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Abstract

Background: Population-based risk prediction tools exist for individual chronic diseases. From a population health
perspective, studying chronic diseases together provides a comprehensive view of the burden of disease in the
population. Thus, public health officials and health policymakers would benefit from a prediction tool that measures
the incidence of chronic diseases compositely. This study protocol proposes the development and validation of the
Chronic Disease Population Risk Tool (CDPoRT) that will predict the incidence of six chronic diseases in the population
setting using multivariable modeling techniques.

Methods: CDPoRT will be built using population-based responses to the first six cycles of the Canadian Community
Health Survey linked to health administrative data in Ontario and Manitoba from 2000 to 2014. Predictors including
modifiable lifestyle risk factors (i.e., alcohol consumption, cigarette smoking, diet, and physical activity) will be used to
predict time-to-chronic disease incidence (i.e., congestive heart failure, chronic obstructive pulmonary disease, diabetes,
lung cancer, myocardial infarction, and stroke including transient ischemic heart attack). Sex-specific Royston-Parmar
models will be used for model development and validation with death free of chronic disease as a competing risk.
CDPoRT will be developed using an Ontario derivation cohort consisting of 47,960 females and 38,267 males with
7035 and 6220 chronic disease events, respectively. The model will be validated using split-sample validation using an
Ontario validation cohort consisting of 20,325 females and 16,627 males with 2972 and 2658 chronic disease events,
respectively. The model will be externally validated in the Manitoba validation cohort (i.e., geographic validation)
expected to consist of 11,800 females and 9700 males with 1650 and 1550 chronic disease events, respectively.
Measures of overall predictive accuracy (e.g., Nagelkerke’s R2), discrimination (e.g., Harrell’s concordance statistic), and
calibration (e.g., calibration plots) will be used to assess predictive performance.

Discussion: To the extent of our knowledge, CDPoRT will be the first population-based regression prediction model
that will predict the incidence of multiple chronic diseases simultaneously at the population level.
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Background
Chronic disease is a global public health issue. In 2014,
more than two thirds of deaths worldwide (38 million)
were attributed to chronic diseases [1], of which the ma-
jority (82%) were attributable to four chronic diseases:
cancer, cardiovascular disease, chronic respiratory dis-
ease, and diabetes. This burden is mirrored in Canada
where 60% of Canadians aged 20 years and older have at
least one chronic disease [2]. Chronic disease is respon-
sible for the decreased quality of life and over 200,000
Canadian deaths a year, 27% of which are premature
(i.e., deaths under 70 years of age) [1–3].
While the increasing prevalence of chronic disease

over time can be attributed to improved chronic disease
management [4, 5], one consequence is high costs borne
by the health care system due to improved care. In
Canada, approximately 42% of direct medical costs and
65% of indirect costs are attributable to chronic disease
[6], and individuals with at least one chronic disease are
more likely to use the health care system and have
higher health expenditures than individuals without
chronic disease [7]. The costs are expected to increase
as the prevalence of multimorbidity—the presence of
two or more chronic conditions—has been increasing in
recent years [8]. Multimorbid patients have higher
health care expenditures than other patients due to their
complexity of care [9–11].
The best strategy to address the chronic disease burden

long-term is through prevention [12]. Well-established
evidence shows that four modifiable lifestyle risk factors—
alcohol consumption, cigarette smoking, unhealthy diet,
and physical inactivity—are major risk factors of cancer,
cardiovascular disease, chronic respiratory disease, and dia-
betes and that two thirds of incident cases of these chronic
diseases are caused by these risk factors [12]. Despite this
knowledge, designing and implementing prevention strat-
egies to reduce chronic disease is difficult. Part of the diffi-
culty is that there is no straightforward way to predict how
a prevention strategy targeted towards unhealthy lifestyle
behaviors will reduce the incidence of multiple chronic dis-
eases simultaneously. Currently, there are population-based
prediction tools that predict the incidence of individual
chronic diseases based on lifestyle behaviors [13–16], but to
the best of our knowledge, there is no population-based
regression prediction model that predicts the incidence of
multiple chronic diseases concurrently.
To address the need for a population-based regression

prediction model for chronic disease incidence, we
propose the development and validation of the Chronic
Disease Population Risk Tool (CDPoRT). CDPoRT will
use self-reported, modifiable lifestyle risk factor informa-
tion for a population-based prediction of the incidence
of six chronic diseases over a 15-year period: congestive
heart failure (CHF), chronic obstructive pulmonary

disease (COPD), diabetes, lung cancer, myocardial
infarction (MI), and stroke including transient ischemic
attack (TIA). A study protocol outlining the analytical
details of the development and validation of a prediction
model is essential to providing transparency of the
model building process and improving the quality of
prognostic research [17]. This study protocol outlines
the analytical approach that will be used to develop and
validate CDPoRT.

Methods
Data sources
CDPoRT will use population-based survey data from the
Canadian Community Health Survey (CCHS) linked to
health administrative data from Ontario and Manitoba,
two Canadian provinces. The CCHS is a cross-sectional
survey originating in 2000 that collects personal health
status, health care utilization, and health determinant
data [18]. The CCHS features a multistage, stratified
cluster survey design and represents over 98% of the
Canadian population 12 years and older. The CCHS will
provide the predictors (e.g., modifiable lifestyle risk fac-
tors) for CDPoRT.
CCHS respondents will be individually linked to health

administrative data in Ontario and Manitoba housed at
the Institute for Clinical Evaluative Sciences and Mani-
toba Centre for Health Policy, respectively. Health ad-
ministrative data will be used to determine chronic
disease outcomes. The data holdings from the Institute
for Clinical Evaluative Sciences are hospital discharge
data from the Discharge Abstract Database, physician
billing claims data from the Ontario Health Insurance
Plan Claims Database, cancer registry data from the On-
tario Cancer Registry, demographic data from the Regis-
tered Persons Database, and cause of death from the
vital statistics data, the Office of the Registrar General
Deaths Database. From the Manitoba Centre for Health
Policy, the data holdings to be used are hospital dis-
charge data from the Discharge Abstract Database, phys-
ician claims data from the Medical Services Database,
cancer registry data from the Manitoba Cancer Registry,
demographic data from the Manitoba Health Insurance
Registry, and vital statistics data.

Study design
Two sex-specific CDPoRT models will be developed and
validated, one for females and another for males. There will
be one derivation cohort and two validation cohorts. The
Ontario derivation cohort consists of 70% of the CCHS
respondents from Ontario randomly selected from the first
six cycles of the CCHS—cycles 1.1 (2000), 2.1 (2003), 3.1
(2005), 4.1 (2007), 2009/2010, and 2011/2012—that permit-
ted the linkage to Ontario administrative data. The first
validation cohort, the Ontario validation cohort, will consist
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of the other 30% Ontario CCHS respondents. This valid-
ation cohort will allow for split-sample validation. The sec-
ond validation cohort, the Manitoba validation cohort, will
be all CCHS respondents from Manitoba who partook in
the first six CCHS cycles and permitted the linkage to the
Manitoba administrative data. The second validation cohort
will enable external, geographic validation. For all cohorts,
survey respondents will be excluded if they were under the
age of 20 years as of the CCHS interview data or had a
self-reported history of the six chronic diseases of interest
based on self-report from the CCHS or algorithmic diagno-
sis from the health administrative data. For individuals who
had multiple survey responses, the earliest record after the
age of 20 years was used.

Main predictors—modifiable lifestyle risk factors
The main predictors in CDPoRT are four modifiable life-
style risk factors: alcohol consumption, cigarette smoking,
diet, and physical activity. Information regarding the life-
style factors was consistently collected across all six CCHS
cycles. Alcohol consumption was measured in terms of
whether alcohol was consumed in the year prior, the
frequency of drinking alcohol, the days on which alcohol
was consumed in the last week, and the number of drinks
per day. Cigarette smoking was measured in terms of
current and former smoking habits including the number
of cigarettes smoked daily, the frequency of smoking, and
time since quitting smoking. Diet was captured through
daily fruit and vegetable consumption based on the daily
frequency consumption habits for fruits, fruit juice,
starchy vegetables (e.g., potatoes), salad, carrots, and other
vegetables. Physical activity was measured by calculating
the average metabolic equivalents of daily leisure physical
activity for a variety of leisure activities, such as walking,
swimming, running, and sports. The modifiable lifestyle
risk factor information measured in the CCHS will be
used to create a summary predictor for each lifestyle
factor (described further in the “Data cleaning and coding
of predictors” section). Further details about the data
collected by the CCHS for each lifestyle factors can be
found in Additional file 1.

Outcome—chronic disease
Through the linkage to administrative data, individuals
will be followed up longitudinally for the incidence of their
first chronic disease, defined as CHF, COPD, diabetes,
lung cancer, MI, and stroke including TIA. These six
chronic diseases were chosen based on a combination of
factors, such as their prevalence, previous causal associa-
tions with the modifiable lifestyle risk factors (e.g., smok-
ing and lung cancer), impact on morbidity and mortality,
and interest from the knowledge users. All selected
chronic diseases are readily identifiable from the adminis-
trative data. Except for lung cancer, all chronic diseases

will be identified from the health administrative data using
chronic disease algorithms based on physician diagnosis
(Table 1). All chronic disease algorithms have been previ-
ously validated in Ontario (sensitivity from 60.2–95.0%,
specificity from 76.5–99.2%) [19–24]. For both jurisdic-
tions, the same algorithms will identify chronic diseases
based on the International Classification of Diseases (ICD)
coding scheme using hospital discharge data (ICD-9 and
ICD-10) and physician claims data (ICD-9). Lung cancer
will be ascertained from each province’s respective cancer
registries [22, 25]. Additionally, vital statistics data will be
used to supplement chronic disease incidence by attribut-
ing causes of death due to a chronic disease of interest as
a diagnosis. This is essential because some chronic dis-
eases would be underreported if only the health services
databases were used. For example, some individuals suffer
and die from stroke outside of the health care system, so
stroke incidence would be underreported if vital statistics
were not used. Respondents will be followed up from the
date of the CCHS interview up to a maximum of 15 years
(January 2000 to December 2014) until one of the follow-
ing events: incidence of chronic disease, death free of
chronic disease (a competing risk), or end of follow-up
(December 31, 2014).

Sample size
The Ontario derivation and validation cohorts have
already been created but not used for prediction modeling.
The female and male derivation cohorts consist of 47,960
and 38,267 respondents with 365,771 and 291,638 years of
follow-up, respectively. The minimum sample size
required for survival analysis-based prediction is based on
the events where the cohort should have at least ten
events per degrees of freedom (df) used in the model [26].
There will be 7035 and 6220 chronic disease events for
females and males in the derivation cohort, which allows
for a maximum of 703 and 622 dfs in the models, respect-
ively. We do not anticipate exceeding 622 dfs during
model development.
For validation studies of prognostic models, it has been

recommended that the validation cohort has a minimum
of 100 events, but ideally 200 (or more) events [27]. The
Ontario validation cohort will consist of 20,325 females
and 16,627 males, of which 2972 and 2658 had a chronic
disease event, respectively. At the time of publication, the
Manitoba validation cohort has not been linked to the
administrative data, but using the number of CCHS re-
spondents from Manitoba and making assumptions about
the proportion of individuals who consented to the linkage
and did not meet the exclusion criteria based on the On-
tario cohorts, the Manitoba validation cohort is expected
to consist of 11,900 females and 9600 males. Using the
sex-specific incidence of chronic disease in the Ontario
cohorts, approximately 1800 females and 1600 males are
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expected to have chronic disease events in the Manitoba
validation cohort. Both validation cohorts exceed the rec-
ommended number of events for validation.

Analysis plan
The analysis plan was developed with consideration of the
guidelines provided by Harrell and Steyerberg [28, 29]. To
protect against type 1 error from a data-driven variable
selection of model specification, the predictor-outcome
associations in any cohort will not be explored until the
protocol is published. All steps in the analytical plan for
the development and validation of CDPoRT are guided by
the principle of creating a prediction model with high
predictive accuracy (e.g., calibration, discrimination). The
analytical plan also takes into consideration that CDPoRT
will be used by knowledge users (e.g., public health units,
health policymakers, and other decision-makers) that may
not have extensive statistics training, so the practical
application of CDPoRT is important. Features of CDPoRT
that will make it more user-friendly include easy input of
the predictors, straightforward and meaningful interpreta-
tions of the predictions overall and by subgroups, and
consistent model application across time and geography.
As a result, the practical considerations will impact how
CDPoRT is built and will affect the aspects of model devel-
opment, such as predictor selection and operationalization,

missing data management, model specification, model
estimation, validation, and model presentation. All data will
be cleaned and manipulated using SAS. Modeling will be
conducted using Harrell’s Hmisc package of function in R
and the stpm2 command in Stata. The TRIPOD statement
for multivariable predictive models also helped guide this
study protocol and will be used to help report the estimates
from CDPoRT [30].

Identification of predictors
The modifiable lifestyle risk factors were identified based
on well-established evidence of their associations with the
chronic diseases of interest [1, 31–33]. Other candidate
predictors were identified based on a combination of
subject matter expertise, input from the knowledge users,
the group’s previous experiences with population-based
prediction models [13–16, 34–36], and predictor availabil-
ity across all CCHS cycles. During this phase, some
predictors were excluded due to narrow distributions or
insufficient variation, while others were excluded based on
redundancy. There were sixteen candidate predictors
identified: four modifiable lifestyle risk factors (alcohol
consumption, cigarette smoking, daily fruit and vegetable
consumption, physical activity), six sociodemographic
characteristics (age, ethnicity, immigration status, house-
hold income, education, marital status), and six other

Table 1 Chronic disease ascertainment algorithms and their predictive accuracy

Chronic
disease

Algorithm Hospital discharge codes Physician claim
codes (ICD-9)

Cancer registry
codes (ICD-O-3)

Cause of
death (ICD-9)

Sensitivity
(95% CI)

Specificity
(95% CI)ICD-9 ICD-10

Congestive
heart failure
(CHF) [19]

2 hospitalization records in a
1-year period or 1 physician
claim and 1 hospitalization
record in a 1-year period
or 2 physician claim records
in a 1-year period or death
certificate cause of death

428 I50.0, I50.1, I50.9 428 N/A 428 84.8
(77.7, 92.0)

97.0
(96.3, 97.9)

Chronic
obstructive
pulmonary
disease
(COPD) [20]

1 hospitalization record or
1 physician claim records
or death certificate cause
of death

491,
492,
496

J41, J42, J43, J44 491, 492, 496 N/A 491, 492, 496 85.0
(77.0, 91.0)

78.4
(73.6, 82.7)

Diabetes [21] 1 hospitalization record or
2 physician claim records
in a 2-year period or death
certificate cause of death

250 E10, E11, E13, E14 250 N/A 250 86 97

Lung
cancer [22]

1 cancer registry record in
the Ontario Cancer Registry
or death certificate cause
of death

N/A N/A N/A C34.0, C34.1,
C34.2, C34.3,
C34.8, C34.9

162.2, 162.3,
162.4, 162.5,
162.8, 162.9

N/A N/A

Myocardial
infarction
(MI) [23]

1 hospitalization record or
death certificate cause of
death

410 I21 N/A N/A 410 95.0 88.0

Stroke
including
transient
ischemic
attack
(TIA) [24]

1 hospitalization record or
2 physician claim records
in a 1-year period or death
certificate cause of death

362.3,
430,
431,
434,
435,
436

G45 (excluding G45.4),
H34.0, H34.1, I60, I61,
I63 (excluding 163.6), I64

432, 435, 436 N/A 362.3, 430,
431, 434,
435, 436

60.2
(50.7, 69.6)

99.2
(99.0, 99.5)

Ng et al. Diagnostic and Prognostic Research  (2018) 2:19 Page 4 of 11



health-related factors (asthma, body mass index (BMI),
high blood pressure, household secondhand smoke,
self-rated health, life stress). Self-reported BMI is known
to be biased, so a validated correction equation will be
used [37]. Because the biological underpinnings of chronic
disease vary by sex, two CDPoRT models will be created.

Data cleaning and coding of predictors
Continuous predictors will be examined using descrip-
tive statistics, histograms, and box plots to examine their
distributions. Incorrect values will either be corrected or
set to missing. Continuous predictors with highly
skewed distributions will be truncated to the 99.5th
percentile. Continuous predictors that can be meaning-
fully categorized will be grouped; for example, BMI will
be classified according to internationally recognized
groups (i.e., underweight, normal weight, overweight,
and classes I to III obesity). The frequency distribution
of categorical predictors will be examined, and categor-
ies which are too small (i.e., < 5%) will be grouped with
another category. Based on previous experiences, we will
be deriving some predictors based on a combination of
survey responses. For example, alcohol consumption
status will be defined based on whether the person
reported drinking in the past year, the number of times
drank in the past week, and the total number of drinks
consumed while considering sex-specific differences (i.e.,
non-drinker, light drinker, moderate drinker, heavy
drinker, binge drinker). Predictors will also be created
with consideration for how they were defined in similar
population-based prediction models [13–16, 34–36].
The definitions for all predictors have been pre-specified
to minimize overfitting (Table 2). However, we recognize
that there is some subjectivity in how these classifica-
tions are made, so sensitivity analyses of the predictive
performance of other definitions of the predictors will
be performed to examine the robustness of our defini-
tions during model building and validation.

Missing data
Variables with missing data will be categorized as a separ-
ate category. This will allow users of the tool to include all
respondents during CDPoRT application. While defining a
missing category may introduce some classification bias,
excluding incomplete cases will add bias by making the
cohort less representative of the population. We expect
minimal bias from creating a missing category because
most predictors have less than 1% of values missing. In-
come is expected to be an important predictor for chronic
disease incidence, so imputed values of income will be
used in the cycles in which Statistics Canada provided
computed income values.

Model estimation
The initial models will be estimated using the
Royston-Parmar model [38]. The distinguishing feature of
this model is that the baseline cumulative hazard function is
modeled as a restricted cubic spline which permits
estimation of absolute measures of effect (e.g., cumulative in-
cidence) at all time points. While the Royston-Parmar model
is generally robust to the number and placement of knots
[38–40], it is recommended to test the robustness of the
baseline function by varying the number and placement of
knots [41]. To do this, different baseline functions with a
varying number of knots (between two and six knots) evenly
distributed over the survival times will be compared via in-
formation criterion (i.e., Akaike information criterion (AIC),
Bayesian information criterion (BIC)). If there is a baseline
function with a clear best model fit, that function will be
used. If the model fit is similar between multiple baseline
functions, the function with the fewest number of knots will
be selected to reduce overfitting that may occur during valid-
ation. The knot placement of the selected function will then
be varied randomly to further test the robustness. The base-
line cumulative hazard function will be modeled on the pro-
portional hazards (PH) scale as hazards ratios are a common
estimate for survival models. However, the Royston-Parmar
model can also be modeled on the proportional odds or pro-
bit scale, and if the model fit is greatly improved on either of
these scales, that scale will be selected instead.
The Royston-Parmar model estimates the cause-specific

hazards ratio, but it can also account for competing risks
by transforming the cause-specific hazards to a cumulative
incidence function [42]. CDPoRT will consider death free
of chronic disease as a competing risk. PH models assume
that the relative hazard of a predictor is constant across
time. However, this might not be true, and so violations of
the PH model will be examined by plotting raw and
smoothed scaled Schoenfeld residuals versus time versus
predictors that are expected to vary with time (e.g., age).
Any violations of the PH assumption that alter the model
fit or predictive performance will be accounted for by in-
cluding an interaction with time. The degree of overfitting
will be estimated using the heuristic shrinkage estimator,
which is based on the log-likelihood ratio χ2 statistic of
the full model [43]. If the shrinkage is less than 0.9, the
model will be adjusted for overfitting accordingly. If the
shrinkage value is greater than 0.9, and the model does
not perform well, data reduction techniques will be ex-
plored. All results will incorporate survey weights so that
CDPoRT is representative of the underlying population.
Variance estimates will be calculated using the bootstrap
survey weights via balanced repeated replication [44, 45].

Model specification
Sex-specific models will be fitted initially with the
pre-specified forms of the predictors (Table 2). Predictors
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Table 2 Pre-specified definitions of CDPoRT predictors

Variable type Variable Definition df

Modifiable lifestyle risk factors Alcohol consumption 4

Non-drinker No alcohol consumption in the last 12 months
or drink frequency fewer than once a week

Light drinker Alcohol consumption frequency at least once a
week and 0–2 (females) or 0–3 (males) drinks in
the previous week

Moderate drinker 3–14 (females) or 4–21 (males) drinks in the
previous week

Heavy drinker ≥ 14 (females) or ≥ 21 (males) drinks in the
previous week, or binging behavior on a
weekly basis (≥ 5 drinks on any occasion)

Cigarette smoking 5

Non-smoker Never a smoker or former occasional smoker
with < 100 lifetime cigarettes

Heavy smoker Current smoker [≥ 1 pack (25 cigarettes)/day]

Light smoker Current smoker [< 1 pack (25 cigarettes)/day]

Former heavy Former smoker [≥ 1 pack (25 cigarettes)/day]

Former light smoker Former smoker [< 1 pack (25 cigarettes)/day]

Daily fruit and vegetable consumption 3

Low consumption 0 to < 3 times daily

Medium consumption 3 to < 6 times daily

High consumption ≥ 6 times daily

Physical activity quartile 4

Quartile 1 Bottom 25% physically active

Quartile 2 Bottom 26–50% physically active

Quartile 3 Bottom 51–75% physically active

Quartile 4 Top 25% physically active

Sociodemographic characteristics Age 5

Continuous Spline with 4 interior knots

Ethnicity 2

White

Non-White

Immigration status 3

Canadian born

Recent immigrant Immigrated < 10 years

Non-recent immigrant Immigrated ≥ 10 years

Household income 5

Quintile 1 Lowest 20%

Quintile 2

Quintile 3

Quintile 4

Quintile 5 Highest 20%

Education 3

Less than secondary school graduation

Secondary school graduation

Post-secondary education (complete and partial)

Marital status 3
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that were originally continuous will also be modeled in a
flexible fashion using restricted cubic splines with the
knots placed evenly through the distribution. If the fit is
greatly improved with the continuous form of the pre-
dictor versus the categorical form based on information
criterion (e.g., AIC, BIC), and measures of predictive
performance (i.e., overall fit, discrimination, calibration),
then the continuous, centered form will be used. While
we have pre-specified definitions of the categorical predic-
tors to use, other definitions will be examined during
model building. If any of these definitions greatly improve
the model fit or predictive performance of the model, the
alternate specification will be used instead. Ordinal predic-
tors will be initially modeled as categorical, but if the fit
improves when specified as a linear function, the ordinal
variable will be modeled continuously. Collinearity
between predictors will be assessed using the Varclus

function in R. Two-way interactions between variables will
be examined. The model that uses all the pre-specified
forms of the predictors has 56 dfs (Table 2).
There will be a stepwise selection process for predictors.

The initial model will consist of the modifiable lifestyle
risk factors. The overall fit of the initial model will be ana-
lyzed in terms of model fit statistics (e.g., log-likelihood,
AIC, BIC). The predictive performance of this initial
model will be assessed using overall measures of predict-
ive accuracy, calibration, and discrimination (described
further in the “Assessment of predictive performance” sec-
tion). Two sets of predictors (sociodemographic character-
istics, other health-related factors) will be added to the
model, one set at a time. Individual predictors within each
set that do not improve the overall model fit (e.g., AIC,
BIC) and/or predictive performance (e.g., discrimination,
calibration) will be removed. When a set of predictors is

Table 2 Pre-specified definitions of CDPoRT predictors (Continued)

Variable type Variable Definition df

Single never married

Domestic partner (married/common law)

Widowed/separated/divorced

Asthma 2

Yes

No

Body mass index (BMI) (kg/m2) 6

Underweight < 18.5 BMI

Normal weight 18.5–24.9 BMI

Overweight 25.0–29.9 BMI

Moderately obese (class 1) 30.0–34.9 BMI

Very obese (class 2) 35.0–39.9 BMI

Severely obese (class 3) ≥ 40.0 BMI

High blood pressure 2

Yes

No

Household secondhand smoke 2

Household secondhand smoke

No household secondhand smoke

Self-rated health 3

Excellent/very good

Good

Fair/poor

Life stress 4

Quite a bit/extremely stressful

Not very stressful

A bit stressful

Not at all stressful

The degrees of freedom (df) include a category for those who could not be classified (i.e., missing)
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added to the model, the predictive performance of the
existing predictors will be examined, and if their predictive
performance is minimal, the predictor may be removed.
Variables excluded in prior rounds will be added back to
the model to confirm whether their exclusion was appro-
priate. The overall fit and predictive performance after each
set of predictors are added will be compared to the original
model. The final model will consist of the four modifiable
lifestyle risk factors and a combination of sociodemographic
characteristics and other health-related factors.

Assessment of predictive performance
Predictive performance in the derivation and validation
cohorts will be assessed and reported using overall mea-
sures of predictive accuracy, discrimination, and calibration.
Accuracy will be measured with Nagelkerke’s R2 and Brier
score. Discrimination will be assessed with Harrell’s con-
cordance statistic. Calibration is important for prediction
models because risk prediction in future settings is of pri-
mary interest [29]. Calibration will be assessed by compar-
ing the observed and predicted risk of a chronic disease
over deciles of risk using calibration plots at specific time
points (e.g., 1, 5, 10, and 15 years). Calibration slopes will
be generated by regressing the outcome in the validation
cohort on the predicted chronic disease risk. Deviation
from perfect calibration (i.e., slope of 1) will be tested with
Wald or likelihood ratio tests. Calibration-in-the-small will
also be assessed for subgroups of interest (e.g., cigarette
smoking groups). We consider any relative difference of less
than 20% between observed and predicted risk within sub-
groups that have at least a 5% chronic disease event rate as
adequately calibrated.

Model validation
Once the model has been developed in the Ontario deriv-
ation cohort, the performance of the model will be
validated within the Ontario context in terms of overall
measures of predictive accuracy, discrimination, and cali-
bration. This will provide an idea of the model’s optimism
when validated in the Manitoba context. We will perform
bootstrap validation within the Ontario derivation cohort
to get an idea of how the model will perform in the Ontario
validation cohort. We will also validate the model using the
Ontario validation cohort via split-sample validation. The
major drawback of split-sample validation is not expected
to affect the validation as the sample sizes for the Ontario
derivation and validation cohorts are large. While the On-
tario cohort is being divided into parts for the split-sample
validation, the final regression coefficients using the full
Ontario dataset will be used to maximize the sample size
and follow-up duration. The final combined model will
maintain the same predictors and form as the derivation
model. In the off chance that the derivation and validation

cohort differ significantly, a cohort-specific intercept and/or
interaction term will be included in the Manitoba model.
CDPoRT will undergo external validation using the

Manitoba validation cohort. This will assess geographic
validation. The performance of the model in the Manitoba
validation cohort will be understood using predictive
accuracy, discrimination, and calibration. As well, novel ap-
proaches to assess geographic validity will be used [46, 47].
Ideally, the CDPoRT model developed and validated in
Ontario will have high predictive performance in Manitoba.
However, the case-mix of individuals and their outcomes
will be different between the jurisdictions, which may result
in decreased model performance. In this scenario, CDPoRT
in the Manitoba setting will be modified using updating
methods (e.g., re-calibration, model revision, or model
extension).

Model presentation
The final regression model of the Ontario CDPoRT con-
sisting of the derivation and validation sample, as well as
the Manitoba CDPoRT, will be presented using estimated
hazards ratios and 95% confidence intervals. Absolute
measures of effect such as baseline risk and cumulative
incidence will also be presented, which is a feature of the
Royston-Parmar model versus the Cox PH model because
the baseline cumulative hazard function is modeled. Esti-
mation of the baseline risk allows and permits the calcula-
tion of the attributable risk of the predictors based on the
hazard ratios. Interactive, visual tools will also be created
to help describe the model, which can improve the literacy
of the model for non-technical audiences. The regression
formula will also be published and used as the underpin-
ning for web-based implementation.

Analyses beyond initial model development
Sensitivity analyses will be conducted to see how the
model performs under different settings. One sensitivity
analysis will be performed to see the algorithm’s perform-
ance in a population in which individuals were excluded
based on self-reported chronic disease only and not based
on an algorithmic diagnosis from the health administrative
data. This is important to understand how the model will
perform in real-world environments where users will not
have access to health administrative data. A second sensi-
tivity analysis will be performed where each chronic
disease will be modeled separately to see if modeling each
chronic disease as separate outcomes and combining
results to get the overall chronic disease incidence
improves predictive performance. This is a possibility as
the predictor coefficients can be thought of as an averaged
effect that reflects the frequency of each chronic disease.
In a population with a different case-mix of chronic dis-
ease, the model may have worse predictive performance.
As other chronic diseases (/conditions) remain of interest
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to the knowledge user [8], a third sensitivity analysis will
see how the predictiveness of CDPoRT changes when
other chronic conditions are included as outcomes.

Discussion
Chronic diseases are a public health priority and a great
expenditure burden on the Canadian health care system.
Accurate prediction of chronic disease incidence in the
population based on modifiable lifestyle risk factors will
help with the prevention strategies and health care deliv-
ery planning. However, public health officials and health
policymakers do not have a straightforward way to esti-
mate chronic disease incidence accurately for their juris-
diction. The development and validation of CDPoRT
hopes to address these needs.

Limitations
One limitation of CDPoRT is that while the tool will be
representative of most of the population (98%), some
groups will not be covered, notably on-reserve Aborigi-
nals. This is an important consideration because Aborig-
inals have been reported to be at greater risk for
developing chronic disease [48], and a sizable proportion
of the Manitoba population is Aboriginal (15%) [49].
The Aboriginal population is relatively smaller in On-
tario (2%), so it should not impact the model develop-
ment. However, the different case-mix is expected to
impact the validation in the Manitoba context. To help
with this matter, we will compare the case-mix between
Ontario and Manitoba and use the information to
understand how it will affect the calibration and discrim-
ination [29]. Novel approaches to geographic validation
will also be explored [46, 47]. If necessary, CDPoRT will
be updated to the Manitoba setting.
A second limitation is that the measurement quality of

the modifiable lifestyle risk factors varies. Cigarette
smoking is the most complete measure as it considers
current and past smoking history. However, pack-years
smoked cannot be measured because not enough details
about the smoking habits of former smokers were col-
lected. Alcohol consumption measures drinking habits
up to 1 year from the interview date but does not meas-
ure habits before this period. Diet is only captured by
fruit and vegetable consumption, and dietary habits of
other food groups (e.g., meats, dairy) or constituents
(e.g., sodium, fat) are not captured. Specific cycles of the
CCHS capture dietary habits in more details (e.g., CCHS
2.2), and if the data can be obtained, reclassification
methods can be used to measure the incremental
changes in the prediction if these predictors were added
to the model [50]. Physical activity only measures leisure
physical activity, and other forms of physical activity
(e.g., transportation, work) are not measured.

Implications
CDPoRT will be developed to ensure the tool meets the
needs of the knowledge user. Partnerships exist with
knowledge users at the municipal and provincial level
including prominent health system decision-makers (e.g.,
Medical Officers of Health; program managers, directors
and executives in two provincial governments). This will
enable CDPoRT to be applied in various regions and
settings across Canada through the support of knowledge
brokers and permit knowledge users to predict the inci-
dence of multiple chronic diseases simultaneously in their
population. The effectiveness of CDPoRT in these settings
will be further evaluated to understand the utility of the
tool in real-world settings for supporting decision-making
and planning.

Conclusions
To the extent of our knowledge, CDPoRT will be the first
population-based regression prediction model that will
predict the incidence of multiple chronic diseases simul-
taneously at the population level. The tool will be used by
public health and health policymakers to support planning
and decision-making.
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