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Abstract

This paper displays numerical simulation for bright and dark optical solitons that emerge from Fokas-Lenells equation
which is studied in the context of dispersive solitons in polarization-preserving fibers. The Laplace-Adomian
decomposition scheme is the numerical tool adopted in the paper. The numerical results, for bright and dark solitons,
are expository and therefore supplement the analytical developments, thus far.
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Introduction
One of the governing models to study dispersive soli-
tons is Fokas-Lennels equation (FLE) [1–13]. In such a
model, in addition to group velocity dispersion (GVD),
one considers, inter-modal dispersion as well as nonlin-
ear dispersion thus treating it with a flavor of additional
dispersive effects. There has been a plethora of analyti-
cal tools that have been implemented to study FLE. They
range from semi-inverse variational principle, Lie sym-
metry analysis, Riccati equation approach, exp-function
method, traveling wave hypothesis, trial function method
and further wide varieties. This paper will be changing
gears to study the model from a different perspective. One
of the very many and modern numerical algorithms that
will be implemented is the Laplace-Adomian decomposi-
tion integration scheme. This method has been success-
fully applied to variety of other models from optics [14–
16]. This paper now studies FLE, for the first time, by
the aid of Laplace-Adomian decomposition scheme. The
details are sketched in the remainder of the paper, after
introducing the model.
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The Fokas-Lenells equation (FLE) in presence of
perturbation terms
The dimensionless form of the perturbed Fokas-Lenells
equation (FLE) is given by

iut + a1uxx + a2uxt + |u|2 (bu + iσux)
= i

[
αux + λ

(|u|2u)
x + μ

(|u|2)x u]
.

(1)

This equation was first studied in [17–24] and arises in
various systems such as water waves, plasma physics, solid
state physics and nonlinear optics. In Eq. (1), u(x, t) repre-
sents a complex field envelope, and x and t are spatial and
temporal variables, respectively. Here, the coefficient a1 is
the group velocity dispersion (GVD) and a2 is the spatio-
temporal dispersion (STD) the coefficient b is self-phase
modulation moreover σ accounts for nonlinear disper-
sion. In the perturbative term of Eq. (1), the first term
represents the inter-modal dispersion (IMD), the sec-
ond term is the self-steepening effect and finally the last
term accounts for another version of nonlinear dispersion
(ND).

Bright optical solitons
The bright optical soliton solution to (1) is given by [5, 11]:

u(x, t) = A sech [(x − νt)] ei[−κx+ωt+θ ]. (2)

Here, ν is the soliton velocity, κ is the soliton frequency, ω
is the angular velocity and θ is the phase center.
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The amplitude A of the soliton in this case is given by

A = ±
√

2(a1 − a2ν)

b − κλ + κσ
, (3)

where, the velocity of the soliton in relation to the coeffi-
cients that appear in the Eq. (1) is

ν = α + 2a1κ − a2ω
a2κ − 1

, (4)

and the constraints conditions on the parameters are

a2κ �= 1, 3λ + 2μ − σ = 0. (5)

In the previous context κ is any parameter that satisfies
the Eq. (5).

Dark optical solitons
noindent The dark optical soliton solution to (1) is given
by [5, 11]:

u(x, t) = B tanh [(x − νt)] ei[−κx+ωt+θ ]. (6)

Here, ν is the soliton velocity, κ is the soliton frequency, ω
is the angular velocity and θ is the phase center.
The amplitude B of the soliton in this case is given by

B = ±
√−2(a1 − a2ν)

b − κλ + κσ
, (7)

where, the velocity of the soliton in relation to the coeffi-
cients that appear in the Eq. (1) is

ν = α + 2a1κ − a2ω
a2κ − 1

, (8)

and the constraints conditions on the parameters are

a2κ �= 1, 3λ + 2μ − σ = 0. (9)

In the previous context κ is any parameter that satisfies
the Eq. (9).

The Laplace Adomian DecompositionMethod
(LADM)
To illustrate the basic concept of Laplace-Adomian
decomposition algorithm, we consider the general form
of second order nonlinear partial differential equations in
the form

F (u(x, t)) = 0, (10)
with initial conditions

u(x, 0) = f (x), ux(x, 0) = g(x). (11)

where F is a differential operator. Now, let us decompose
this operator as F = L+R+N where L(u) = ∂u

∂t stands for
a linear differential operator. The operators R and N are
the remaining linear and nonlinear parts, respectively.
With these considerations, Eq. (10) can now be rewritten
as

Lu(x, t) = Ru(x, t) + Nu(x, t). (12)

Solving for Lu(x, t) and applying the Laplace transform
respect to t to Eq. (12), gives

L {Lu(x, t)} = L {Ru(x, t) + Nu(x, t)} . (13)

Thus, Eq. (13) turns out to be equivalent to

su(x, s) − u(x, 0) = L {Ru(x, t) + Nu(x, t)} . (14)

Using Eq. (11), one get

u(x, s) = f (x)
s

+ 1
s
L {Ru(x, t) + Nu(x, t)} . (15)

Finally, by applying inverse Laplace transformation L−1

on both sides of the Eq. (15), we obtain

u(x, t) = f (x) + L−1
[
1
s
L{Ru(x, t) + Nu(x, t)}

]
. (16)

The Laplace-Adomian decomposition algorithm
assumes the solution u(x, t) can be expanded into infinite
series given by

u(x, t) =
∞∑
n=0

un(x, t). (17)

Moreover, Also the nonlinear operator N is decomposed
as

Nu(x, t) =
∞∑
n=0

An(u0,u1, . . . ,un), . (18)

Each An is an Adomian polynomial of u0,u1, . . . ,un that
can be calculated for all forms of nonlinearity according
to the following formula [25–27]:

A0 = N(u0),

An = 1
n

m∑
i=1

n−1∑
k=0

(k + 1)ui,k+1
∂

∂ui,0
An−1−k , n ≥ 1.

(19)

Therefore Adomian’s polynomials are given by
A0 = N(u0)
A1 = u1N ′(u0)
A2 = u2N ′(u0) + 1

2u
2
1N ′′(u0)

A3 = u3N ′(u0) + u1u2N ′′(u0) + 1
3!u

3
1N (3)(u0)

A4 = u4N ′(u0)+
( 1
2u

2
2 + u1u3

)
N ′′(u0)+ 1

2!u
2
1u2N (3)(u0)+

1
4!u

4
1N (4)(u0)

...
All other polynomials are calculated in a similar way.
Substituting (17) and (18) into Eq. (16) gives rise to

∞∑
n=0

un(x, t) =f (x) + L−1
[
1
s
L

{
R

∞∑
n=0

un(x, t)

+
∞∑
n=0

An(u0,u1, . . . ,un)
}]

.
(20)
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Table 1 Bright optical solitons

Cases a1 a2 b σ α λ μ ν κ A N |Max Error|
1 1.00 0.50 2.00 1.00 2.00 1.00 −1.00 −1.66 0.50 0.27 12 2.10 × 10−10

2 3.00 0.16 1.00 1.00 2.00 1.00 −1.00 −3.47 0.25 2.67 12 3.00 × 10−10

3 1.50 0.25 3.00 1.00 1.00 −1.00 2.00 −5.00 1.00 0.31 12 1.50 × 10−10

4 0.20 0.33 4.00 2.00 2.00 2.00 −2.00 −7.40 2.00 1.45 12 1.00 × 10−10

Hence, Eq. (20) suggests the following iterative algorithm
{
u0(x, t) = f (x),
un+1(x, t) = L−1 [ 1

s L {Run(x, t) + An(u0,u1, . . . ,un)}
]
, n = 0, 1, 2, . . .

(21)

Finally, after determining un’s, the N-term truncated
approximation of the solution is obtained as

uN (x, t) =
N−1∑
n=0

un(x, t), N ≥ 1. (22)

From this analysis it is evident that, the Adomian decom-
position method, combined with the Laplace transform
requires less effort in comparison with the traditional
Adomian decomposition method. This method consider-
ably decreases the number of calculations. In addition,
Adomian decomposition procedure is easily established
without requiring to linearize the problem.

Solution of the perturbed Fokas-Lenells equation
by LADM
In this section, we outline the application of LADM to
obtain explicit solution of Eq. (1) with the initial condi-
tions u(x, 0) = f (x), ux(x, 0) = g(x).

Let us consider the dimensionless form of the perturbed
Fokas-Lenells equation Eq. (1) in an operator form

Lu(x, t)+Ru(x, t)+N1u(x, t)+N2u(x, t)+N3u(x, t) = 0
(23)

where the notation N1u = −i|u|2(bu + iσux),
N2u = −λ(|u|2u)x and N3u = −μu(|u|2)x symbol-
ize the nonlinear term, respectively. The notation Ru =
− (αux + ia1uxx + ia2uxt) symbolize the linear differen-
tial operator and Lu = ut simply means derivative with
respect to time.
The LADM represents solution as an infinite series of
components given below,

u(x, t) =
∞∑
n=0

un(x, t). (24)

The nonlinear terms N1u, N2u and N3u can be decom-
posed into infinite series of Adomian polynomials given
by:

N1u = −i|u|2(bu + iσux) =
∞∑
n=0

Pn(u0,u1, . . . ,un),

(25)

Fig. 1 Dynamic evolution profile of |u|2 via LADM (left) and contour plot of the wave amplitude of |u|2 (right) for the values of the parameters used
in case 1 with |Max Error| = 2.1 × 10−10
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Fig. 2 Dynamic evolution profile of |u|2 via LADM (left) and contour plot of the wave amplitude of |u|2 (right) for the values of the parameters used
in case 2 with |Max Error| = 3.0 × 10−10

N2u = −λ
(|u|2u)

x =
∞∑
n=0

Qn(u0,u1, . . . ,un), (26)

and
N3u = −μu

(|u|2)x =
∞∑
n=0

Rn(u0,u1, . . . ,un). (27)

Here Pn, Qn and Rn are the Adomian polynomials and
can be calculatedby the formula givenby the Eq. (19), that is,

P0 = N1(u0), Q0 = N2(u0), R0 = N3(u0),

and for every n ≥ 1 we have

Pn = 1
n

m∑
i=1

n−1∑
k=0

(k + 1)ui,k+1
∂

∂ui,0
Pn−1−k , (28)

Fig. 3 Dynamic evolution profile of |u|2 via LADM (left) and contour plot of the wave amplitude of |u|2 (right) for the values of the parameters used
in case 3 with |Max Error| = 1.5 × 10−10
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Fig. 4 Dynamic evolution profile of |u|2 via LADM (left) and contour plot of the wave amplitude of |u|2 (right) for the values of the parameters used
in case 4 with |Max Error| = 1.0 × 10−10

Qn = 1
n

m∑
i=1

n−1∑
k=0

(k + 1)ui,k+1
∂

∂ui,0
Qn−1−k , (29)

Rn = 1
n

m∑
i=1

n−1∑
k=0

(k + 1)ui,k+1
∂

∂ui,0
Rn−1−k . (30)

The first few Adomian polynomials are given by

P0 = −ibu20ū0,

P1 = −2ibu0u1ū0 − ibu20ū1,

P2 = −2ibu0u2ū0 − ibu21ū0 − 2ibu0u1ū1 − ibu20ū2,

P3 = −2ibu0u3ū0 − 2ibu1u2ū0 − 2ibu0u2ū1 − ibu21ū1
− 2ibu0u1ū2 − ibu20ū3,

P4 = −ibū0u22 − 2ibu0ū0u4 − 2ibū0u1u3 − 2ibu0ū1u3
− 2ibu1ū1u2 + 2u0ū2u2 − ibu21ū2

− 2ibu0ū1u3 − ibu20ū4,
...

Q0 = −(λ + μ)u20ū0x,
Q1 = −(λ + μ)

(
u20ū1x + 2u0u1ū0x

)
,

Q2 =−(λ+μ)
(
u21ū0x+u20ū2x+2u0u1ū1x+2u0u2ū0x

)
,

Q3 = −(λ + μ)
(
u21ū1x + u20ū3x + 2u0u1ū2x

+2u0u2ū1x + 2u0u3ū0x + 2u1u2ū0x) ,
Q4 = −(λ + μ)

(
u22ū0x+u21ū2x+2u0u1ū3x + 2u0u2ū2x

+2u0u3ū1x + 2u0u4ū0x + 2u1u2ū1x + 2u1u3ū0x) ,
...

R0 = (σ − 2λ − μ)u0ū0u0x,
R1 = (σ − 2λ − μ)(u0ū0u1x + u0ū1u0x + u1ū0u0x),
R2 = (σ − 2λ − μ) (u0ū0u2x + u0ū1u1x + u0ū2u0x

+u1ū0u1x + u1ū1u0x + u2ū0u0x) ,
R3 = (σ − 2λ − μ) (u0ū0u3x + u0ū1u2x + u0ū2u1x

+ u0ū3u0x + u1ū0u2x + u1ū1u1x + u1ū2u0x
+u2ū0u1x + u2ū1u0x + u3ū0u0x) ,

R4 = (σ − 2λ − μ) (u0ū0u4x + u0ū1u3x + u0ū2u2x
+ u0ū3u1x + u0ū4u0x + u1ū0u3x + u1ū1u2x
+ u1ū2u1x + u1ū3u0x + u2ū0u2x + u2ū1u1x
+u2ū2u0x + u3ū0u1x + u3ū1u0x + u4ū0u0x) ,

...

Table 2 Dark optical solitons

Cases a1 a2 b σ α λ μ ν κ B N |Max Error|
5 2.00 0.25 1.00 −1.00 −2.00 1.00 −2.00 −2.33 1.00 1.68 12 2.50 × 10−10

6 1.50 0.20 −3.00 2.00 −1.00 0.33 0.50 −4.71 1.50 3.12 12 2.50 × 10−10

7 0.20 0.33 −4.00 2.00 2.00 2.00 −2.00 −7.40 2.00 1.15 12 1.00 × 10−10

8 3.00 0.16 −4.00 3.50 1.00 0.50 1.00 −10.04 1.20 4.83 12 1.50 × 10−10
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Fig. 5 Dynamic evolution profile of |u|2 via LADM (left) and contour plot of the wave amplitude of |u|2 (right) for the values of the parameters used
in case 5 with |Max Error| = 2.5 × 10−10

Then, the Adomian polynomials corresponding to the
nonlinear part Nu = N1u + N2u + N3u are

A0 = −ibu20ū0 − (λ + μ)u20ū0x + (σ − 2λ − μ)u0ū0u0x,
A1 = −2ibu0u1ū0−ibu20ū1 −(λ + μ)(u20ū1x + 2u0u1ū0x)

+ (σ − 2λ − μ)(u0ū0u1x + u0ū1u0x + u1ū0u0x),
A2 = −2ibu0u2ū0 − ibu21ū0 − 2ibu0u1ū1 − ibu20ū2

− (λ + μ)
(
u21ū0x + u20ū2x + 2u0u1ū1x + 2u0u2ū0x

)
+ (σ − 2λ − μ)(u0ū0u2x + u0ū1u1x + u0ū2u0x

+ u1ū0u1x + u1ū1u0x + u2ū0u0x),
A3 = −2ibu0u3ū0 − 2ibu1u2ū0 − 2ibu0u2ū1 − ibu21ū1

− 2ibu0u1ū2 − ibu20ū3 − (λ + μ)(u21ū1x + u20ū3x
+ 2u0u1ū2x + 2u0u2ū1x + 2u0u3ū0x + 2u1u2ū0x)

+ (σ − 2λ − μ) × (u0ū0u3x + u0ū1u2x + u0ū2u1x
+ u0ū3u0x + u1ū0u2x + u1ū1u1x + u1ū2u0x
+ u2ū0u1x + u2ū1u0x + u3ū0u0x),

Fig. 6 Dynamic evolution profile of |u|2 via LADM (left) and contour plot of the wave amplitude of |u|2 (right) for the values of the parameters used
in case 6 with |Max Error| = 2.5 × 10−10
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Fig. 7 Dynamic evolution profile of |u|2 via LADM (left) and contour plot of the wave amplitude of |u|2 (right) for the values of the parameters used
in case 7 with |Max Error| = 1.0 × 10−10

and so on for other Adomian polynomials.
By applying the Laplace transform with respect to t on

both sides of the Eq. (23) and using the linearity of the
Laplace transform gives:

L {Lu(x, t)} = −L{Ru(x, t)} − L {N1u(x, t)}
− L {N2u(x, t)} − L {N3u(x, t)} . (31)

Because of the differentiation property of Laplace trans-
form, Eq. (31) can be written as

sL{u(x, t)} − u(x, 0) = −L {Ru(x, t)} − L {N1u(x, t)}
− L {N2u(x, t)} − L {N3u(x, t)} .

(32)

Thus,

L {u(x, t)} = 1
s
u(x, 0) − 1

s
(L {Ru(x, t)} + L {N1u(x, t)}

+L {N2u(x, t)} + L {N3u(x, t)}) .
(33)

Fig. 8 Dynamic evolution profile of |u|2 via LADM (left) and contour plot of the wave amplitude of |u|2 (right) for the values of the parameters used
in case 8 with |Max Error| = 1.5 × 10−10
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By substituting (24), (25), (26) and (27) into (33), we obtain

L
{ ∞∑
n=0

un(x, t)
}

= f (x)
s

− 1
s

(
L

{
R

∞∑
n=0

un(x, t)
}

+L
{ ∞∑
n=0

Pn

}
+L

{ ∞∑
n=0

Qn

}
+L

{ ∞∑
n=0

Rn

})
.

(34)

Comparing both sides of the Eq. (34), the following rela-
tions arise:

L {u0(x, t)} = f (x)
s

(35)

L {u1(x, t)} = −1
s

(L {Ru0(x, t)} + L {P0} + L {Q0} + L {R0})
(36)

L {u2(x, t)}=−1
s

(L {Ru1(x, t)}+L {P1}+L {Q1}+L {R1}) .
(37)

In general, we get the following recursive algorithm

L {un+1(x, t)} = −1
s

(L {Run(x, t)} + L {Pn}
+L {Qn} + L {Rn}) , n ≥ 1.

(38)

Finally, by applying inverse Laplace transformation we
deduce the following recurrence formulas for each n =
0, 1, 2, . . . ,⎧⎨
⎩
u0(x, t) = f (x),
un+1(x, t) = −L−1 [ 1

sL{Run(x, t) + Pn(u0, . . . ,un)
+Qn(u0, . . . ,un) + Rn(u0, . . . ,un)}

]
.

(39)

Numerical simulations and graphical results
We perform numerical simulations for bright and dark
optical solitions.

Application to bright optical solitions
The result and the profile of four cases are shown in
Table 1 and in Figs. 1, 2, 3 and 4.

Application to dark optical solitions
The result and the profile of four cases are shown in
Table 2 and in Figs. 5, 6, 7 and 8.

Conclusions
This paper successfully studied FLE in polarization-
preserving fibers by the aid of Laplace-Adomian decom-
position scheme. The numerical scheme yielded bright
and dark soliton solutions. The results thus appear with
a complete spectrum of soliton solutions. Although sin-
gular solitons is a third form of solitons that emerge

from this model, it does not provide any interest with
any kind of numerical scheme. The results of the paper
are truly encouraging to study the methodology fur-
ther along. Later, this scheme will be applied to vec-
tor coupled FLE that studies solitons in birefringent
fibers. Further along the model will be extended to
address WDM/DWDM/UDWDM topology numerically.
Such studies are currently under way.
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