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Abstract

For a micro-electro-mechanical system inertial measurement unit (MEMS-IMU), Global Positioning System (GPS) and
magnetometer integrated navigation system, the procedure of initial alignment is a necessity. However, both
magnetometer and GPS receiver are susceptible to external complex environment. Outliers in the observations of the
two devices are inevitable. In order to reduce the influence of the outliers and improve the initial alignment accuracy, a
sequential robust Kalman filter (SRKF) algorithm based on the square dimension of the innovation vector is proposed.
The proposed SRKF algorithm can reasonably decrease the contribution of outlier affected elements of the observation
vector in an element-wise way. Robust factor, used to suppress the influence of outliers, is constructed according to
the Mahalanobis distance and the Chi-square distribution significance level. The results of different simulations and
field tests all indicate the feasibility and the effectiveness of the proposed method.
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Introduction
Due to the fact that MEMS-IMU has the advantages of
small size, low cost, low power consumption, high reli-
ability and convenient batch production, it has been
widely applied to engineering fields and has become an
important developing direction for inertial navigation
system (Groves 2013; Noureldin et al. 2013). However,
the gyro has a poor precision and is unable to complete
the azimuth angle alignment independently, which needs
other sensors to assist the initial alignment. In recent
years, integrated alignment method has been applied
gradually, which includes GPS, magnetometer, odometer,
IMU and other sensors (Georgy et al., 2011; Ali and
Elsheimy, 2013; Chang et al. 2017). With the development
of multi-sensor information fusion techniques, MIMU/
GPS/magnetometer integrated navigation system has been
widely used in navigation and positioning, which could
improve the initial alignment accuracy effectively (Khoder
and Jida, 2014). However, magnetometer often causes

observation outliers for it is highly susceptible to abnor-
mal interference of unknown magnetic field (Zhou et al.
2016), the influence of GPS receiver signal occlusion
(Teng et al. 2011), and the multi-path effect (Azarbad and
Mosavi, 2014), which may produce observation outliers
and result in large errors in initial alignment.
The Kalman filter is a standard algorithm of integrated

navigation system. In linear system, if the process noise and
measurement noise are independent Gaussian white noise,
then the Kalman filter is the optimal algorithm. However, if
sensors were in a complex observation environment, it
may cause observation outliers and the observed noise will
be displayed as non-Gaussian distribution, then the effect
of the Kalman filter will decline rapidly.
In order to suppress the influence of outliers, Yang et

al., 2001; Huang et al., 2011 proposed an adaptive robust
Kalman filter algorithm based on innovation vectors,
which overcomes the influence of dynamic model errors
and random errors in dynamic navigation and position-
ing. Xu (2005) proposed a robust algorithm with symbol
constraints to deal with the robustness against 50% data
pollution and obtain a higher estimation efficiency.
Bhatti and Feng (2012) proposed a rate detection
algorithm to cope with the slowly growth errors in the
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GPS/INS integrated system. In recent years, some
scholars have proposed to take the Mahalanobis distance
(Mahalanobis, 1936), indicating the distance between ob-
served and predicted values, as the criterion of error
judgment, and determined the outliers by hypothesis
testing method. Chang (2014) proposed a robust Kalman
filter method based on the Mahalanobis distances and
Chi-squared test to detect outliers in a batch method.
When only part of the measurements show anomalies, a
sequential updating strategy is promising.
A sequential updating is a method of reducing the up-

dating of high-dimensional measurements to multiple
low-dimensional measurements. Oh (2010) combined
the sequential updating method with an Unscented
Kalman filter (UKF) in the low-cost multi-sensor un-
manned aerial vehicle (UAV) system, which solves the
problem of updating the rate of different measurements
of multiple sensors and reducing the matrix inversion
calculation effectively. Bai and Li (2012) applied the
innovation-based sequential adaptive Kalman filter to
the GPS/INS integrated navigation system to estimate
the covariance matrix of measurement noise online. Lee
and Choi (2017) applied the quaternion-based sequential
Kalman filter to the navigation attitude reference system,
which could effectively detect the effects of extra accel-
eration and magnetic interference and improve the ac-
curacy of the navigation attitude reference system.
In order to suppress the observation outliers during

the initial alignment, this paper constructs a MIMU/
GPS/Magnetometer integrated navigation model that
takes the squared Mahalanobis distance as the indicator.
This method monitor the outliers by using the anomaly
detection algorithm of Chi-square distribution. More-
over, it constructs the innovation vector correction fac-
tor to realize the sequential updating process of the
Kalman filtering measurements, and finally establishes
the sequential robust Kalman filter method. The pro-
posed method is applied to the procedure of MIMU/
GPS/magnetometer initial alignment, the results of sim-
ulations and vehicle experiments have indicated the val-
idity and robustness of the proposed method.
The remainder of this paper is organized as follows: in

section “Basic knowledge”, the MIMU/GPS/magnetom-
eter integrated alignment model is presented. In section
“Methods”, the sequential robust Kalman filter method
is derived. Simulations and field tests are illustrated and
analyzed in section “Results and Discussions”. Finally,
conclusions are summarized in section “Conclusions”.

Basic knowledge
MIMU/GPS/magnetometer integrated alignment model
Integrated alignment state space model is mainly de-
scribed by IMU error model and IMU sensor system er-
rors, the integrated alignment state space model takes

the attitude errors, velocity errors, position errors, gyro
drifts, accelerometer bias and lever-arm errors as the 18
dimensional state vectors of the system state model
(Farrell, 2008):

X ¼ ϕ δvn δpn εb ∇ b δlb
� �T ð1Þ

The navigation coordinate system is based on the
east-north-up (ENU) coordinates, and the error equations
of the inertial navigation system are shown as follows:

_ϕ ¼ ϕ � ωn
in þ δωn

in−C
n
bδω

b
ib

δ _vn ¼ Cn
bδ f

b � ϕ þ vn � 2δωn
ie þ δωn

en

� �
− 2ωn

ie þ ωn
en

� �� δvn þ Cn
bδ f

b þ δgn

δ _pn ¼ δvn

ð2Þ

Whereδp, δv, ϕ represent the position error, velocity
error and attitude error respectively. Superscript sub-
script i, n, e, b represent the inertial system, navigation
system, earth system and carrier system respectively. ωb

ib

represents the gyroscope carrier system relative to the
angular velocity of inertial system, fb is the measurement
of accelerometer, Cn

b represents the direction cosine
matrix of the carrier system relative to the navigation
system, and δgn represents the local gravity error. ωn

in

means the navigation system relative to the rotation an-
gular speed under the inertial system in the navigation
system, and ωn

en represents the navigation system relative
to the rotational angular velocity of the Earth system

under the navigation system. δωb
ib and δ f bsf are the drift

errors of the gyro and accelerometer, which are similar
to the first-order Markov processes:

_εb ¼ −βgε
b þ wg

_∇
b ¼ −βa∇

b þ wa

ð3Þ

Where βg and βa are inverse correlation time con-
stants, h8 wg and wa are Gaussian white noises. δlb rep-
resents the lever-arm error, and the error equation is:

δ_l
b ¼ 0 ð4Þ

The state equation of the integrated alignment system
of the above formulas is:

_X ¼ FX þW ð5Þ
Where F is the state transition matrix, W is the angu-

lar velocity of the gyro measure white noise and the ac-
celerometer ratio measures white noise.The differences
between the azimuthZφ calculated by MIMU solution φI

and the magnetometer φM are the azimuth observations.
On the basis of the differential velocity Zv and position
Zp of MIMU and GPS, the MIMU/GPS/magnetometer
integrated alignment (Sasani et al. 2016) observation
equation can be expressed as:
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Z ¼ HX þ V ð6Þ

Where Z is the observation vector, as shown in eq. (7).
H is the matrix of measurement equations, as shown in
eq. (8). V is the observation noise, which composed of the
azimuth noise of the magnetometer and GPS receiver vel-
ocity measurement noise and position measurement
noise. The observation noises are all independent.

Z ¼
Zφ

Zv

Zp

2
4

3
5 ð7Þ

H ¼
0 0 1½ � 01�3 01�3 01�3 01�3 01�3

03�3 I3�3 03�3 03�3 03�3 03�3

03�3 03�3 I3�3 03�3 03�3 03�3

2
4

3
5

ð8Þ

Methods
Robust Kalman filter model
The discrete models of the state equation and measure-
ment equation are:

Xk ¼ FXk−1 þWk−1 ð9Þ

Zk ¼ HkXk þ Vk ð10Þ

It can be seen from the above two formulas that the
standard Kalman filter update equations are:

X̂
−
k ¼ FX̂

þ
k−1 ð11Þ

P−
k ¼ FPþ

k−1F
T þ Qk−1 ð12Þ

Pek ¼ HkP
−
kH

T
k þ Rk ð13Þ

Kk ¼ P−
kH

T
k Pek

− ð14Þ

Xþ
k ¼ X−

k þ Kk Zk−HkXkð Þ ð15Þ

Pþ
k ¼ P−

k−KkHkP
−
k ð16Þ

Where X̂
−
k and Xþ

k are the prior estimation and poster-
ior estimation of the filtering state, respectively. P−

k and
Pþ
k are the prior covariance matrix and the posterior co-

variance matrix, respectively. Zk is the actual observation
value, and Kk is the Kalman filter gain matrix. ek = Zk −
HkXk is the difference between the observed and
predicted values, which is usually called the innovation
vector whose covariance matrix is as shown in Eq. (13).
Assume that the state equation and the measured equa-
tion do not contain outliers, and the observation noise
obeys Gauss white noise distribution, then the probabil-
ity density function Zk is:

ρ Zkð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þm Pekj j

p exp −
1
2
eTk Pekð Þ−1ek

� �
ð17Þ

Where m is defined as the dimension of Zk. We deter-
mine the index parameters are as follows:

γk mð Þ ¼ M2
k ¼ −

1
2
eTk Pekð Þ−1ek ð18Þ

Where Mk is known as Mahalanobis distance, if there
is no outliers, the index parameter γk(m) should obey
the Chi square distribution of degrees of freedom m.
According to the given significance level α (small value),
having a Chi-square test for γk(m), the probability of the
event can be obtained formula:

Pr γ mð Þ > χ2α;m
h i

< α ð19Þ

Where χ2α;m is the significance level α corresponding to
the upper quantile, Pr is the probability of occurrence of
the Eq. (19). The probability of occurrence is very small.
If occurs, it can reject the original hypothesis, which
means the measurement information is affected by the
anomalous outliers. Thus, the detection of the outliers
could be realized. For the detected outliers, the filter up-
dating weight should be reduced, which can be achieved
by correcting the innovation vector covariance matrix.
Robust Estimation factor can be expressed as:

λ ¼
γ mð Þ
χ2α;m

; if γ mð Þ > χ2α;m

1; otherwise

8<
: ð20Þ

Eq. (20) indicated that its introduction will increase
the covariance matrix of the innovation, and reduce the
filter gain in order to achieve the suppression of the ob-
served outliers. The index parameters defined by Eq.
(18) not only have considered the correlations between
the elements of the innovation vector, but also are theor-
etically more rigorous. The detection of the outliers is
based on the standard hypothesis testing process. The
threshold selection has a clear statistical meaning.
The correction formula is:

Pek ¼ λPek ð21Þ

Eq. (14), Eq. (15), Eq. (16) can be obtained by modify-
ing the Pe to obtain the robust Kalman filter algorithm.

Sequential robust Kalman filter algorithm
There are different types of observation information when
the multi-sensors are integrated. If the outliers were deter-
mined only by an index parameter and then use a robust-
ness factor to modify the innovation vector covariance
matrix, it may lose a reliable prediction of state parameters
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accuracy and the state parameter weight of large outliers
margin cannot reduced effectively.
In order to solve the above problems, we apply the se-

quential updating method to the robust Kalman filter al-
gorithm to detect and correct outliers for different
observations. Sequential measurement update method
(Dan, 2006) is a method of reducing high dimensional
measurement updates to multiple low dimensional
measurement updates. In particular, the m dimension
observation vector is decomposed into m scalar. In the
process of finding the filter gain, the matrix inverse
problem is transformed into the reciprocal operation of
the scalar, which could effectively reduce the inverse cal-
culation of the matrix and enhance the stability of the
numerical calculation.
If the measurement variance matrix Rk is not a diag-

onal matrix, it can realize the observation vector diago-
nalization by Cholesky decomposition.

Rk ¼ LkL
T
k ð22Þ

Where Lk is a non-singular upper triangular matrix.
Let L−1k left multiplication eq. (9), available:

L−1k Zk ¼ L−1k HkXk þ L−1k V k ð23Þ

The above formula can be abbreviated as.

Z�
k ¼ H�

kXk þ V �
k ð24Þ

among them, Z�
k ¼ L−1k Zk ,H�

k ¼ L−1k Hk , V �
k ¼ L−1k V k ,

and the measurement noise variance matrix in eq. (23) is:

R�
k ¼ E v�k v�k

� �Th i
¼ E L−1k vk L−1k vk

� �Th i
¼ L−1k E vk vkð ÞT

h i
L−1k
� �T ¼ L−1k Rk L−1k

� �T ¼ I

ð25Þ
among them,

H�
k ¼ h�1

T h�2
T ⋯ h�m

T
� � ð26Þ

In the kth epoch the first j measurement update,
available:

Fig. 1 Simulation trajectory

Fig. 2 Attitude error results of simulations
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ŷ�k; j ¼ h�j x̂k; j−1 ð27Þ

σ2ŷ�k; j ¼ h�j P
−
k; jh

�
j
T þ 1 ð28Þ

Where: x̂k; j−1 is first j − 1 the predicted value of the vec-
tor, and x̂k;0 ¼ x̂kj j‐1, ŷ

�
k; j is ŷk first j the predicted value of

the element. By a degree of freedom Chi-square test judge
Zk, j whether it contains outliers, robustness factor is:

γ ~Zk; j
� � ¼

~Zk; j−ŷ
�
k; j

	 
2

σ2
ŷ�k; j

ð29Þ

For a given significance level value α and correspond-
ing to the upper quantile χ21;α , the judgment condition
can be expressed as:

Fig. 3 Vehicle trajectory of the field test

Fig. 4 The attitude and velocity results of the field test
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γ ~Zk; j
� �

> χ21;α ð30Þ

If ~Zk; j contains outliers, and then modified by the ro-
bustness factor innovation vector covariance matrix:

λ ¼
γ Zk; j
� �
χ21;α

; if γ Zk; j
� �

> χ21;α

1; otherwise

8<
: ð31Þ

σ2ŷ�k; j ¼ λσ2
ŷ�k; j

ð32Þ

Then we can obtain the Kalman filter updating
equations:

K ¼ P−
k; jh

�
j
T

σ2ŷ�k; j
ð33Þ

Xþ
k; j ¼ X−

k; j þ K Zk; j−ŷ
�
k; j

	 

ð34Þ

Pþ
k ¼ P−

k−σ
2
ŷ�k; j

KKT ð35Þ

Results and discussions
Simulations
The simulation was designed to verify the performance
of the proposed method. As shown in Fig. 1, the simula-
tion trajectory includes uniform motion, acceleration,
deceleration, turning, climbing, descent and other move-
ments. The zero bias stability of the accelerometer and
gyro are 16mg and 100°/h, respectively, and its sampling

frequency is 100Hz. GPS system horizontal and vertical
positioning accuracy are 2.5m and 5m respectively.
Moreover, the accuracy of head angle is 2°.
In order to verify the efficiency of the proposed SRKF

algorithm, outliers are added to the simulation data. The
outliers to the GPS positions were set as 10 m and 20 m,
which obtained at the epoch of 200 s and 400s, respect-
ively. In addition, the outliers to the magnetometer ob-
servations were set as 10° and 30°, which obtained at the
same epoch of 200 s and 400s as the GPS position out-
liers. The estimated attitude errors and position errors
are shown in Fig. 2.
From Fig. 2, the root mean squared errors in pitch, roll

and head angles of the EKF algorithm and SRKF algo-
rithm are 0.4067°, 0.4910°, 1.5831° and 0.1305°,
0.1216°,0.3796°, respectively. It can be concluded that
the accuracy of the EKF is nearly equivalent to that of
the SRKF algorithm in the absence of outliers. The EKF
algorithm has great attitude errors at the epochs of
adding measurement outliers. Whereas, the SRKF algo-
rithm can restrain the outliers effectively at these mo-
ments, and the attitude accuracy are obviously better
than EKF algorithm. The simulation results show that
the SRKF algorithm can effectively suppress the influ-
ence of the measurement outliers and maintain a better
attitude accuracy.

Vehicle experiment
Vehicle based navigation experiment was conducted to
verify the efficiency of the proposed method. The experi-
mental data were collected on Huanhai Road in the
coastline of Weihai using the micro-based INS/GPS sys-
tem in the Ellipse2-N series of the SBGSYSTEMS cor-
poration with 2m and 2.5m horizontal and vertical
positioning accuracies, respectively. Moreover, the accur-
acy of its pitch and roll angles are 0.1°, and the accuracy
of head angle is 0.5°. We chose the GPS point

Fig. 5 Error results of in the absence of outliers

Table 1 Root mean squared errors in attitude and position
estimations

Algorithms Pitch Roll Head East North Up

EKF 0.1276 0.1231 0.3870 0.6685 1.0538 0.5455

SRKF 0.1305 0.1216 0.3796 0.6758 1.0425 0.5505
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positioning mode with the sampling frequency of 5Hz.
The zero bias stability of the accelerometer and gyro are
57mg and 0.2°/s, respectively, and its sampling frequency
is 200Hz. The zero bias stability of the magnetometer is
0.1mGS with its sampling frequency of 25Hz. The
Ellipse2-N outputs are considered as the reference values
(i.e., the true values). For the chosen algorithm, a
loosely-coupled scheme is considered. The total travelled
time is about 1 h. The vehicle trajectory is shown in Fig. 3.
For expressive simplicity, we only use the first 10 min of
data for analysis. The estimated attitude and velocity
results are shown in Fig. 4.
Firstly, we compare the extended Kalman filter (EKF)

and the proposed SRKF in the absence of outliers. Fig. 5
has shown the attitude and positioning errors of MIMU/
GPS/magnetometer integrated alignment based on the
EKF and the SRKF. Fig. 5 illustrates that the accuracy of
the EKF is nearly equivalent to that of the SRKF algo-
rithm in the absence of outliers, and the specific

accuracy is shown in Table 1. The root mean squared er-
rors in pitch, roll and head angles of the SRKF algorithm
are 0.1305°, 0.1216° and 0.3796°, respectively. While the
root mean squared errors in east, north and up direc-
tions are 0.6758m, 1.0425m and 0.5505m, respectively.
Therefore, in the absence of outliers, the effect of SRKF
algorithm is nearly equivalent to the EKF algorithm.
Secondly, in order to verify the efficiency of the pro-

posed SRKF algorithm, outliers are added to the experi-
mental data. The following three schemes are designed
to make comparisons.
Scheme 1: Only GPS position errors are affected by

outliers.
We add different magnitude of outliers, which are 5

m, 10 m and 15 m, to the GPS positions obtained by sin-
gle point positioning mode at the epoch of 100 s, 200 s
and 300 s, respectively.
Scheme 2: Only magnetometer observations are af-

fected by outliers.

Fig. 6 Error results of scheme 1

Fig. 8 Error results of scheme 3
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We add different magnitude of outliers, which are 100
mGS, 150 mGS and 200 mGS, to the magnetometer ob-
servations at the epoch of 150 s, 200 s and 350s,
respectively.
Scheme 3: Both GPS positions and magnetometer ob-

servations are affected by outliers, and the magnitude
and the epochs where outliers are added are the same as
the schemes 2 and 3.
The estimated attitude errors and position errors are

shown in Figs. 6, 7 and 8, and the specific accuracy is
shown in Table 2.
From Fig. 6 to Fig. 8, we can conclude that if only

add the position errors in scheme 1, the pitch angle,
roll angle and position of EKF algorithm all have ob-
vious errors at 100s, 200s, 300s and 400s. While the
pitch and roll angle errors of SRKF algorithm are
relatively small, and the errors increase with the in-
creasing of the added errors. And it is nearly the
same for the head angles between these two methods,
for the magnetometer measurements are relatively ac-
curate and could restrain the head angle divergence
effectively. In addition, if only add the magnetometer
errors in scheme 2, the head angle errors of EKF al-
gorithm are relatively larger than SRKF algorithm at
150s, 200s, 350s and 400s. However, the pitch and

roll angle errors and position errors are essentially
the same between these two algorithms. The reason
lies in the magnetometer errors could cause outliers
of head angle, however, due to the fact that GPS
measurements are rather accurate, it could restrain
the divergence of head angle of EKF algorithm to
some extent, and SRKF could effectively restrain the
outliers. In Scheme 3, this paper add the position er-
rors and magnetometer errors simultaneously, the
EKF algorithm has great attitude and position errors
at the time of adding measurement outliers. Whereas,
the SRKF algorithm can restrain the outliers effect-
ively at these moments, and the attitude and position
accuracy are obviously better than the EKF algorithm.
In conclusion, when the measurement outliers exist
for the MIMU/GPS/Magnetometer integrated system,
the effect of the SRKF algorithm is a lot better than
the traditional EKF algorithm, which could effectively
restrain the outliers and maintain a better attitude
and position accuracy.

Conclusions
In order to handle the problem that the initial align-
ment of the MIMU/GPS/magnetometer integrated
system is susceptible to the outliers, this paper takes
the squared Mahalanobis distance as a judging index
to detect the existence of outliers. A sequential meas-
urement updating strategy is proposed and combined
with the Kalman filter to sequentially suppress the
outlier in the observation vector in an element-wise
way. Thus, a sequential robust Kalman filter is formu-
lated, which is a new extension of the existing of the
robust Kalman filter algorithm. The field test shows
that the proposed SRKF algorithm can effectively sup-
press the influence of outliers in the initial alignment
process, and has a better robustness and stability.

Table 2 Root mean squared errors in attitude and position
estimations

Schemes Methods Pitch Roll Head East North Up

Scheme 1 EKF 0.2176 0.1837 0.3876 3.3071 2.1938 2.0032

SRKF 0.1323 0.1255 0.3787 0.7228 1.1082 0.5723

Scheme 2 EKF 0.1287 0.1241 0.5143 0.6718 1.0561 0.5452

SRKF 0.1224 0.1267 0.4526 0.7029 1.0479 0.5419

Scheme 3 EKF 0.2252 0.1786 1.3556 3.3252 2.1022 2.0156

SRKF 0.1316 0.1268 0.3671 0.7066 1.1181 0.5708

Fig. 7 Error results of scheme 2
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