p(u, x, 0) du = 0, lim

h↓0
1

h

∫ h

0
p

(
su

s + u
, x, 0

)
du = 0 . (17)

For this, we notice that p(0, x, 0) = 0 is a continuous extension of the function
u �→ p(u, x, 0) if x �= 0. By Corollary A.3, we have that the set {0 ≤ s ≤ t ∧ τ :
βs = 0} has Lebesgue measure zero. Then, using Lebesgue’s theorem on dominated
convergence, we can conclude that P-a.s.

lim
h↓0

∫ t∧τ

t0∧τ

1

h

∫ h

0

∣∣∣∣p
(

su

s + u
, βs, 0

)
− p(u, βs, 0)

∣∣∣∣ du g(s, βs) f (s) ds = 0 . (18)

This completes the first step of the proof of the first part, meaning that in (14) we

can replace p
(

su
s+u

, βs, 0
)
with p(u, βs, 0) for identifying the limit.
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The second step of the first part is to prove that

lim
h↓0

∫ t∧τ

t0∧τ

1

h

∫ h

0
p (u, βs, 0) du g(s, βs) f (s) ds = Kt − Kt0 , P-a.s.

Setting

q(h, x) := 1

h

∫ h

0
p(u, x, 0) du, 0 < h ≤ 1, x ∈ R , (19)

an application of the occupation time formula (see Corollary A.3) yields∫ t∧τ

t0∧τ

1

h

∫ h

0
p (u, βs, 0) du g(s, βs) f (s) ds

=
∫ t∧τ

t0∧τ

q(h, βs) g(s, βs) f (s) ds

=
∫ +∞

−∞

(∫ t

t0

g (s, x) f (s) dLβ(s, x)

)
q (h, x) dx , P-a.s. (20)

For every h > 0, q(h, ·) is a probability density function with respect to the
Lebesgue measure onR. According to Lemma B.1, the probability measuresQh with
density q(h, ·) converge weakly to the Dirac measure δ0 at 0. On the other hand,
Lemma B.4 shows that the function x �→ ∫ t

t0
g (s, x) f (s) dLβ(s, x) is continuous

and bounded. Hence, in (20) we can pass to the limit and obtain the following

lim
h↓0

∫ t∧τ

t0∧τ

1

h

∫ h

0
p (u, βs, 0) du g(s, βs) f (s) ds

=
∫ t

t0

g (s, 0) f (s) dLβ(s, 0), P-a.s. (21)

In the third step of the proof of the first part, we must show that (13) holds. Note
that the function f is uniformly continuous on [t0, t + 1]. We fix ε > 0 and choose
0 < δ ≤ 1 such that |f (s +u)−f (s)| ≤ ε for every 0 ≤ u < δ. Proceeding similarly
as above, we obtain the following

lim sup
h↓0

∣∣∣∣∣
∫ t∧τ

t0∧τ

1

h

(∫ s+h

s
ϕs (r, βs) [f (r) − f (s)] dr∫∞
s

ϕs (v, βs) f (v) dv

)
ds

∣∣∣∣∣
≤ lim sup

h↓0

∫ t∧τ

t0∧τ

1

h

∫ h

0
p

(
su

s + u
, βs, 0

) ∣∣f (s + u) − f (s)
∣∣ du g(s, βs) ds

≤ ε lim sup
h↓0

∫ t∧τ

t0∧τ

1

h

∫ h

0
p

(
su

s + u
, βs, 0

)
du g(s, βs) ds

= ε lim sup
h↓0

∫ t∧τ

t0∧τ

1

h

∫ h

0
p (u, βs, 0) du g(s, βs) ds

= ε

∫ t

t0

g (s, 0) dLβ(s, 0), P-a.s.

Since ε > 0 is choosen arbitrarily and the integral above is P-a.s. finite, we
conclude that (13) holds.
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The first part of the proof is complete.
The second part of the proof relies on the so-called Laplacian approach of P.-A.

Meyer and, for the sake of easy reference, related results are recalled in Appendix C.
Let us denote by Kw the compensator of the default process H introduced in (9):
Ht := I{τ≤t}, t ≥ 0. We first show that Kh

t converges to Kw
t as h ↓ 0 in the sense of

the weak topology σ
(
L1, L∞) (see Definition C.3), for every t ≥ 0. We then prove

that the process K is actually indistinguishable from Kw.
For the sake of simplicity of the notation, if a sequence of integrable random vari-

ables (ξn)n∈N converges to an integrable random variable ξ in the sense of the weak
topology σ

(
L1, L∞), we will write

ξn

σ(L1,L∞)−−−−−→
n→+∞ ξ.

Furthermore, we will denote by G the right-continuous potential of class (D) (cf.
beginning of Appendix C) given by

Gt := 1 − Ht = I{t<τ }, t ≥ 0 . (22)

By Corollary C.5, we know that there exists a unique integrable predictable
increasing process Kw = (

Kw
t , t ≥ 0

)
which generates, in the sense of Defini-

tion C.1, the potential G given by (22) and, for every F
β -stopping time T, we have

that

Kh
T

σ(L1,L∞)−−−−−→
h↓0 Kw

T .

The process Kw is actually the compensator of H. Indeed, it is a well-known fact
that the process H admits a unique decomposition

H = M + A (23)

into the sum of a right-continuous martingale M and an adapted, natural, increasing,
integrable process A. The process A is then called the compensator of H. On the other
hand, from the definition of the potential generated by an increasing process (see
Definition C.1), the process

L := G + Kw (24)

is a martingale. By combining the definition (22) of the processG and (24), we obtain
the following decomposition of H:

H = 1 − L + Kw.

However, by the uniqueness of the decomposition (23), we can identify the mar-
tingale M with 1 − L and we have that A = Kw, up to indistinguishability. Since
the submartingale H and the martingale 1 − L appearing in the above proof are
right-continuous, the process Kw is also right-continuous.

By applying Lemma C.8, we see that Kt − Kt0 is a modification of Kw
t − Kw

t0
,

for all t0, t such that 0 < t0 < t . Passing to the limit as t0 ↓ 0, we get Kt = Kw
t P-

a.s. for all t ≥ 0. Since both processes have right-continuous sample paths they are
indistinguishable.

The theorem is proved.
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Remark 3.3 We close this part of the present paper with the following observa-
tions.

(1) Note that
(
I{τ≤t}, t ≥ 0

)
does not admit an intensity with respect to the filtra-

tion Fβ (hence, it is not possible to apply, for example, Aven’s Lemma for computing
the compensator (see, e.g., (Aven 1985))).

(2) Assumption 3.1(ii) on the distribution function F that F(t) < 1 for all t ≥ 0
ensures that the denominator of the integrand of the right-hand side of (10) is always
strictly positive. However, it can be removed. Indeed, if the density function f of τ is
continuous (as required by Assumption 3.1(i)), then exactly as above we can show
that relation (10) is satisfied for all t ≤ t1 := sup{t > 0 : F(t) < 1}. On the other
hand, it is obvious that τ ≤ t1 P-a.s. (hence, the right-hand side of (10) is constant
for t ∈ [t1, ∞)) and also that the compensator K = (Kt , t ≥ 0) of

(
I{τ≤t}, t ≥ 0

)
is

constant on [t1, ∞). Altogether, it follows that relation (10) is satisfied for all t ≥ 0.

Appendix A

On the local time of the information process

In this section, we introduce and study the local time process associated with the
information process.

For any continuous semimartingale X = (Xt , t ≥ 0) and for any real number x,
it is possible to define the (right) local time LX(t, x) associated with X at level x up
to time t using Tanaka’s formula (see, e.g., (Revuz and Yor 1999), Theorem VI.(1.2))
as follows:

LX(t, x) := |Xt − x| − |X0 − x| −
∫ t

0
sign (Xs − x) dXs, t ≥ 0, (25)

where sign(x) := 1 if x > 0 and sign(x) := −1 if x ≤ 0. The process LX (·, x) =(
LX (t, x) , t ≥ 0

)
appearing in relation (25) is called the (right) local time of X at

level x.
Now, we recall the occupation time formula for local times of continuous semi-

martingales which is given in a form convenient for our applications. By 〈X, X〉, we
denote the square variation process of a continuous semimartingale X.

Lemma A.1 Let X = (Xt , t ≥ 0) be a continuous semimartingale. There is a
P-negligible set outside of which∫ t

0
h (s, Xs) d 〈X, X〉s =

∫ +∞

−∞

(∫ t

0
h (s, x) dLX (s, x)

)
dx ,

for every t ≥ 0 and every non-negative Borel function h on R+ × R.

Proof See Corollary VI.(1.6) from the book by Revuz and Yor (1999) for the case
when h is a non-negative Borel function defined on R (i.e., it does not depend on
time). The statement of the lemma is then proved by first considering the case in
which h has the form h (t, x) = I[u,v](t)γ (x) for 0 ≤ u < v < ∞ and a non-negative
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Borel function γ on R, and then using monotone class arguments (see Revuz and Yor
(1999), Exercise VI.(1.15) or Rogers and Williams (2000), Theorem IV.(45.4)).

Concerning continuity properties of local times, there is the following result.

Lemma A.2 Let X = (Xt , t ≥ 0) be a continuous semimartingale with canon-
ical decomposition given by X = M + A, where M is a local martingale and A a
finite variation process. Then, there exists a modification of the local time process(
LX (t, x) , t ≥ 0, x ∈ R

)
of X such that the map (t, x) �→ LX (t, x) is continuous

in t and càdlàg in x, P-a.s. Moreover,

LX (t, x) − LX (t, x−) = 2
∫ t

0
I{x}(Xs) dAs, (26)

for all t ≥ 0, x ∈ R, P-a.s.

Proof See, e.g., (Revuz and Yor 1999), Theorem VI.(1.7).

The information process β is a continuous semimartingale (cf. Theorem 2.8),
hence the local time Lβ (t, x) of β at level x ∈ R up to time t ≥ 0 is well defined.
The occupation time formula takes the following form.

Corollary A.3 We have

t∧τ∫

0

h (s, βs) ds =
t∫

0

h (s, βs) d 〈β, β〉s =
+∞∫

−∞

⎛
⎝

t∫

0

h (s, x) dLβ (s, x)

⎞
⎠ dx ,

for all t ≥ 0 and all non-negative Borel functions h on R+ × R, P-a.s.

Proof The first equality follows from relation (8) and the second is an application
of Lemma A.1.

An important property of the local time Lβ is the existence of a bicontinuous
version.

Lemma A.4 There is a version of Lβ such that the map (t, x) ∈ R+ × R �→
Lβ (t, x) is continuous, P-a.s.

Proof We choose a version of the local time Lβ according to Lemma A.2. Using
(26), we have that

Lβ (t, x) − Lβ (t, x−) = −2
∫ t∧τ

0
I{x}(βs) u (s, βs) ds,

for all t ≥ 0, x ∈ R, P-a.s., where u is the function defined by (6). Applying
Corollary A.3 to the right-hand side of the last equality above, we see that
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2

t∧τ∫

0

I{x}(βs) u (s, βs) ds = 2

+∞∫

−∞
I{x}(y)

⎛
⎝

t∫

0

u (s, y) dLβ (s, y)

⎞
⎠ dy = 0,

and hence Lβ (t, x) − Lβ (t, x−) = 0, for all t ≥ 0, x ∈ R, P-a.s., because {x} has
Lebesgue measure zero. This completes the proof.

We also make use of the boundedness of the local time with respect to the space
variable.

Lemma A.5 The function x �→ Lβ (t, x) is bounded for all t ∈ R+ P-a.s. (the
bound may depend on t and ω).

Proof It follows from the occupation time formula (or from Revuz and Yor (1999),
Corollary VI.(1.9)) that the local time Lβ(t, ·) vanishes outside of the compact
interval [−Mt(ω), Mt(ω)] where

Mt(ω) := sup
s∈[0,t]

|βs(ω)| , t ≥ 0, ω ∈ �, (27)

which together with the continuity of Lβ (t, ·) (see Lemma A.4) yields the bounded-
ness of this function, P-a.s.

Outside a negligible set, for fixed x ∈ R, the local time Lβ (·, x) is a positive
continuous increasing function, and we can associate with it a random measure on
R+:

Lβ (B, x) :=
∫

B

dLβ (s, x) , B ∈ B (R+) .

Lemma A.6 Outside a negligible set, for any sequence (xn)n∈N in R converging
to x ∈ R, the sequence

(
Lβ (·, xn)

)
n∈N converges weakly to Lβ (·, x), i.e.,∫

R+
g(s)Lβ (ds, xn) −−−→

n→∞

∫
R+

g(s)Lβ (ds, x) ,

for all bounded and continuous functions g : R+ �→ R.

Proof We fix a negligible set outside of whichLβ is bicontinuous (cf. Lemma A.4)
and outside of which we will be working now. The measures

(
Lβ (·, xn)

)
n∈N are

finite on R and they are supported by [0, τ ]. By the continuity of Lβ (t, ·), we have
that Lβ (s, xn) −−−→

n→∞ Lβ (s, x) , s ≥ 0, from which it follows that

Lβ ([0, s] , xn) −−−→
n→∞ Lβ ([0, s] , x) , s ≥ 0 . (28)

We also have this convergence for the whole space R+:
Lβ (R+, xn) = Lβ ([0, τ ] , xn) −−−→

n→∞ Lβ ([0, τ ] , x) = Lβ (R+, x) .

From this, we can conclude that the measuresLβ (·, xn) converge weakly toLβ (·, x).
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Appendix B

Auxiliary results

In (19), we had introduced the function q by

q(h, x) := 1

h

∫ h

0
p(u, x, 0) du, 0 < h ≤ 1, x ∈ R ,

where p(t, ·, y) is the density of the normal distribution with variance t and
expectation y (see (2)).

Lemma B.1 The functions q(h, ·) are probability density functions with respect to
the Lebesgue measure on R. The probability measures Qh on R associated with the
density qh converge weakly as h ↓ 0 to the Dirac measure δ0 at 0.

Proof The first statement of the lemma is obvious. For verifying the second state-
ment, let f be a bounded continuous function on R. Using Fubini’s theorem, we
obtain ∫

R

f (x)Qh(dx) =
∫
R

f (x) qh(x) dx

=
∫
R

f (x)

(
1

h

∫ h

0
p(u, x, 0) du

)
dx

= 1

h

∫ h

0

(∫
R

f (x) p(u, x, 0) dx

)
du

= 1

h

∫ h

0

(∫
R

f (x)N (0, u)(dx)

)
du .

Since the function u ∈ [0, 1] �→ N (0, u), which associates to every u ∈ [0, 1],
the centered Gaussian law N (0, u) is continuous with respect to weak convergence
of probability measures (note that N (0, 0) = δ0), we observe that the function
u ∈ [0, 1] �→ ∫

R
f (x)N (0, u)(dx) is continuous. An application of the fundamen-

tal theorem of calculus yields that the right-hand side converges to
∫
R

f (x) δ0(dx) as
h ↓ 0 and hence

lim
h↓0

∫
R

f (x)Qh(dx) = f (0) ,

proving the second statement of the lemma.

Now, we consider the function g introduced in (15):

g (s, x) :=
( ∫ ∞

s

ϕs (v, x) f (v) dv
)−1

, s > 0, x ∈ R .

Lemma B.2 (1) For all x ∈ R and 0 < t0 < t , the function g (·, x) : [t0, t] �→ R

is bounded, i.e., there exists a real constant C (t0, t, x) such that

sup
s∈[t0,t]

g (s, x) ≤ C(t0, t, x) .
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(2) For all x ∈ R and 0 < t0 < t , the function g(·, x) : [t0, t] �→ R is continuous,
i.e., for all sn, s ∈ [t0, t] such that sn → s,

lim
sn→s

g(sn, x) = g(s, x) .

(3) Let (xn)n∈N be a sequence converging monotonically to x ∈ R. Then, for all
0 < t0 < t ,

sup
s∈[t0,t]

|g(s, xn) − g(s, x)| −−−→
n→∞ 0 .

Proof Let us define, for every s ∈ [t0, t] and x ∈ R,

D (s, x)

:=
∫ ∞

s

√
v

2πs (v − s)
exp

(
− v x2

2s (v − s)

)
f (v) dv , (29)

and rewrite g as

g(s, x) = 1

D (s, x)
, s ∈ [t0, t] , x ∈ R . (30)

In order to prove statement (1), it suffices to verify that there exists a constant
C̃ (t0, t, x) such that

0 < C̃ (t0, t, x) ≤ D (s, x) , s ∈ [t0, t], x ∈ R . (31)

Such a constant can be found by setting

C̃ (t0, t, x) :=
∫ ∞

t

√
1

2πt
exp

(
− v x2

2t0(v − t)

)
f (v) dv , (32)

proving the first statement of the lemma.
In order to prove statement (2) of the lemma, it suffices to verify that the function

s �→ D (s, x) , s ∈ [t0, t], is continuous, a fact that can be proved using Lebesgue’s
dominated convergence theorem. Indeed, let sn, s ∈ [t0, t] such that sn → s as
n → ∞. Rewriting (29), we get

D (sn, x)

=
∫ ∞

t0

I(sn,+∞)(v)

√
v

2πsn (v − sn)
exp

(
− v x2

2sn (v − sn)

)
f (v) dv .

First, we consider the integral from t to ∞: For v ≥ t , we can make an upper

estimate of the integrand by
√

v
2πt0 (v−t)

f (v) which is integrable over [t, +∞).

For the second part of the integral from t0 to t, we estimate the integrand by
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I(sn,+∞)(v)
√

t
2πt0 (v−sn)

c, where c is an upper bound of f on [t0, t], and by integrating
we observe that

lim
n→∞

∫ t

t0

I(sn,+∞)(v)

√
t

2πt0 (v − sn)
dv=

∫ t

t0

I(s,+∞)(v)

√
t

2πt0 (v − s)
dv .

As the integrands are nonnegative, we get convergence in L1([t0, t]) and hence
uniform integrability (cf. Theorem C.7). This means that the sequence

I(sn,+∞)(v)

√
v

2πsn (v − sn)
exp

(
− v x2

2sn (v − sn)

)
f (v)

is uniformly integrable on [t0, t] and we can apply Lebesgue’s theorem (cf.
Theorem C.7) to conclude

lim
n→∞

∫ t

t0

I(sn,+∞)(v)

√
v

2πsn (v − sn)
exp

(
− v x2

2sn (v − sn)

)
f (v) dv

=
∫ t

t0

I(s,+∞)(v)

√
v

2πs (v − s)
exp

(
− v x2

2s (v − s)

)
f (v) dv .

Summarizing, we get

lim
n→∞ D (sn, x) = D (s, x)

and the proof of statement (2) of the lemma finished.
We turn to the proof of statement (3) of the lemma. Using relation (30), we see that

|g (s, xn) − g (s, x)| = |D (s, xn) − D (s, x)|
D (s, xn) D (s, x)

and from inequality (31) we get that

sup
s∈[t0,t]

|g (s, xn) − g (s, x)| ≤ sups∈[t0,t] |D (s, xn) − D (s, x)|
C̃ (t0, t, xn) C̃ (t0, t, x)

,

where C̃ (t0, t, x) is defined by (32). It is easy to see that

lim
n→∞

1

C̃ (t0, t, xn) C̃ (t0, t, x)
= 1

C̃ (t0, t, x)2
< +∞ .

Hence, it remains to prove that

sup
s∈[0,t]

|D (s, xn) − D (s, x)| −−−→
n→∞ 0.

By assumption, the sequence xn converges monotonically to x. In such a case, it is
easy to see that the sequence of functions D (·, xn) is monotone. Furthermore, using
Lebesgue’s dominated convergence theorem, we verify that D (s, xn) converges to
D (s, x), for all s ∈ [t0, t]. Since the function s �→ D (s, x) is also continuous
on [t0, t], according to Dini’s theorem, D (·, xn) converges uniformly to D (·, x) on
[t0, t]. This implies the third statement of the lemma and the proof is finished.
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Lemma B.3 Let h, hn be bounded and continuous functions on a metric space
E, and μ, μn be finite measures on (E,B(E)). Suppose that the following two
conditions are satisfied:

1. The sequence of functions hn converges uniformly to h.
2. The sequence of measures μn converges weakly to μ.

Then, limn↑+∞
∫
E

hn dμn = ∫
E

h dμ.

Proof It can immediately be verified that

∣∣∣∣
∫

E

hn dμn −
∫

E

h dμ

∣∣∣∣
≤ sup

x∈E

∣∣∣∣h(x) − hn(x)

∣∣∣
∫

E

dμn +
∣∣∣
∫

E

h dμn −
∫

E

h dμ

∣∣∣∣ ,

which converges to 0 as n ↑ +∞.

Lemma B.4 Let 0 < t0 < t . The function k : R → R+ given by

k(x) :=
∫ t

t0

g (s, x) f (s) dLβ(s, x), x ∈ R ,

is bounded and continuous, where the function g is given by (15).

Proof Let us first restrict to a compact subset E of R. First, we prove the right-
and left-continuity, hence the continuity, of the function k. Let xn be a sequence from
E converging monotonically to x ∈ E. From Lemma B.2, we know that the bounded
and continuous functions g (·, xn) : [t0, t] → R converge uniformly to the bounded
and continuous function g (·, x) : [t0, t] → R as n → ∞. From Lemma A.6, we
obtain that the sequence of measures Lβ (·, xn) converges weakly to Lβ (·, x) as n →
∞. Applying Lemma B.3, we have that

lim
n→∞ k (xn) = lim

n→∞

∫ t

t0

g (s, xn) f (s) dLβ (s, xn)

=
∫ t

t0

g (s, x) f (s) dLβ (s, x) = k(x).

Consequently, the function k is continuous on E. The boundedness of k now fol-
lows from the compactness of E. In order to show that the statement also holds for
R, let us choose E = [−Mt − 1, Mt + 1] (see (27) for notation). As Lβ (s, x) = 0,
s ∈ [0, t], x /∈ [−Mt, Mt ] (see the proof of Lemma A.5), the statement follows.
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Appendix C

The Meyer approach to the compensator

Below, we briefly recall the approach developed by Meyer (1966) for computing
the compensator of a right-continuous potential of class (D). In this section, F =
(Ft )t≥0 denotes a filtration satisfying the usual hypothesis of right-continuity and
completeness.

We begin with the definition of a right-continuous potential of class (D). Let
X = (Xt , t ≥ 0) be a right-continuous F-supermartingale and let T be the collec-
tion of all finite F-stopping times relative to this family. The process X is said to
belong to the class (D) if the collection of random variables XT , T ∈ T is uniformly
integrable. We say that the right-continuous supermartingale X is a potential if the
random variables Xt are non-negative and if

lim
t→+∞E [Xt ] = 0.

Definition C.1 Let C = (Ct , t ≥ 0) be an integrable F-adapted right-continuous
increasing process, and let L = (Lt , t ≥ 0) be a right-continuous modification of
the martingale (E [C∞|Ft ] , t ≥ 0); the process Y = (Yt , t ≥ 0) given by

Yt := Lt − Ct

is called the potential generated by C.

The following result establishes a connection between potentials generated by an
increasing process and potentials of class (D). Let h be a strictly positive real number
and X = (Xt , t ≥ 0) be a potential of class (D), and denote by (phXt , t ≥ 0) the
right-continuous modification of the supermartingale

(
E
[
Xt+h|Ft

]
, t ≥ 0

)
.

Theorem C.2 Let X = (Xt , t ≥ 0) be a potential of class (D), let h > 0 and
Ah = (

Ah
t , t ≥ 0

)
be the process defined by

Ah
t := 1

h

t∫

0

(Xs − phXs) ds. (33)

Then, Ah is an integrable increasing process which generates a potential of class
(D) Xh = (

Xh
t , t ≥ 0

)
dominated by X, i.e., the process X − Xh is a potential. It

holds that

Xh
t = 1

h
E
[∫ h

0
Xt+s ds|Ft

]
, P-a.s., t ≥ 0 .

Proof See, e.g., (Meyer 1966), VII.T28.

An increasing process A = (At , t ≥ 0) is called natural (with respect to the fil-
tration F) if, for every bounded right-continuous F-martingale M = (Mt , t ≥ 0), we
have



Probability, Uncertainty and Quantitative Risk  (2017) 2:10 Page 19 of 21

E

⎡
⎢⎣
∫

(0,t]

Ms dAs

⎤
⎥⎦ = E

⎡
⎢⎣
∫

(0,t]

Ms− dAs

⎤
⎥⎦ , t > 0 .

It is well known that an increasing process A is natural with respect to F if and
only if it is F-predictable.

For the following definition of convergence in the sense of the weak topology
σ
(
L1, L∞), see (Meyer 1966), II.10.

Definition C.3 Let (ξn)n∈N be a sequence of integrable real-valued random vari-
ables. The sequence (ξn)n∈N is said to converge to an integrable random variable ξ

in the weak topology σ
(
L1, L∞) if

lim
n→+∞E [ξnη] = E [ξη] , for all η ∈ L∞ (P) .

Theorem C.4 Let X = (Xt , t ≥ 0) be a right-continuous potential of class (D).
Then, there exists an integrable natural increasing process A = (At , t ≥ 0) which
generates X, and this process is unique. For every stopping time T we have

Ah
T

σ(L1,L∞)−−−−−→
h↓0 AT .

Proof See, e.g., (Meyer 1966), VII.T29.

In the framework of the information-based approach, the process H =
(Ht , t ≥ 0), given by (9), is a bounded increasing process which is Fβ -adapted. It is
a submartingale and it can be immediately seen that the process G = (Gt , t ≥ 0),
given by (22), is a right-continuous potential of class (D). By Theorem C.2, the pro-
cesses Kh, h > 0, defined by (11), generate a family of potentials Gh dominated
by G.

Corollary C.5 There exists a unique integrable natural increasing process Kw =(
Kw

t , t ≥ 0
)
which generates the process G, defined by (22) and, for every F

β -
stopping time T, we have that

Kh
T

σ(L1,L∞)−−−−−→
h↓0 Kw

T ,

where Kh is the process defined by (11).

Proof See Theorem C.4.

Theorem C.6 (Compactness Criterion of Dunford–Pettis) LetA be a subset of the
space L1 (P). The following two properties are equivalent:

1. A is uniformly integrable;
2. A is relatively compact in the weak topology σ

(
L1, L∞).
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Proof See (Meyer 1966), II.T23.

Theorem C.7 Let (ξn)n∈N be a sequence of integrable random variables converg-
ing in probability to a random variable ξ . Then, ξn converges to ξ in L1(P) if and
only if (ξn)n∈N is uniformly integrable. If the random variables ξn are non-negative,
then (ξn)n∈N is uniformly integrable if and only if

lim
n→+∞E [ξn] = E[ξ ] < +∞ .

Proof See (Meyer 1966), II.T21.

Lemma C.8 Let (ξn)n∈N be a sequence of random variables and ξ, η ∈ L1 (P)

such that:

1. ξn

σ
(
L1,L∞)

−−−−−−→
n→+∞ η;

2. ξn → ξ, P-a.s.

Then, η = ξ, P-a.s.

Proof From condition (1), we see that (ξn)n∈N is relatively compact in the
weak-topology σ

(
L1, L∞). By Theorem C.6, it follows that the family (ξn)n∈N is

uniformly integrable. We also know that ξn → ξ P-a.s. Hence, by Theorem C.7, we

see that ξn → ξ in the L1-norm and, consequently, ξn

σ
(
L1,L∞)

−−−−−−→
n→+∞ ξ . The statement of

the lemma then follows by the uniqueness of the limit.
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