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Abstract

Background: Assessing calibration—the agreement between estimated risk and observed proportions—is an
important component of deriving and validating clinical prediction models. Methods for assessing the calibration of
prognostic models for use with competing risk data have received little attention.

Methods: We propose a method for graphically assessing the calibration of competing risk regression models. Our
proposed method can be used to assess the calibration of any model for estimating incidence in the presence of
competing risk (e.g., a Fine-Gray subdistribution hazard model; a combination of cause-specific hazard functions; or
a random survival forest). Our method is based on using the Fine-Gray subdistribution hazard model to regress the
cumulative incidence function of the cause-specific outcome of interest on the predicted outcome risk of the
model whose calibration we want to assess. We provide modifications of the integrated calibration index (ICl), of
E50 and of E90, which are numerical calibration metrics, for use with competing risk data. We conducted a series of
Monte Carlo simulations to evaluate the performance of these calibration measures when the underlying model
has been correctly specified and when the model was mis-specified and when the incidence of the cause-specific
outcome differed between the derivation and validation samples. We illustrated the usefulness of calibration curves
and the numerical calibration metrics by comparing the calibration of a Fine-Gray subdistribution hazards
regression model with that of random survival forests for predicting cardiovascular mortality in patients hospitalized
with heart failure.

Results: The simulations indicated that the method for constructing graphical calibration curves and the associated
calibration metrics performed as desired. We also demonstrated that the numerical calibration metrics can be used
as optimization criteria when tuning machine learning methods for competing risk outcomes.

Conclusions: The calibration curves and numeric calibration metrics permit a comprehensive comparison of the
calibration of different competing risk models.
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Background

Assessing calibration is an important component of de-
riving and validating clinical prediction models. Calibra-
tion refers to the agreement between predicted and
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observed risk [1, 2]. Methods for assessing calibration
for models for binary outcomes and for models for time-
to-event outcomes in the absence of competing risks
have been described previously [1-5].

In the analysis of time-to-event outcomes, a competing
risk is an event whose occurrence precludes the occur-
rence of the event of primary interest [6]. For example,
in a study in which the primary outcome is cardiovascu-
lar death, non-cardiovascular death is a competing risk
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since those who die of non-cardiovascular causes are no
longer at risk of death due to cardiovascular causes.
There is little information on methods to assess the cali-
bration of competing risk regression models (i.e., models
for time-to-event outcomes in the presence of compet-
ing risks) [7, 8].

When outcomes are time-to-event in nature, the ob-
jective of prognostic models is frequently focused on es-
timating the probability of the occurrence of the
outcome within a specified duration of time (i.e., the cu-
mulative incidence function (CIF)). In the presence of
competing risks, the complement of the Kaplan-Meier
estimate of the survival function results in biased estima-
tion of the CIF. Similarly, using a single Cox propor-
tional hazards model or a single cause-specific hazard
model will result in biased estimation of the CIF [6, 9,
10]. Instead, the CIF should be used to estimate crude
incidence. In multivariable settings, one can use a Fine-
Gray subdistribution hazard model to estimate the inci-
dence of time-to-event outcomes over time in the pres-
ence of competing risks [6, 9, 10]. The principle
alternative to using a Fine-Gray subdistribution hazard
model is to fit separate cause-specific hazard models for
each of the types of outcomes and calculate the CIF by
combining the individual cause-specific hazard models
[10]. Since conventional methods for the analysis of sur-
vival data cannot be used for predicting incidence in the
presence of competing risks, methods for assessing cali-
bration in the absence of competing risks are not applic-
able to settings with competing risks.

Methods for assessing the calibration of prognostic
models for use with competing risk data have received
little attention. To the best of our knowledge, we are
aware of only two described approaches for assessing
calibration of competing risk methods. First, Wolbers
and colleagues categorized subjects according to percen-
tiles of predicted risk [7]. Within each risk stratum, they
computed the mean predicted risk and the empirically
observed risk (estimated using a CIF) and then plotted
observed risk versus mean predicted risk across the risk
strata. Second, Gerds and colleagues described a method
for creating calibration curves for competing risks
models based on jackknife pseudo-values combined with
a nearest neighbour smoother [8]. While the former ap-
proach requires categorization of risk through the cre-
ation of risk strata, the latter approach uses a smoother
based on the observed risk for each subject.

The objective of this paper is to describe and evaluate
a new method for graphically and numerically assessing
the calibration of competing risk models. The paper is
structured as follows: In “Methods for assessing calibra-
tion of models for binary and time-to-event outcomes in
the absence of competing risks”, we summarize common
methods for assessing calibration of models for binary
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outcomes and models for time-to-event outcomes in the
absence of competing risks. In “Graphical calibration
curves and calibration metrics for competing risk
models”, we describe a method to compute smoothed
calibration curves for competing risk regression models.
We also describe how to compute numeric metrics for
summarizing calibration of competing risk regression
models. In “Monte Carlo simulations: Methods”, we de-
scribe a series of Monte Carlo simulations to evaluate
the ability of this method to assess calibration. In
“Monte Carlo simulations: Results”, we report the results
of these simulations. In “Case study”, we present a case
study illustrating the application of these methods when
comparing the calibration of two subdistribution hazard
models for predicting the incidence of cardiovascular
mortality after hospitalization for heart failure. Finally, in
“Conclusion”, we summarize our findings and place
them in the context of the literature.

Methods for assessing calibration of models for
binary and time-to-event outcomes in the
absence of competing risks

Calibration for binary events

When outcomes are binary, calibration refers to the
agreement between observed proportions and estimated
probabilities of the occurrence of the event or outcome.
Several methods have been proposed to assess calibra-
tion in this setting. First, the calibration intercept and
slope can be used [1, 2, 4]. These are estimated by using
logistic regression to regress the binary outcome on the
estimated linear predictor. These indicate whether the
mean predicted probability accurately estimates the
overall empirical probability of the outcome and whether
predicted probabilities display too little or too much
variation. Second, subjects can be divided into strata
based on the predicted probability of the outcome (e.g.,
dividing subjects into ten equally sized groups using the
deciles of the predicted probabilities). Then, within each
stratum, the mean predicted probability is computed
along with the empirically estimated probability of the
outcome (i.e., the crude estimated probability of the out-
come amongst all subjects in the given stratum; this is
the observed probability of the outcome). The mean pre-
dicted probability of the outcome (“predicted risk”) can
then be compared with the observed probability of the
outcome (“observed risk”) across strata. These can be
compared graphically, with deviations from a diagonal
line denoting lack of calibration. While this approach is
simple to implement, a limitation is the potential loss of
information resulting from binning subjects into strata
based on predicted risk. However, the comparison of
predicted and observed risk serves as a motivation for
the third method. Third, rather than dividing subjects
into strata based on the predicted probability of the
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outcome, smooth calibration curves based on local poly-
nomial regression (e.g., locally estimated scatterplot
smoothing (loess)) or flexible nonlinear models can be
produced [1-3]. This approach does not require dividing
subjects into risk strata but is based on estimating “ob-
served” risk using the loess regression smoother (or
a flexible nonlinear model). Thus, the “observed” risk is
the estimated probability of the outcome for a given
value of predicted risk, based on the loess regression
smoother (this model-based estimate of “observed” risk
will serve as a motivation for the adaption of this ap-
proach for use with competing risks). This allows for an
assessment of the agreement between observed and pre-
dicted risk across the spectrum of predicted risk, rather
than across a limited number of risk categories. Fourth,
numeric summary measures of calibration, such as the
integrated calibration index (ICI), E50, E90, and E,.,
can be reported [1, 11]. The ICI is the weighted differ-
ence between smoothed observed proportions and pre-
dicted probabilities, in which observations are weighted
by the empirical density function of the predicted prob-
abilities. The ICI is equivalent to the mean difference be-
tween predicted probabilities and observed probabilities
derived from a smoothed calibration curve. E50 and E90
denote the median and 90th percentile of the absolute
difference between observed and predicted probabilities.
E,ax denotes the maximum absolute difference between
observed and predicted probabilities of the outcome.

Extensions to survival outcomes in the absence of
competing risks

When outcomes are time-to-event in nature, calibration
typically refers to the agreement between observed and
estimated probabilities of the occurrence of the event
within a specified duration of time. Thus, if multiple
time points are of interest clinically, one would need to
assess calibration at each of these time points. The most
commonly used approach for assessing calibration ap-
pears to be a modification of the stratification-based ap-
proach described above for use with binary outcomes
[1]. Subjects are divided into strata based on the pre-
dicted probability of the occurrence of the event by time
t. Within each stratum, the mean predicted probability
of the occurrence of the event by time ¢ is computed.
Then, within each stratum, the observed probability of
the occurrence of the event by time ¢ is computed using
the complement of the Kaplan-Meier survival function
fit to the subjects in that stratum. The mean predicted
and observed probabilities can then be compared across
strata, possibly using a scatter plot and superimposing a
diagonal line on the resultant plot. A limitation of this
approach is that, in addition to the risk categories being
arbitrary, the categorization of predicted risk can lead to
a loss of precision [1] (page 506). Harrell, Crowson and
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colleagues, and Austin and colleagues have described
methods to create smoothed calibration curves for time-
to-event models [1, 5, 12]. These curves are modifica-
tions of the smoothed calibration curves for binary out-
comes that have been adapted for use with time-to-
event outcomes. The method recently described by Aus-
tin and colleagues was motivated by the use of locally es-
timated scatterplot smoothing (loess) for assessing the
calibration of models for binary outcomes. The hazard
of the outcome is regressed on the predicted outcome
risk using a flexible regression model. As with the loess-
based approach for binary models, the “observed” out-
come risk is the model-based estimate of outcome risk
for the given value of predicted outcome risk.

Graphical calibration curves and calibration
metrics for competing risk models

In this section, we describe methods for constructing
smoothed calibration plots for competing risk models
and how numerical calibration metrics can be derived
from these smoothed calibration curves. The described
approach is motivated by the recently proposed methods
for creating smoothed calibration curves for time-to-
event models in the absence of competing risks [5].

Graphical calibration curves

Motivated by comparable methods for binary outcomes
and for survival outcomes in the absence of competing
risks, our objective is to compare the agreement between
predicted and observed risk across the range of pre-
dicted risk. Model-based estimates will be obtained of
the observed risk of the outcome of interest in the pres-
ence of competing risks.

Let Fi(¢y| X) denote a model for estimating the cause-
specific cumulative incidence of the occurrence of an
event prior to time £, for a subject with covariate vector
X (we use the subscript “1” to denote that we are model-
ling the cause-specific cumulative incidence of type 1
events, accounting for competing risks of other event
types). While Fj(to| X), the estimate of predicted risk,
would often be estimated using a Fine-Gray subdistribu-
tion hazard model [13], other methods, including fitting
the cause-specific hazard models for all the different
types of events and combining the cause-specific hazard
functions can also be used [10]. We highlight the Fine-
Gray subdistribution hazard model as it is the most
frequently used method for estimating incidence in the
presence of competing risk. For each subject, let
I;, = F1(to|X) denote the predicted probability of the
occurrence of the outcome prior to time £, (i.e., the
estimated cumulative incidence function).

Our graphical method for assessing calibration in-
volves comparing the agreement between predicted and
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observed risk. Our approach for estimating observed risk
is motivated by the loess-based approach described
above for binary outcomes and by the modification of
that method that we have described for use with survival
outcomes in the absence of competing risks. In both of
those settings, a regression model was used to regress
the outcome (or the hazard of the outcome) on pre-
dicted risk (i.e., the predicted risk obtained from the
model whose calibration we want to assess). The result-
ant model-based estimate was used as the value of ob-
served risk corresponding to the given value of predicted
risk. Once the model whose calibration we want to as-
sess has been fit (note the prediction model whose cali-
bration we want to assess can be any type of model that
allows for estimating cumulative incidence in the pres-
ence of competing risks, not necessarily a Fine-Gray sub-
distribution hazard model), we propose using a Fine-
Gray subdistribution hazards model with restricted cubic
splines to model the relationship between the logarithm
of the subdistribution hazard of the cause-specific out-
come and the complementary log-log transformation of
the predicted probability of the cause-specific outcome
occurring prior to time #,, that is log(- log(1-1,)) (ie.,
the sole independent variable is the complementary log-
log transformation of the predicted probability of the
cause-specific outcome that was obtained from the
model whose calibration we want to assess). Based on
the fitted model, the probability of the occurrence of the
cause-specific outcome prior to time £, can be estimated

for each value of I, (note that the predicted probability

I;,was obtained using the model fit in the previous para-
graph, whose calibration one wants to assess). Analogous
with what was done for binary outcomes and survival
outcomes in the absence of competing risks, these esti-
mates serve as the estimates of observed risk. From these
estimated probabilities, a calibration curve can be con-
structed comparing predicted and observed risk. Note
that we use I,in the preceding function, to highlight that
calibration is being assessed at time £, with I denoting
the predicted probability of a cause-specific event occur-
ring prior to time t,. Furthermore, while the model
regressed the subdistribution hazard of the cause-
specific outcome on the complementary log-log trans-
formation of the predicted probability, we report results
on the probability scale for greater interpretability. For
each observed value of I;,, the estimated probability of
the occurrence of the cause-specific outcome occurring
prior to time £, is obtained. These are displayed graphic-
ally to produce a calibration plot for time #,.

Numerical metrics for calibration
Once a smoothed calibration curve has been con-
structed, one can compute the following numerical
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calibration metrics: ICI, E50, and E90. For each subject,
we have a predicted probability of the cause-specific out-
come occurring within time ¢. Then, using the smoothed
calibration curve, one can determine an estimate of the
smoothed observed probability of the cause-specific out-
come occurring within time . The ICI is computed as
the mean absolute difference between observed and pre-
dicted probabilities across the sample. This is equivalent
to the weighted absolute difference between the calibra-
tion curve and the diagonal line of best fit, where the
difference is weighted by the distribution of predicted
probabilities [11]. E50 is the median absolute difference
between observed and predicted probabilities, while E90
is the 90th percentile of the absolute difference between
observed and predicted probabilities. Let LO denote the
predicted probability of the occurrence of the outcome

prior to time t, and let isto denote the smoothed or pre-
dicted probability based on the smoothed calibration
curve (the latter is an estimate of the observed probabil-
ity of the outcome that corresponds to the given pre-

dicted probability). The ICL, =L | ~I, |, while
E50;, is the median of | iio—ito |across the sample, and E

90;, is the 90th percentile of | iio—ito lacross the sample.

Monte Carlo simulations: Methods

We conducted a sequence of six sets of Monte Carlo sim-
ulations to examine the ability of the method described
above to assess the calibration of competing risk regres-
sion models. The first set of simulations examined the
choice of the number of knots when using restricted cubic
splines to estimate observed risk when constructing a
smoothed calibration curve. The second set of simulations
examined the performance of our proposed method when
the fitted model was correctly specified and when censor-
ing was present. The third set of simulations was a more
extensive examination of the performance of the method
when the model was correctly specified and censoring was
absent (the absence of censoring allowed us to investigate
a wider range of scenarios). The fourth set of simulations
examined the performance of the method when the fitted
model omitted a quadratic term. The fifth set of simula-
tions examined the performance of the method when the
fitted model omitted a main effect. The sixth set of simu-
lations examined the performance of the method when
the fitted model was correctly specified, but the CIF was
different in the validation sample than in the derivation
sample.

Choice of number of knots for the restricted cubic spline
model

The number of knots used in the restricted cubic splines
when modelling the relationship between the
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subdistribution hazard of the cause-specific outcome (in
the model used for estimating observed risk) and the
predicted probability of the outcome (derived from the
model whose calibration we want to assess) within a
given duration of time can be thought of as a hyper-
parameter. We conducted a series of simulations to de-
termine the optimal number of knots when the under-
lying regression model was specified correctly.

We simulated data for a super-population consisting
of 1,000,000 subjects. For each subject, we simulated a
continuous covariate x, which can be thought of as a risk
score, from a standard normal distribution: x~N(0, 1).

We assume that there are two types of events: type 1
events (the primary event of interest) and type 2 events
(the competing event). When simulating event types and
event times, we used a method of indirect simulation de-
scribed by Beyersmann et al. [14] (Section 5.3.6), which
in turn is based on an approach described by Fine and
Gray [13]. This data-generating process is similar to that
used in previous studies by the first author [15, 16]. In
the data-generating process, the parameter p denotes the
proportion of subjects with covariate equal to 0 who ex-
perience the event of interest as ¢t — c. Furthermore, let
B1 and B, denote the logarithm of the subdistribution
hazard ratios for the single covariate for the primary
event and the competing event, respectively. Let S1x and
Box denote the linear predictor for the primary event
and competing risk, respectively. An event type indica-
tor, Z, was drawn from a Bernoulli distribution with
subject-specific parameter 1-(1-p) “?¥* (Z = 1 pri-
mary event; Z = 0 competing event). The time of the
competing event was drawn from an exponential distri-
bution with rate parameter ef2*: T, ~ exp(e:*). The

time of the primary event was generated as 77 = - log(
ePrx

~(1=((-u+1/¢) x (¢)"/*"-p)/p) , where ¢ =1-

(1—p)eﬁ1x and u~U(0,1). The observed event time was

determined as: ZT; + (1 — Z)T,. For this set of simula-
tions, f3; and 3, were fixed at 1 and 0.25, respectively.

We determined the 10th, 25th, 50th, 75th, and 90th
percentiles of event times (regardless of the type of
event) in the super-population. We refer to these times
as tio, tos, ts0, t7s, and tog, respectively. These are the
times at which we will assess calibration.

From the super-population, we drew a random sample
of size 1000. In this sample, we used a Fine-Gray subdis-
tribution hazards model to regress the subdistribution
hazard of the outcome on the single covariate X. The
calibration of the fitted model in the sample was
assessed using restricted cubic splines with k knots, as
described above. Smoothed calibration curves were con-
structed to evaluate the calibration of the fitted model at
the five times described above: tyg, ts5, t50, 75, and tog.

Page 5 of 22

This process was repeated 1000 times and the mean cali-
bration curve was estimated across the 1000 simulation
replicates (the values of each of the 1000 calibration
curves were evaluated along the same grid; for each
value on that grid, we determined the mean value across
the 1000 calibration curves). We considered three differ-
ent values for the number of knots: 3, 4, and 5. The
knots were located at specified percentiles in accordance
with Harrell's suggestion (i.e., for three knots, the loca-
tions were the 10th, 50th, and 90th percentiles) [1]. We
allowed one factor to vary in the simulations: the param-
eter p. We allowed p to take on three different values:
0.25, 0.50, and 0.75.

Correctly specified model in the presence of censoring
These simulations were similar to those described above
with three exceptions. First, we fixed the number of
knots for the restricted cubic spline model at three,
based on the results from the previous set of simula-
tions. Second, we introduced the presence of censoring
and allowed the proportion of subjects who were cen-
sored to vary across scenarios. We allowed the propor-
tion of subjects that were censored to range from 0 to
0.60 in increments of 0.20. Third, the sample size was
fixed at 2000.

In order to incorporate censoring, we modified the
data-generating process so that for each subject we
simulated an event time (using methods identical to
those described above) and a censoring time. Censor-
ing times were simulated from an exponential distri-
bution. For each subject, the observed survival time
was the minimum of the simulated event time and
the simulated censoring time. Subjects were consid-
ered censored observations if the censoring time was
less than the event time. A bisection approach was
used to determine the rate parameter for the expo-
nential distribution so that the proportion of cen-
sored subjects in the super-population was equal to
the desired value. Due to the presence of censoring,
we evaluated calibration at the specified quantiles of
the observed survival time in the large super-
population, rather than at the specified quantiles of
event times.

Correctly specified model in the absence of censoring

This set of simulations was similar to those described in
“Correctly-specified model in the presence of censoring”,
except that we did not incorporate censoring. The ra-
tionale for this modification was that it allowed us to
examine a wider variety of scenarios and to simplify the
presentation of the results. We allowed the following
two factors to vary (which had been fixed above): the
size of the random samples (three values: 500, 1000, and
2000) and f5; (the subdistribution log-hazard ratio for
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the primary outcome) (three values: 0.25, 0.50, and 1).
As above, p had three levels: 0.25, 0.50, and 0.75 and
Bowas fixed at 0.25. We thus considered 27 scenarios (3
sample sizes x 3 values of B; x 3 values of p) in a full
factorial design.

Model with quadratic relationship

The simulations described above evaluated the perform-
ance of the graphical calibration methods when the sur-
vival model was correctly specified. This further set of
simulations was similar to those described in “Correctly-
specified model in the absence of censoring”, with the
following modifications. Event times were simulated so
that the linear predictor for the subdistribution hazard
function for the primary outcome (5x above) was re-
placed with Byx +0.2581x4%. Thus, the logarithm of the
subdistribution hazard of the primary outcome has a
quadratic relationship with the continuous covariate x.
In each random sample of size N, a mis-specified Fine-
Gray subdistribution hazards model was fit. The model
incorporated only a linear term for x and omitted the x>
term. We considered the same 27 different scenarios
that were considered in “Correctly-specified model in
the absence of censoring”. We did not incorporate

censoring in this set of simulations as it was shown to
have no effect in the previous set of simulations (“Cor-
rectly-specified model in the absence of censoring” vs
“Correctly-specified model in the presence of censoring”)
and to simplify the presentation of the results.

Model with omitted main effect

This set of simulations was similar to those described in
“Correctly-specified model in the absence of censoring”,
with the following modifications. First, two covariates
were simulated from a multivariate normal distribution.
The mean of each covariate was equal to 0, while its
variance was equal to 1. The correlation between the
two covariates was set equal to p (see below). Event
times were simulated so that the linear predictor for the
subdistribution hazard function for the primary outcome
(B1x above) was replaced with 0.50x; + Syx,. Thus, the
logarithm of the subdistribution hazard of the primary
outcome was linearly related to each of the two covari-
ates. Furthermore, the linear predictor for the subdistri-
bution hazard function for the competing event was set
equal to 0.25x; + 0.25x,. In each random sample, a mis-
specified Fine-Gray subdistribution hazards model was
fit. The model incorporated only a linear term for x; and
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Fig. 2 ICI/E50/E90 in simulations for selecting the optimal number of knots (p = 0.50)

omitted the x, term. The size of each random sample
was fixed at 1000, while the parameter p (the proportion
of events that were type 1 events, as defined above) was
fixed at 0.50. We allowed two factors to vary: p and Js.
The correlation between the two covariates (p) took on
four values: 0, 0.25, 0.50, and 0.75. The regression
coefficient 3, took on 3 values: 0.25, 0.50, and 1. Using a
full factorial design, we thus considered 12 different
scenarios. We did not incorporate censoring in this set
of simulations as it was shown to have no effect in a
previous set of simulations and to simplify the presenta-
tion of the results.

The incidence of the outcome differs between the
derivation and validation samples

This set of simulations was similar to those described in
“Correctly-specified model in the absence of censoring”,
with the following modifications. Rather than simulate
one super-population, we simulated two super-
populations, such that the distribution of the baseline
covariate was the same in each of the two super-
populations. We fixed the following factors: 51, the sub-
distribution log-hazard ratio for the primary outcome,
was fixed at 0.50, and p was fixed at 0.50, while 3, was

fixed at 0.25. Outcomes were generated in the first
super-population using the data-generating process de-
scribed above. In the second super-population, we simu-
lated outcomes, not using p = 0.50, but using p =
p-validation (see below for values). We drew a random
sample of size 1000 from the first super-population and
a random sample of the same size from the second
super-population. These will serve as the derivation and
validation samples, respectively. The correctly specified
model was estimated in the derivation sample and was
then applied to the validation sample, where its calibra-
tion assessed. The factor p.validation was allowed to take
five different values: 0.3, 0.4, 0.5, 0.6, and 0.7 (p = 0.50
was included as a control to provide a benchmark
against to which compare different values of ICI, E50,
and E90). Thus, we considered scenarios in which the
proportion of subjects with covariate equal to 0 who ex-
perience the event of interest as ¢ — oo differs between
the derivation and validation samples.

Software

In these simulations, the subdistribution hazard models
were fit using the FGR function in the riskRegression
package (version 2019.11.03) for R (version 3.5.1).
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Restricted cubic splines were implemented using the
respline.eval function from the rms package (version 5.1-
4) for R.

Monte Carlo simulations: Results

In presenting the results of the simulations, we present
the results for the scenarios with p = 0.50 in the manu-
script and the results for the scenarios with p = 0.25 and
0.75 in the supplemental online appendix. In most in-
stances, results did not differ meaningfully between sce-
narios with p= 0.50 and scenarios with p = 0.25 or 0.75.

Number of knots for the restricted cubic splines

The mean estimated calibration curves across the 1000
simulation replicates are described in Fig. 1 for p = 0.50
and in Figs. Al and A2, in the supplemental online ap-
pendix, for p = 0.25 and 0.75. Each figure consists of five
panels, one for each of the five time points at which cali-
bration was assessed (£10, £25, t50, £75, and £op). Each panel
displays the mean calibration curve for each of the three
values of the number of knots (3, 4, and 5 knots). For
each value on the grid of predicted probabilities along
which the mean calibration curve was estimated (see
above), we also estimated the 2.5th and 97.5th

percentiles of the observed probabilities across the 1000
sampled datasets. Using these estimated percentiles, we
have superimposed curves for each of the three values of
the number of knots reflecting the variability in the esti-
mated calibration curve across the 1000 simulation repli-
cates. Across the five times at which we assessed
calibration and the three values of p, the choice of knot
(3 vs. 4 vs. 5) did not have an effect on the mean calibra-
tion curve. For all choices of knots, the mean calibration
curve coincided with the diagonal line denoting perfect
calibration. However, the estimated calibration curves
displayed slightly increasing variability across simulation
replicates as the number of knots increased from three
to five.

The mean estimated values of the ICI, E50, and E90,
along with their standard deviation (the standard devia-
tions of the different calibration metrics are reported as
error bars) across the 1000 simulated samples are re-
ported in Fig. 2 for p = 0.50 and in Figs. A3 and A4 in
the online supplemental appendix for p = 0.25 and 0.75.
Since a correctly specified model was fit, we want the
values of ICI, E50, and E90 to be close to 0. For all com-
binations of time points (t10, 25, £50, £75, and top), values
of p, and metrics (ICI, E50, and E90), mean calibration
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was better when three knots were used than when four
or five knots were used. Furthermore, differences be-
tween the choice of number of knots increased as the
quantile of survival time increased (e.g., differences be-
tween ICI for different numbers of knots was marginal
for 10, while it was larger for to0).

Based on the results of these simulations, we con-
cluded that the use of three knots is preferable to the
use of four or five knots when using restricted cubic
splines to compute calibration curves. Accordingly, this
value was used in all subsequent simulations. Note that
the optimal number of knots may vary depending on the
complexity of the calibration curve, that is the complex-
ity of the pattern of mis-calibration.

Correctly specified regression model in the presence of
censoring

The mean estimated calibration curves across the
1000 simulation replicates are described in Fig. 3 for
p = 050 and in Figs. A5 and A6 for p = 0.25 and
0.75. Each calibration curve is restricted to a range of
predicted probabilities ranging from the 1°* to the
99™ percentiles of risk in the population. Each figure
consists of five panels, one for each of the five time
points at which calibration was assessed (f19, L25, L50,

t75, and tog). Each panel depicts the mean calibration
curve for the given method of constructing calibration
curves, along with lines denoting the 2.5th and 97.5th
percentiles of the calibration curves across the 1000
simulation replicates. This pair of curves provides an
assessment of the variability of the calibration curves
across simulation replicates. There is one set of
curves for each of the different degrees of censoring.
On each panel, we have superimposed a diagonal line
denoting perfect calibration. On each panel, we have
also superimposed non-parametric estimates of the
density of the predicted probabilities in the large
super-population (right vertical axis). Note that there
is a separate density function for each of the different
degrees of censoring (note that the density function
differs across the different degrees of censoring be-
cause the time points at which calibration is assessed
differ across these scenarios).

Regardless of the degree of censoring, our proposed
method resulted in calibration curves that were close
to the diagonal line of perfect calibration over the
range of predicted probabilities in which most sub-
jects lay.

The mean estimated values of calibration metrics
are reported in Fig. 4 for p = 0.50 and in Figs. A7



Austin et al. Diagnostic and Prognostic Research (2022) 6:2

Page 10 of 22

10th percentile of event time

25th percentile of event time

50th percentile of event time

0.15
I

Observed probability
0.10

Observed probability

Observed probability
0.2 0.3 0.4 0.5 0.6 0.7
] ] ] ] ] ]

0.1

0.10 0.15 0.20

Predicted probability

75th percentile of event time

Predicted probability

90th percentile of event time

T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Predicted probability

0.8
I

0.8

0.6
I

0.4

Observed probability
0.4

Observed probability

0.2
0.2
L

= = N=500 (mean)
<+ + N=1000 (mean)
« = N=2000 (mean)
-~ N =500 (2.5th/97.5th)
N = 1000 (2.5th/97.5th)
- N =2000 (2.5th/97.5th)

0.2 0.4 0.6 0.8 0.2 0.4

Predicted probability

Fig. 5 True model fitted with no censoring (3; = 0.50 and p = 0.50)

Predicted probability

0.6 0.8

and A8 for p = 0.25 and 0.75. Since the fitted model
was correctly specified, we want the values of the
calibration metrics to be close to 0. Each metric
tended to be close to 0 for most settings and times at
which calibration was assessed. For each metric, the
mean estimated metric tended to increase as the per-
centile of survival time at which calibration was
assessed increased. Furthermore, the estimated met-
rics displayed greater variability across simulation rep-
licates as the percentile of survival time at which
calibration was assessed increased.

Correctly specified regression model in the absence of
censoring

The mean estimated calibration curves across the
1000 simulation replicates are described in Fig. 5 for
the scenario with B imary = 0.50 and p = 0.50. Results
for the other eight combinations of these two factors
are summarized in Figs. A9 to Al6. Each figure con-
sists of five panels, one for each of the five percen-
tiles of survival time at which calibration was
assessed. In each panel, we report the mean esti-
mated calibration curve (along with confidence
limits) for the scenarios with N = 500, 1000, and

2000. In 26 of the 27 scenarios, the mean calibration
curve coincided with the diagonal line denoting per-
fect calibration. The one exception (Fig. A9) oc-
curred with N = 500, Byrimary =0.25, and p = 0.25
when assessing calibration at the 10th and 25th per-
centiles of event time. In this one setting, minor de-
viation from the line of perfect calibration was
assessed. We suspect that this one deviation is due
to the low number of primary events that would be
observed in this scenario. Across the scenarios, the
estimated calibration curves displayed less variability
across simulation replicates as the sample size
increased.

The mean estimated calibration metrics (along with
their standard deviations across the simulation repli-
cates) are reported in Fig. 6 for p = 0.50 and Figs.
A17 and A18 for p = 0.25 and 0.75. Since the cor-
rectly specified model was fit, we want the calibration
metrics to be close to 0. We observe that as sample
size increases and as fpimary increases, the mean esti-
mated metric tended to become closer to 0. Each
calibration metric diverged from 0 and displayed
more variability as the time at which calibration was
assessed increased.
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Incorrectly specified regression model: omission of a
quadratic term

The mean estimated calibration curves across the 1000
simulation replicates are described in Fig. 7 for B,rimary =
0.5 and p = 0.50. Results for the other eight combina-
tions of these two factors are summarized in Figs. A19
to A26. The figures have a similar structure to those de-
scribed in “Correctly-specified regression model in the
absence of censoring”. In all figures, the mean calibra-
tion curves differed from the diagonal line of perfect
calibration. The mean calibration curves tended to have
an approximately quadratic shape, providing evidence
that a quadratic term had been omitted from the model.
The variation displayed by the calibration curves de-
creased with increasing sample size.

The mean estimated values of the ICI, E50, and E90
are reported in Fig. 8 for p = 0.50 and in Figs. A27 and
A28 for p = 0.25 and 0.75. Since the quadratic term was
omitted from the model, we want the values of the cali-
bration metrics to be different from 0, indicating that
the models are miscalibrated. For a given sample size,
we observe that the mean calibration metric (ICI, E50,
and E90) tended to increase as the value of B imary in-
creased. As expected, the variability of the estimated

metric across simulation replicates decreased with in-
creasing sample size. In comparing this set of figures
with the corresponding set of figures for when the cor-
rectly specified model was fit, we observe that, across all
27 scenarios and 5 percentiles of survival time, the esti-
mated metrics were larger when the incorrectly specified
model was fit compared to when the correctly specified
model was fit.

Incorrectly specified regression model: omission of a
main effect
The mean estimated calibration curves across the 1000
simulation replicates are described in Fig. 9 for the three
scenarios involving p = 0. Results for the other 9 combi-
nations of the two factors are summarized in Figs. A29
to A31. In all figures, the mean calibration curves did
not differ from the diagonal line of perfect calibration.
The mean estimated values of the ICI, E50, and E90
are reported in Fig. 10 for all 12 scenarios. For all cali-
bration metrics (ICI, E50, and E90), and for a given time
at which calibration was assessed, the value of the metric
did not vary across the 12 different scenarios. Across all
12 scenarios and all five times at which calibration was
assessed, the mean calibration metric was not
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meaningfully different from 0 and therefore did not
identify miscalibration due to the omission of a main ef-
fect. For a given scenario and metric, the mean metric
increased as the time at which calibration was assessed
increased.

The incidence of the outcome differs between the
derivation and validation samples

The mean estimated calibration curves across the 1000
simulation replicates are described in Fig. 11 for all five
scenarios. Across all four scenarios in which p.valid was
different from 0.50 and across all five times at which
calibration was assessed, the mean calibration curve de-
viated from the diagonal line of perfect calibration. In
contrast, as expected, when the parameter p was the
same in both populations, the mean calibration curve
did not deviate from the line of perfect calibration.

The mean estimated values of the ICI, E50, and E90
are reported in Fig. 12 for all five scenarios. For all cali-
bration metrics (ICI, E50, and E90), and for a given time
at which calibration was assessed, the value of the metric
increased. As p.valid diverged from 0.50, the value of
each of the three metrics increased compared to that

observed when the value of p.valid was 0.50 (the value in
the derivation population).

Case study

We provide a case study to illustrate the utility of
graphical methods for assessing the calibration of
competing risk regression models. In the biomedical
literature, there is an increasing interest in comparing
the performance of conventional statistical methods
with machine learning methods for predicting out-
comes for patients with cardiovascular disease [17—
20]. Given this interest, we compare the calibration of
a Fine-Gray proportional subdistribution hazard
model (a conventional statistical model) with that of
a random survival forest for competing risk data (a
machine learning method) for predicting the inci-
dence of cardiovascular mortality. We assess the cali-
bration of predictions of the probability of death
within 1, 2, 3, 4, and 5 years using each approach.

In the current case study, we focus only on assessing
the calibration of models for predicting the incidence of
cardiovascular death. Predicting the incidence of cardio-
vascular death is important as it can inform medical de-
cision. However, the risk of all-cause mortality is also
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important from a patient’s perspective. Thus, knowledge
of both the risk of all-cause mortality and cause-specific
mortality is important. The calibration of models for all-
cause mortality can be assessed using the methods de-
scribed above. However, this is not the focus of the
current case study.

Data sources

The Enhanced Feedback for Effective Cardiac Treat-
ment (EFFECT) Study was an initiative to improve
the quality of care for patients with cardiovascular
disease in Ontario [21]. During the first phase, de-
tailed clinical data were collected on patients hospital-
ized with congestive heart failure (CHF) between
April 1, 1999, and March 31, 2001, at 86 hospital
corporations in Ontario, Canada. During the second
phase, data were abstracted on patients hospitalized
with this condition between April 1, 2004, and March
31, 2005, at 81 Ontario hospital corporations. Data
on patient demographics, vital signs and physical
examination at presentation, medical history, and re-
sults of laboratory tests were collected for these two
samples. In this case study, the first phase of the EF-
FECT sample will be used for model derivation, while
the second phase will be used as an independent

validation sample from a different temporal period.
For the current case study, 8238 and 7608 subjects
were available from the first and second phases, re-
spectively. By using an independent validation sample
from a different era we will be assessing external val-
idation of the estimated prediction models. This is
distinct from internal validation, in which the per-
formance of a model is assessed in the sample in
which it was derived (or which is statistically identical
to that in which it was developed).

The outcome for the case study was time from hos-
pital admission to cardiovascular death, with subjects
censored after 5 years of follow-up if death had not
yet occurred. Death due to non-cardiovascular causes
was treated as a competing risk. In the first phase of
the study, 41.5% and 27.1% of patients died of cardio-
vascular and non-cardiovascular causes, respectively,
within 5 years of hospital admission. In the second
phase of the study, 37.2% and 30.2% of patients died
of cardiovascular and non-cardiovascular causes, re-
spectively, within 5 years of hospital admission. Of
note, for interpreting subsequent results, the 5-year
incidence of cardiovascular death decreased, while
that of non-cardiovascular death increased between
the two studies periods.
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Methods

The candidate predictor variables considered in this case
study were: age, sex, systolic blood pressure, heart rate,
respiratory rate, neck vein distension, S3, S4, rales > 50%
of lung field, pulmonary edema, cardiomegaly, diabetes,
cerebrovascular disease/transient ischemic attack, previ-
ous acute myocardial infarction, atrial fibrillation, per-
ipheral vascular disease, chronic obstructive pulmonary
disease, dementia, cirrhosis, cancer, left bundle branch
block, haemoglobin, white blood count, sodium, potas-
sium, glucose, urea, and creatinine.

We fit a Fine-Gray proportional subdistribution hazard
model in the derivation sample (EFFECT phase 1) in
which the subdistribution hazard of cardiovascular mor-
tality was regressed on all the variables listed above. The
fitted model was then applied to the independent valid-
ation sample (EFFECT phase 2). We also fit two random
survival forests, each of which accounted for the com-
peting risk of non-cardiovascular death, in the derivation
sample, in which the hazard of cardiovascular mortality
was modelled using the covariates listed above [22]. For
each random survival forest, 1000 survival trees were
grown. In the first random forest, we used the default
value for the node size parameter (forest average

number of unique cases in a terminal node; default =
15). In the second random forest, we used fivefold cross-
validation in the derivation sample to determine the op-
timal node size. The optimal node size was 150, when
using ICI at 1 year in the derivation sample as the
optimization criterion. This latter analysis illustrates the
utility of a numerical calibration metric for use in tuning
machine learning methods. The fitted survival forests
were then applied to the independent validation sample.
We evaluated the calibration of these methods in the
validation sample at 1, 2, 3, 4, and 5 vyears post-
admission. Graphical calibration curves were computed,
as were ICI, E50, and E90. Calibration metrics were esti-
mated using the crprep function from the mstate pack-
age (version 0.2.11) for R combined with the cph
function from the rms package (version 5.1-4) [23]. R
code for conducting these analyses is provided in the
Appendix.

Results

The calibration plots for the two methods of estimating
the risk of cardiovascular death are described in Fig. 13.
This figure consists of five panels, one each for assessing
calibration at 1, 2, 3, 4, and 5 years post-admission. As



Austin et al. Diagnostic and Prognostic Research (2022) 6:2 Page 15 of 22
P
ICI E50 E90
B rho=0/B2=0.25
B rho=0/B2=0.5
W rho=0/B2=1
B rho=0.25/B2=0.25

10th percentile 10th percentile

25th percentile

25th percentile

50th percentile

50th percentile

75th percentile

75th percentile

90th percentile 90th percentile

Sl S e

i i A

10th percentile
rho=0.25/B2=0.5

rho=0.25/B2=1
rho=0.5/B2=0.25
rho=0.5/B2=0.5
rho=0.5/B2=1
rho=0.75/B2=0.25
rho=0.75/B2=0.5
rho=0.75/B2=1

25th percentile
50th percentile
75th percentile

= =

90th percentile

T T 1 T
0 0.0125 0.025 0.0375 0
ICI

Fig. 10 ICI/E90/E90 for incorrectly specified model (omission of main effect)

0.0125 0.025 0.0375 0 0.0125 0.025 0.0375
E50 E90

J

in the previous figures, we have assessed calibration over
an interval ranging from the 1st percentile of predicted
probabilities to the 99th percentile of predicted probabil-
ities. On each panel, we superimposed the density func-
tions for the predicted probabilities of death as derived
from each of the three prediction models. The distribu-
tion of predicted risks from the Fine-Gray model was
more right-skewed than the distribution arising from the
random survival forest with node size equal to 150, at
each of the five times at which calibration was assessed.
Thus, there were more subjects who had large predicted
probabilities arising from the Fine-Gray model than
from the random survival forest.

In examining Fig. 13, one observes that, when predict-
ing the incidence of cardiovascular death within 1 and 2
years, the Fine-Gray model and the random survival for-
est with the optimal node size (150) had comparable
calibration when the predicted probability of cardiovas-
cular death was less than 0.30. For predicted values
above this level, the random survival forest tended to
have better calibration. When predicting incidence
within 3, 4, and 5 years, the Fine-Gray model tended to
display better calibration when the predicted incidence
was less than 0.40, while the random survival forest dis-
played better calibration when the predicted incidence

was above 0.40. In general, for both methods, predicted
incidence tended to be higher than observed incidence.
This overprediction is not surprising, given that the inci-
dence of cardiovascular death was higher in the phase 1
sample than in the phase 2 sample.

The estimated ICI, E50, and E90 are reported in Fig.
14. ICI was closer to 0 for the random forest with opti-
mal node size than for the Fine-Gray model for predict-
ing incidence at 1, 2, and 3 years, while the converse was
true for predicting incidence at 4 and 5 years. E50 was
lower for the Fine-Gray model than for the random for-
est at all five time points, while the converse was true
for E90 at four of the five time points. This suggests that
the “central miscalibration” (median of the absolute dif-
ference between predicted outcome risk and observed
outcome risk) was smaller (better) for the FG model
while the extremes of miscalibration (90th percentile of
the absolute difference between predicted outcome risk
and observed outcome risk) were smaller for the random
forest. The extremes of miscalibration were also influ-
enced by more heterogeneous risk predictions of the FG
model, potentially leading to more pronounced miscali-
bration at the extremes of the predicted risk distribution
(density plots of Fig. 13). The lack of agreement between
the different metrics suggests that reporting all three
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metrics will allow for a more comprehensive comparison
of the calibration of different models.

In comparing the calibration of the two random sur-
vival forests in the validation sample, we observe a sub-
stantial improvement in calibration for models in which
the node size was tuned in the derivation sample com-
pared to when the forest was grown using default set-
tings. This illustrates the usefulness of a numeric
calibration metric when tuning parameters of machine
learning methods.

For comparative purposes, we compared our pro-
posed methods for assessing calibration with two
other approaches. As comparators, we considered the
method described by Wolbers and colleagues, in
which subjects are categorized according to the dec-
iles of predicted risk [7]. Then, within each of the 10
risk strata, we compared the mean predicted risk and
the empirically observed risk. We also used the
method proposed by Gerds and colleagues based on
jackknife pseudo-values combined with a nearest
neighbour smoother [8]. We restricted our compari-
son of the different methods for assessing calibration
to assessing calibration at 5 years. We assessed the
calibration of the Fine-Gray subdistribution hazard

model and the two random survival forests using the
three different approaches. The comparison of
methods for assessing calibration is reported in Fig.
15. There is one panel for each of the three predic-
tion methods. The method based on the use of risk
strata was unable to assess calibration at the extremes
of predicted risk, as it was based on a categorization
of risk. The three methods tended to result in a simi-
lar assessment of calibration for non-extreme values
of predicted risk. Our proposed method and that of
Wolbers and colleagues tended to disagree at the ex-
tremes of predicted risk. However, the direction of
disagreement was not consistent. For example, our
proposed method showed that the Fine-Gray model
had better calibration at the extremes of predicted
risk than did the assessment using Wolber’s method.
However, Wolber’'s method showed that the random
survival forest with node size = 150 had better cali-
bration at the extremes of predicted risk than did the
assessment using our proposed method. However,
apart from these disagreements at the extremes of
predicted risk (where there are few subjects—see Fig.
13), the two methods produced comparable
assessments.
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Conclusion

We described a method for constructing smoothed cali-
bration curves for assessing the calibration of models for
time-to-event outcomes in the presence of competing
risks. From these smoothed calibration curves, three dif-
ferent numerical calibration metrics can be derived that
quantify differences between predicted and observed
probabilities. The use of these graphical calibration
curves allows for an assessment of the calibration of
competing risk models. The numeric calibration metrics
will facilitate the comparison of the calibration of differ-
ent models for competing risk data. Furthermore, as was
done in our case study, the numeric calibration metrics
can be used as optimization parameters when tuning
machine learning methods.

Assessing calibration of prediction models is most use-
ful in the context of external validation. The case study
illustrated the usefulness of our framework when asses-
sing model calibration in independent datasets. The
framework may also be useful when assessing calibration
of a model in the same data that was used for develop-
ment of the model (apparent validation), because it iden-
tifies incorrect specification of, especially continuous,
predictors. When the framework is used for assessing
calibration as part of an internal validation—testing and

validating the model in disjoint random subsets of the
original data—the emphasis will be on understanding
the amount of overfitting of the model, and on the need
for parameter shrinkage.

Calibration is one aspect of assessing the accuracy of
prediction models. Another important aspect of assessing
the accuracy of prediction models is assessing discrimin-
ation. Methods for assessing the discrimination of predic-
tion models for competing risks have been described
elsewhere [24]. There is an extensive literature on asses-
sing calibration of models for binary outcomes and sur-
vival outcomes in the absence of competing risks [1-5, 12,
25]. In clinical and epidemiological research, there is an
increasing awareness of the importance of accounting for
competing risks when analysing survival outcomes. As
noted in the Introduction, only two prior studies have
proposed for assessing the calibration of competing risk
regression [7, 8]. An advantage of our proposed approach
over the first method is that it avoids the categorization of
predicted risk, which can be subjective and can lead to the
loss of information. A further advantage of our approach
is that is a natural extension to previously described
methods for constructing smoothed calibration curves for
binary outcomes or survival outcomes in the absence of
competing risks [1-3, 5, 12].
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We have described how to assess calibration of com-
peting risk models using the Fine-Gray subdistribution
hazard model to estimate observed risk at each level of
predicted risk, thereby permitting construction of
smoothed calibration curves. We focused on the use of
the Fine-Gray model for estimating observed risk when
constructing smoothed calibration curves, as it is the
method most frequently used in the biomedical litera-
ture for estimating incidence in the presence of compet-
ing risks. However, alternatives exist to the Fine-Gray
model, including fitting separate cause-specific hazard
models for each of the different types of outcomes and
then estimating the CIF by combining the individual es-
timated cause-specific hazard functions [10]. Our ap-
proach to assessing calibration does not require the use
of the Fine-Gray model. Instead, any method that allows
for estimating the CIF as a function of a continuous co-
variate can be used. We have recently shown that the
use of the Fine-Gray model can have undesirable effects
when one wants to estimate the incidence of all of the
different competing events [26]. In such settings, the use
of the separate cause-specific hazard models may be
preferable. Our primary rationale for focusing on the
subdistribution hazard model in the current application

was due to it being the most popular method to estimate
the CIF in the presence of competing risks and we were
interested in a single outcome type, and not all of the
cause-specific outcomes.

There are certain limitations to the current study. Our
evaluation of graphical calibration curves and calibration
metrics for use with competing risk regression models
was based on Monte Carlo simulations. Due to the com-
putational intensity of these simulations, we were only
able to examine a limited number of scenarios. These
simulations were not intended to be comprehensive. In-
stead, we illustrated that the calibration curves per-
formed as intended when the model was correctly
specified and that they were able to identify mis-
specification due to omission of a quadratic term. Fur-
thermore, they were able to identify miscalibration when
the incidence of the outcome differed in the validation
sample than in the derivation sample. However, they did
not identify model mis-specification due to omission of
a main effect. However, rather than concluding that our
metrics are insensitive to this form of mis-specification,
we argue that omission of a main effect from the
model—a typical phenomenon in practice—does not ne-
cessarily lead to substantial miscalibration when the
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model is validated in a sample with the same covariate
distribution. We provide a simple example for why this
may be true. Consider a scenario in which the effect of
age differs by sex. If sex is omitted from the prognostic
model, we will estimate a weighted age effect in the der-
ivation sample. These age effects may be well calibrated
in a population with the same sex distribution but will
be miscalibrated in populations with different sex distri-
butions. In external validation samples with different co-
variate distributions—as is commonly observed in
practice, and was also observed in the case study—our
framework does identify miscalibration. While we exam-
ined a large number of scenarios in our Monte Carlo
simulations, there are scenarios that were not examined.

The focus of the current study was on methods to as-
sess the calibration of a prognostic model for use in the
presence of competing risks (e.g., a Fine-Gray subdistri-
bution hazard model or a method based on combin-
ing the cause-specific hazard functions). We have not
addressed the issue of assessing whether the propor-
tional hazards assumption holds for the prognostic
model. However, our proposed method of estimating
observed risk uses a Fine-Gray subdistribution hazard
model, which requires the proportional hazard

assumption. The impact of the violation of the propor-
tional hazards assumption for the model used to estimate
observed risk when constructing smooth calibration
curves is not clear. For the Cox model in standard survival
analysis in the absence of competing risks, if one applies
administrative censoring at the prediction horizon (the
time at which one wants to estimate survival probabilities)
then, in the presence of non-proportional hazards, the
predictions based on the Cox model at that prediction
horizon will be approximately correct [27, 28]. While it is
not known if this is true for the Fine-Gray model, we
speculate that the same result will hold and that it might
be advisable to apply administrative censoring when asses-
sing calibration in the presence of competing risks if one
suspects that the proportional hazards assumption is vio-
lated for the model used for estimating observed risk.

In summary, we have described and evaluated a
method for constructing calibration curves and numer-
ical calibration metrics for models for time-to-event out-
comes in the presence of competing risks. The use of
graphical calibration curves constructed using Fine-Gray
subdistribution hazard models allows for an assessment
of the calibration of competing risk models. Using this
approach, the calibration of any model for estimating
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incidence in the presence of competing risks, and not
just the Fine-Gray model, can be assessed. The numeric
calibration metrics will facilitate the comparison of the
calibration of different models for competing risk data.

Supplementary Information
The online version contains supplementary material available at https://doi.
0rg/10.1186/541512-021-00114-6.

Additional file 1. Figure S1. RCS: Choice of number of knots (p = 0.25).
Figure S2. RCS: Choice of number of knots (p = 0.75). Figure S3. ICl/
E50/E90 in simulations for selecting the optimal number of knots (p =
0.25). Figure S4. ICI/E50/E90 in simulations for selecting the optimal
number of knots (p = 0.75). Figure S5. Effect of degree of censoring on
estimated calibration curves (N = 2000 and p = 0.25). Figure S6. Effect
of degree of censoring on estimated calibration curves (N = 2000 and p
= 0.75). Figure S7. ICI/E90/E90 for correctly—specified model and
censoring (N = 2000 and p = 0.25). Figure S8. ICI/E90/E90 for correctly
—specified model and censoring (N = 2000 and p = 0.75). Figure S9.
True model fitted with no censoring (betal = 0.25 & p = 0.25). Figure
$10. True model fitted with no censoring (betal = 0.25 & p = 0.50).
Figure S11. True model fitted with no censoring (betal = 0.25 & p =
0.75). Figure S12. True model fitted with no censoring (betal = 0.50 & p
= 0.25). Figure S13. True model fitted with no censoring (betal = 0.50 &

p = 0.75). Figure S14. True model fitted with no censoring (betal =1 &
p = 0.25). Figure S15. True model fitted with no censoring (betal = 1 &
p = 0.50). Figure S16. True model fitted with no censoring (betal = 1 &
p = 0.75). Figure S17. ICI/E90/E90 for correctly—specified model without
censoring (p = 0.25). Figure S18. ICI/E90/E90 for correctly—specified
model without censoring (p = 0.75). Figure S19. Mis—specified model
(betal = 0.25 & p = 0.25). Figure S20. Mis—specified model (betal =
0.25 & p = 0.50). Figure S21. Mis—specified model (betal = 025 & p =
0.75). Figure S22. Mis—specified model (betal = 0.50 &amp; p = 0.25).
Figure S$23. Mis—specified model (betal = 0.50 & p = 0.75). Figure S24.
Mis—specified model (betal = 1 & p = 0.25). Figure S$25. Mis—specified
model (betal = 1 & p = 0.50). Figure S26. Mis—specified model (betal =
1 & p = 0.75). Figure 527. ICI/E90/E90 for incorrectly—specified model (p =
0.25). Figure $28. ICI/E90/E90 for incorrectly—specified model (p = 0.75).
Figure $29. Mis—specified model (omission of main effect) (rho=0.25).
Figure $30. Mis—specified model (omission of main effect) (rho=0.50).
Figure S31. Mis—specified model (omission of main effect) (tho=0.75). R
code for constructing calibration curves and numerical metrics of
calibration using restricted cubic splines.

Acknowledgements
We would like to thank Ewout Steyerberg for commenting on a draft of the
manuscript.


https://doi.org/10.1186/s41512-021-00114-6
https://doi.org/10.1186/s41512-021-00114-6

Austin et al. Diagnostic and Prognostic Research (2022) 6:2

Authors’ contributions

PA designed the simulations, conducted the statistical analyses, and drafted
the manuscript. HP, DG, and DVK provided input on the study design and
analyses and revised the manuscript. All authors read and approved the final
manuscript.

Authors’ information
Not applicable

Funding

This study was supported by ICES, which is funded by an annual grant from the
Ontario Ministry of Health (MOH) and the Ministry of Long-Term Care (MLTC).
The opinions, results, and conclusions reported in this paper are those of the
authors and are independent from the funding sources. No endorsement by
ICES or the Ontario MOH or MLTC is intended or should be inferred. Parts of this
report are based on Ontario Registrar General (ORG) information on deaths, the
original source of which is ServiceOntario. The views expressed therein are
those of the author and do not necessarily reflect those of ORG or the Ministry
of Government and Consumer Services. This research was supported by an
operating grant from the Canadian Institutes of Health Research (CIHR) (PJT
166161). Dr. Austin is supported in part by a Mid-Career Investigator Award
from the Heart and Stroke Foundation of Ontario. Dr. van Klaveren is supported
by the Patient-Centered Outcomes Research Institute (grant ME-1606-35555).
The funding bodies had no role in the design of the study nor in the collection,
analysis, and interpretation of data, nor in writing the manuscript.

Availability of data and materials

The data sets used for this study were held securely in a linked, de-identified form
and analysed at ICES. While data sharing agreements prohibit ICES from making
the data set publicly available, access may be granted to those who meet pre-
specified criteria for confidential access, available at www.ices.on.ca/DAS.

Declarations

Ethics approval and consent to participate

The use of the data in this project is authorized under section 45 of Ontario’s
Personal Health Information Protection Act (PHIPA) and does not require
review by a Research Ethics Board.

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details

Y|CES, G106, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.
?Institute of Health Management, Policy and Evaluation, University of
Toronto, Toronto, Ontario, Canada. 3Sunnybrook Research Institute, Toronto,
Ontario, Canada. *Department of Biomedical Data Sciences, Leiden University
Medical Centre, Leiden, The Netherlands. *Division of Molecular Pathology,
The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital,
Amsterdam, The Netherlands. ®Institute for Biomedicine (affiliated with the
University of Libeck), Eurac Research, Bolzano, Italy. ‘Department of Public
Health, Erasmus MC, Rotterdam, The Netherlands. ®Predictive Analytics and
Comparative Effectiveness Center, Institute for Clinical Research and Health
Policy Studies, Tufts Medical Center, Boston, USA.

Received: 12 August 2021 Accepted: 6 December 2021
Published online: 17 January 2022

References

1. Harrell FE Jr. Regression modeling strategies. Second ed. New York, NY:
Springer-Verlag; 2015. https://doi.org/10.1007/978-3-319-19425-7.

2. Steyerberg EW. Clinical prediction models. Second ed. New York: Springer-
Verlag; 2019. https://doi.org/10.1007/978-3-030-16399-0.

3. Austin PC, Steyerberg EW. Graphical assessment of internal and external
calibration of logistic regression models by using loess smoothers. Stat Med.
2014;33(3):517-35. https//doi.org/10.1002/sim.5941.

4. Cox DR. Two further applications of a model for binary regression.
Biometrika. 1958;45(3-4):592-65.

20.

21,

22.

23.

24,

25.

Page 21 of 22

Austin PC, Harrell FE Jr, van Klaveren D. Graphical calibration curves and the
integrated calibration index (ICl) for survival models. Stat Med. 2020,39(21):
2714-42. https.//doi.org/10.1002/5im.8570.

Austin PC, Lee DS, Fine JP. Introduction to the analysis of survival data in
the presence of competing risks. Circulation. 2016;133(6):601-9. https://doi.
org/10.1161/CIRCULATIONAHA.115.017719.

Wolbers M, Koller MT, Witteman JC, Steyerberg EW. Prognostic models with
competing risks: methods and application to coronary risk prediction.
Epidemiology. 2009,20(4):555-61. https://doi.org/10.1097/EDEOb013e3181a3
9056.

Gerds TA, Andersen PK, Kattan MW. Calibration plots for risk prediction
models in the presence of competing risks. Stat Med. 2014;33(18):3191-203.
https://doi.org/10.1002/sim.6152.

Lau B, Cole SR, Gange SJ. Competing risk regression models for
epidemiologic data. Am J Epidemiol. 2009;170(2):244-56. https://doi.org/1
0.1093/aje/kwp107.

Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and
multi-state models. Stat Med. 2007;26(11):2389-430. https://doi.org/10.1002/
Sim.2712.

Austin PC, Steyerberg EW. The integrated calibration index (ICl) and related
metrics for quantifying the calibration of logistic regression models.
StatMed. 2019;38(21):4051-65.

Crowson CS, Atkinson EJ, Therneau TM. Assessing calibration of prognostic
risk scores. Stat Methods Med Res. 2016;25(4):1692-706. https://doi.org/10.11
77/0962280213497434.

Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a
competing risk. J Am Stat Assoc. 1999;94(446):496-509. https://doi.org/10.1
080/01621459.1999.10474144.

Beyersmann J, Allignol A, Schumacher M. Competing risks and multistate
models with R. New York: Springer; 2012. https://doi.org/10.1007/978-1-4
614-2035-4.

Austin PC, Allignol A, Fine JP. The number of primary events per
variable affects estimation of the subdistribution hazard competing risks
model. J Clin Epidemiol. 2017,83:75-84. https://doi.org/10.1016/j.jclinepi.2
016.11.017.

Austin PC, Fine JP. Propensity-score matching with competing risks in survival
analysis. Stat Med. 2019;38(5):751-77. https//doi.org/10.1002/5im.8008.

Shin S, Austin PC, Ross HJ, Abdel-Qadir H, Freitas C, Tomlinson G, et al.
Machine learning vs. conventional statistical models for predicting heart
failure readmission and mortality. ESC Heart Fail. 2021;8(1):106-15. https://
doi.org/10.1002/ehf2.13073.

Cho SM, Austin PC, Ross HJ, Abdel-Qadir H, Chicco D, Tomlinson G,

et al. Machine learning compared with conventional statistical models
for predicting myocardial infarction readmission and mortality: a
systematic review. Can J Cardiol. 2021;37(8):1207-14. https://doi.org/10.1
016/j.cjca.2021.02.020.

Gupta S, Ko DT, Azizi P, Bouadjenek MR, Koh M, Chong A, et al. Evaluation
of machine learning algorithms for predicting readmission after acute
myocardial infarction using routinely collected clinical data. Can J Cardiol.
2020;36(6):878-85. https://doi.org/10.1016/j.cjca.2019.10.023.

Austin PC, Harrell FE Jr, Steyerberg EW. Predictive performance of machine
and statistical learning methods: Impact of data-generating processes on
external validity in the “large N, small p” setting. Stat Methods Med Res.
2021;9622802211002867.

Tu JV, Donovan LR, Lee DS, Wang JT, Austin PC, Alter DA, et al. Effectiveness
of public report cards for improving the quality of cardiac care: the EFFECT
study: a randomized trial. J Am Med Assoc. 2009;302(21):2330-7. https://doi.
0rg/10.1001/jama.2009.1731.

Ishwaran H, Gerds TA, Kogalur UB, Moore RD, Gange SJ, Lau BM. Random
survival forests for competing risks. Biostatistics. 2014;15(4).757-73. https//
doi.org/10.1093/biostatistics/kxu010.

Geskus RB. Cause-specific cumulative incidence estimation and the fine and
gray model under both left truncation and right censoring. Biometrics.
2011,67(1):39-49. https://doi.org/10.1111/.1541-0420.2010.01420.x.

Wolbers M, Blanche P, Koller MT, Witteman JC, Gerds TA. Concordance for
prognostic models with competing risks. Biostatistics. 2014;15(3):526-39.
https://doi.org/10.1093/biostatistics/kxt059.

Nattino G, Finazzi S, Bertolini G. A new calibration test and a reappraisal of
the calibration belt for the assessment of prediction models based on
dichotomous outcomes. Stat Med. 2014;33(14):2390-407. https://doi.org/1
0.1002/sim.6100.


http://www.ices.on.ca/DAS
https://doi.org/10.1007/978-3-319-19425-7
https://doi.org/10.1007/978-3-030-16399-0
https://doi.org/10.1002/sim.5941
https://doi.org/10.1002/sim.8570
https://doi.org/10.1161/CIRCULATIONAHA.115.017719
https://doi.org/10.1161/CIRCULATIONAHA.115.017719
https://doi.org/10.1097/EDE.0b013e3181a39056
https://doi.org/10.1097/EDE.0b013e3181a39056
https://doi.org/10.1002/sim.6152
https://doi.org/10.1093/aje/kwp107
https://doi.org/10.1093/aje/kwp107
https://doi.org/10.1002/sim.2712
https://doi.org/10.1002/sim.2712
https://doi.org/10.1177/0962280213497434
https://doi.org/10.1177/0962280213497434
https://doi.org/10.1080/01621459.1999.10474144
https://doi.org/10.1080/01621459.1999.10474144
https://doi.org/10.1007/978-1-4614-2035-4
https://doi.org/10.1007/978-1-4614-2035-4
https://doi.org/10.1016/j.jclinepi.2016.11.017
https://doi.org/10.1016/j.jclinepi.2016.11.017
https://doi.org/10.1002/sim.8008
https://doi.org/10.1002/ehf2.13073
https://doi.org/10.1002/ehf2.13073
https://doi.org/10.1016/j.cjca.2021.02.020
https://doi.org/10.1016/j.cjca.2021.02.020
https://doi.org/10.1016/j.cjca.2019.10.023
https://doi.org/10.1001/jama.2009.1731
https://doi.org/10.1001/jama.2009.1731
https://doi.org/10.1093/biostatistics/kxu010
https://doi.org/10.1093/biostatistics/kxu010
https://doi.org/10.1111/j.1541-0420.2010.01420.x
https://doi.org/10.1093/biostatistics/kxt059
https://doi.org/10.1002/sim.6100
https://doi.org/10.1002/sim.6100

Austin et al. Diagnostic and Prognostic Research (2022) 6:2 Page 22 of 22

26. Austin PC, Steyerberg EW, Putter H. Fine-Gray subdistribution hazard models
to simultaneously estimate the absolute risk of different event types:
cumulative total failure probability may exceed 1. Stat Med. 2021;40(19):
4200-12. https.//doi.org/10.1002/sim.9023.

27. Xu R, O’Quigley J. Estimating average regression effect under non-
proportional hazards. Biostatistics. 2000;1(4):423-39. https://doi.org/10.1093/
biostatistics/1.4.423.

28.  van Houwelingen HC, Putter H. Dynamic prediction in clinical survival
analysis. Boca Raton, FL: CRC Press; 2012.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions k BMC



https://doi.org/10.1002/sim.9023
https://doi.org/10.1093/biostatistics/1.4.423
https://doi.org/10.1093/biostatistics/1.4.423

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods for assessing calibration of models for binary and time-to-event outcomes in the absence of competing risks
	Calibration for binary events
	Extensions to survival outcomes in the absence of competing risks

	Graphical calibration curves and calibration metrics for competing risk models
	Graphical calibration curves
	Numerical metrics for calibration

	Monte Carlo simulations: Methods
	Choice of number of knots for the restricted cubic spline model
	Correctly specified model in the presence of censoring
	Correctly specified model in the absence of censoring
	Model with quadratic relationship
	Model with omitted main effect
	The incidence of the outcome differs between the derivation and validation samples
	Software

	Monte Carlo simulations: Results
	Number of knots for the restricted cubic splines
	Correctly specified regression model in the presence of censoring
	Correctly specified regression model in the absence of censoring
	Incorrectly specified regression model: omission of a quadratic term
	Incorrectly specified regression model: omission of a main effect
	The incidence of the outcome differs between the derivation and validation samples

	Case study
	Data sources
	Methods
	Results

	Conclusion
	Supplementary Information
	Acknowledgements
	Authors’ contributions
	Authors’ information
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

