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Abstract
We derive the Green tensor of Mindlin’s anisotropic first strain gradient elasticity. The
Green tensor is valid for arbitrary anisotropic materials, with up to 21 elastic constants
and 171 gradient elastic constants in the general case of triclinic media. In contrast to
its classical counterpart, the Green tensor is non-singular at the origin, and it converges
to the classical tensor a few characteristic lengths away from the origin. Therefore, the
Green tensor of Mindlin’s first strain gradient elasticity can be regarded as a physical
regularization of the classical anisotropic Green tensor. The isotropic Green tensor and
other special cases are recovered as particular instances of the general anisotropic
result. The Green tensor is implemented numerically and applied to the Kelvin problem
with elastic constants determined from interatomic potentials. Results are compared to
molecular statics calculations carried out with the same potentials.

Keywords: Green tensor, Gradient elasticity, Anisotropy, Non-singularity, Kelvin
problem

Introduction
Green functions are objects of fundamental importance in field theories, since they rep-
resent the fundamental solution of linear inhomogeneous partial differential equations
(PDEs) from which any particular solution can be obtained via convolution with the
source term (Green 1828). Moreover, Green functions are the basis of important numeri-
cal methods for boundary value problems, such as the boundary element method (Becker
1992), and they provide “flexible" boundary conditions for atomistic simulations (Trinkle
2008). In the context of linear elasticity, the Green function is a tensor-valued function
of rank two, also known as the Green tensor. When contracted with a concentrated force
acting at the origin, the Green tensor yields the displacement field in an infinite elastic
medium. Kelvin (1882) first derived the closed-form expression of the classical Green ten-
sor for isotropic materials. For anisotropic materials, Lifshitz and Rosenzweig (1947) and
Synge (1957) were able to derive the Green tensor in terms of an integral expression over
the equatorial circle of the unit sphere in Fourier space. Barnett (1972) extended this result
to the first two derivatives of the Green tensor, and showed that the line-integral repre-
sentation is well suited for numerical integration (see also Bacon et al. (1979); Teodosiu
(1982)).
The Green tensor and its derivatives are singular at the origin, ultimately as a con-

sequence of the lack of intrinsic length scales in the classical theory of elasticity. The

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s41313-019-0015-2&domain=pdf
http://orcid.org/0000-0003-2132-5085
mailto: gpo@ucla.edu
http://creativecommons.org/licenses/by/4.0/


Po et al. Materials Theory             (2019) 3:3 Page 2 of 16

unphysical singularities in the elastic fields derived from the Green tensor hinder their
applicability in nano-mechanics, including the elastic theory of defects such as cracks,
dislocations and inclusions (Mura 1987; Askes and Aifantis 2011). Generalized elastic
field theories with intrinsic length scales have been proposed in the context of micro-
continuum theories (Eringen 1999), non-local theories (Eringen 2002), and gradient
theories (Kröner 1963; Mindlin 1964; 1968b; 1972; Mindlin and Eshel 1968a). In par-
ticular, Mindlin’s anisotropic strain gradient elasticity has received renewed attention as
a tool to solve engineering problems at the micro- and nano-scales for realistic materi-
als (Polizzotto 2018). Only recently, the structure of the gradient-elastic tensor has been
rationalized for different material symmetry classes (Auffray et al. 2013), and its atom-
istic representation and ensuing determination from interatomic potentials has become
available (Admal et al. 2016).
The number of independent strain gradient elastic moduli ranges from 5 for

isotropic materials, to 171 in the general case of triclinic materials. While simple
expressions of the Green tensor exist for the isotropic case (Rogula 1973; Lazar
and Po 2018), and for simplified anisotropic theories (Lazar and Po 2015a, b), the
Green tensor of the fully anisotropic theory of Mindlin’s strain gradient elasticity has
remained so far a rather elusive object. Rogula (1973) provided an expression for
the Green tensor in gradient elasticity of arbitrary order, which involves a sum of
terms associated with the roots of a certain characteristic polynomial. However, such
representation renders its numerical implementation rather impractical, and it con-
ceals the mathematical structure of the Green tensor in relationship to its classical
counterpart.
The objective of this paper is to derive a simple representation of the Green tensor

of Mindlin’s anisotropic first strain gradient elasticity, whose integral kernel involves
only matrix operations suitable for efficient numerical implementation. Following a
brief summary of Mindlin’s anisotropic first strain gradient elasticity, we derive the
matrix representation of the Green tensor. It is shown that the Green tensor is non-
singular at the origin, while its first gradient is finite but discontinuous at the origin.
The classical tail of the Green tensor, as well as its classical limit for vanishing gra-
dient parameters are easily recovered from the non-singular expression. We demon-
strate that the Green tensor generalizes other expressions found in the literature, and
finally consider the Kelvin problem where the Green tensor is compared to atomistic
calculations.

Mindlin’s anisotropic gradient elasticity
Let us consider an infinite elastic body in three-dimensional space and assume that the
gradient of the displacement field u is additively decomposed into an elastic distortion
tensor β and an inelastic1 eigen-distortion tensor β∗:

∂jui = βij + β∗
ij . (1)

In the linearized theory of Mindlin’s form-II first strain gradient elasticity (Mindlin
1964; 1968b; Mindlin and Eshel 1968a; Mindlin 1972), the strain energy density of an
homogeneous and centrosymmetric2 material is given by
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W(e,∇e) = 1
2
Cijkleijekl + 1

2
Dijmkln∂meij∂nekl . (2)

The strain energy density (2) is a function of the infinitesimal elastic strain tensor

eij = 1
2
(
βij + βji

)
, (3)

and of its gradient eij,m. The tensorC is the standard rank-four tensor of elastic constants.
By virtue of the symmetries

Cijkl = Cjikl = Cijlk = Cklij , (4)

it possesses up to 21 independent constants with units of eV/Å3. The tensor D is the
rank-six tensor of strain gradient elastic constants, with symmetries

Dijmkln = Djimkln = Dijmlkn = Dklnijm . (5)

It has units of eV/Å. In the general case of triclinic materials the number of independent
constants in the tensor D is equal to 171 (Auffray et al. 2013).
The quantities conjugate to the elastic strain tensor and its gradient are the Cauchy

stress tensor σ and the double stress tensor τ , respectively. These are defined as:

σij = ∂W
∂eij

= Cijklekl , (6)

τijm = ∂W
∂(∂meij)

= Dijmklnekl,n . (7)

In the presence of a body forces density b, the static Lagrangian density of the system
becomes:

L = −W − V = −1
2
(
Cijklβijβkl + Dijmklnβij,mβkl,n

) + uibi , (8)

where

V = −uibi (9)

is the potential of the body force. The condition of static equilibrium is expressed by the
Euler-Lagrange equation

δL
δui

= ∂L
∂ui

− ∂j
∂L

∂(∂jui)
+ ∂k∂j

∂L
∂(∂k∂jui)

= 0 . (10)

In terms of the Cauchy and double stress tensors, Eq. (10) takes the following form
(Mindlin 1964):

∂j
(
σij − ∂mτijm

) + bi = 0 . (11)

Using Eqs. (1) (6) (7), Eq. (11) can be cast in the following equation for displacements:

LMik uk + fi = 0 . (12)

In Eq. (12), LMik denotes the differential operator of Mindlin’s anisotropic first strain
gradient elasticity

LMik = Cijkl∂j∂l − Dijmkln∂j∂l∂m∂n , (13)

while

fi = bi −
[
Cijkl∂j − Dijmkln∂j∂m∂n

]
β∗
kl (14)

is the forcing term. Note that the second term on the right hand side of Eq. (14) is an
“effective” internal force due to the inelastic eigen-distortion, and arises in the presence
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of material defects, such as inclusions, cracks, and dislocations. This term is the gradient
version of the internal force in Mura’s eigen-strain theory (Mura 1987).

The Green tensor of Mindlin’s first strain gradient elasticity
In this section, we derive the three-dimensional Green tensor of the operator (13). To this
end, we seek the solution to Eq. (12) in the form

uk = Gkj ∗ fj , (15)

where the symbol ∗ indicates convolution over the three-dimensional space, and G is the
Green tensor of Mindlin’s anisotropic differential operator LM. Substituting Eq. (15) into
Eq. (12), one finds that G satisfies the following inhomogeneous PDE:

[
Cijkl∂j∂l − Dijmkln∂j∂l∂m∂n

]
Gkm + δimδ = 0 . (16)

In Eq. (16), δij is the Kronecker symbol, while δ is the three-dimensional Dirac
δ-distribution.
Taking the Fourier transform3 of Eq. (16), we obtain the following algebraic equation

for the Green tensor Ĝkj(k) in Fourier space

[Cik(k) + Dik(k)] Ĝkj(k) = δij , (17)

where

Cik(k) = Cijklkjkl , (18)

Dik(k) = Dijmklnkjklkmkn (19)

are symmetric matrices. If we further define the unit vector in Fourier space

κ = k
k
, k =

√
kiki , κ2 = 1 , (20)

then (17) becomes:

k2
[
Cik(κ) + k2Dik(κ)

]
Ĝkj(k) = δij , (21)

or equivalently, in matrix notation,

k2
[
C(κ) + k2D(κ)

]
Ĝ(k) = I . (22)

Stability of the differential operator LM requires that the matrix C(κ)+ k2D(κ) be pos-
itive definite. Since this requirement must hold for all k and κ , then the matrices C(κ)

and D(κ) must be individually positive definite. Under the assumption that C(κ) and
D(κ) are symmetric positive definite (SPD) matrices, the solution of (22) in Fourier space
clearly reads:

Ĝ(k) =
[
C(κ) + k2D(κ)

]−1

k2
. (23)

The three-dimensional Green tensor in real space is obtained by inverse Fourier
transform of Eq. (23). It reads:

G(x) = 1
8π3

∫

R3

[
C(κ) + k2D(κ)

]−1

k2
cos (k · x) dV̂

= 1
8π3

∫

S

∫ ∞

0

[
C(κ) + k2D(κ)

]−1 cos (kκ · x) dk dω . (24)
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In Eq. (24), dV̂ = k2 dk dω indicates the volume element in Fourier space, and dω is an
elementary solid angle on the unit sphere S . Our objective now is to obtain an alternative
expression of the matrix inverse [C(κ) + k2D(κ)]−1 which allows us to carry out the the
k-integral analytically. By doing so, the non-singular nature of the Green tensor at the
origin is revealed. We start by observing that, by virtue of its SPD character, the matrix
C(κ) admits the following eigen-decomposition

C(κ) = R(κ)V 2(κ)RT (κ) , (25)

where R(κ) is the orthogonal matrix of the eigenvectors of C(κ), while V 2(κ) is the
diagonal matrix of positive eigenvalues of C(κ). Moreover, the matrix

C 1
2 = R(κ)V (κ)RT (κ) (26)

is also SPD. Using (26), let us consider the following identity:

C + k2D(κ) = C 1
2
[
I + k2�2(κ)

]
C 1

2 , (27)

where

�2(κ) = C− 1
2 (κ)D(κ)C− 1

2 (κ) (28)

is a SPD matrix with units of length squared. With this decomposition, the Green tensor
in Fourier space becomes

Ĝ(k) = C− 1
2 (κ)

[
I + k2�2(κ)

]−1

k2
C− 1

2 (κ) , (29)

while in real space we obtain

G(x) = 1
8π3

∫

S
C− 1

2 (κ)

∫ ∞

0

[
I + k2�2(κ)

]−1 cos(kκ · x) dk C− 1
2 (κ)dω . (30)

In order to carry out the k-integral, we make use of the following matrix identity:4
∫ ∞

0

[
I + k2�2(κ)

]−1 cos(kκ · x) dk = π

2
exp

(−|κ · x| �−1(κ)
)

�−1(κ) . (31)

With this identity, the Green tensor takes the form

G(x) = 1
16π2

∫

S
C− 1

2 (κ) exp
{−|κ · x| �−1(κ)

}
�−1(κ)C− 1

2 (κ) dω . (32)

Next, Eq. (32) is further simplified noting that the integration kernel is an even function
of κ . Therefore, the integral over the unit sphere S is twice the integral over a hemisphere.
At the origin, any arbitrary hemisphereH can be chosen, and the Green tensor assumes

the value

G(0) = 1
8π2

∫

H
C− 1

2 (κ) �−1(κ)C− 1
2 (κ)dω . (33)

This noteworthy result shows that the Green tensor is non-singular at the origin, in
contrast to classical elasticity.
Away from the origin, we can choose the hemisphere having the direction x as the

zenith. This is a convenient choice because all points κ on such a hemisphere satisfy
the condition κ · x ≥ 0. This hemisphere can be parameterized by the zenith angle θ and
the azimuth angle φ, as shown in Fig. 1. In this reference system, the unit vector κ can be
expressed as

κ(θ ,φ) = sin θ cosφ ê1 + sin θ sinφ ê2 + cos θ ê3 , (34)
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Fig. 1 The unit sphere in Fourier space. The unit vector κ(θ ,φ) is defined by the azimuth angle φ, and the
zenith angle θ measured from the axis ê3 = x/x

where ê3 = x/x. Finally, letting q = cos θ , the elementary solid angle becomes

dω = sin θ dθ dφ = −dq dφ , (35)

and

κ(q,φ) =
√
1 − q2 cosφ ê1 +

√
1 − q2 sinφ ê2 + q ê3 . (36)

Therefore the Green tensor of the anisotropicMindlin differential operator of first order
finally becomes

G(x) = 1
8π2

∫ 2π

0

∫ 1

0
C− 1

2 (κ) exp
{−qx�−1(κ)

}
�−1(κ)C− 1

2 (κ) dq dφ . (37)

The first two gradients of the Green tensor

The first two gradients of the Green tensor are computed directly by differentiation of
(32). The first gradient reads

∇G(x) = − 1
16π2

∫

S
C− 1

2 (κ) exp
{−|κ · x| �−1(κ)

}
�−2(κ)

× C− 1
2 (κ) ⊗ κ sign(κ · x) dω . (38)

In components this is:

Gij,m(x) = − 1
16π2

∫

S

[
C− 1

2 (κ) exp
{−|κ · x| �−1(κ)

}
�−2(κ)

× C− 1
2 (κ)

]

ij
κm sign(κ · x) dω . (39)

Note that, because of the presence of the sign function, the gradient of the Green tensor
is finite but discontinuous at the origin. From a computational perspective, it is more con-
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venient to express this result in reference system of Fig. 1. Doing so we find the alternative
representation

Gij,m(x) = − 1
8π2

∫ 2π

0

∫ 1

0

[
C− 1

2 (κ) exp
{−|κ · x| �−1(κ)

}
�−2(κ)

×C− 1
2 (κ)

]

ij
κm dq dφ. (40)

The second gradient of the Green tensor reads

∇∇G(x) = 1
16π2

∫

S

(
C− 1

2 (κ) exp
{−|κ · x| �−1(κ)

}

× �−3(κ)C− 1
2 (κ) ⊗ κ ⊗ κ

− C− 1
2 (κ) �−2(κ)C− 1

2 (κ) ⊗ κ ⊗ κ δ(κ · x)
)
dω . (41)

Letting n(φ) = κ(π/2,φ) be a unit vector on the equatorial plane κ · x = 0, we finally
obtain

∇∇G(x) = 1
16π2

∫

S
C− 1

2 (κ) exp
{−|κ · x| �−1(κ)

}

× �−3(κ)C− 1
2 (κ) ⊗ κ ⊗ κ dω

− 1
8π2x

∫ 2π

0
C− 1

2 (n) �−2(n)C− 1
2 (n) ⊗ n ⊗ n dφ . (42)

Note that the second gradient of the Green tensor is singular at the origin.

The classical limit

It is now shown that Green tensor (32) converges to the classical Green tensorG0 (Lifshitz
and Rosenzweig 1947; Synge 1957) when the field point x is sufficiently far from the origin
compared to the characteristic length scales, that is when

|κ · x|/λi � 1, (43)

where λi is an eigenvalue of�, and i = 1, 2, 3. This important property guarantees that the
non-singular Green tensor (37) regularizes the classical anisotropic Green tensor in the
far field. Moreover, as a special case satisfying condition (43), the classical Green tensor
G0 is also recovered in the limit of vanishing tensor of strain gradient coefficients D. The
classical Green tensor G0 is readily recovered if we consider the limit5

lim|κ ·x|/λi→∞ exp
{−|κ · x| �−1(κ)

}
�−1(κ) = 2I

x
δ(κ · x̂) , (44)

where x̂ = x/x and I is the identity tensor. In fact, the substitution of (44) into (32) yields

G(x) → G0(x) = 1
8π2x

∫

S
C−1(κ) δ(κ · x) dω = 1

8π2x

∫ 2π

0
C−1(n) dφ . (45)

Here we used again the notation n(φ) = κ(π/2,φ) to indicate a unit vector on the
equatorial plane κ · x = 0. Note that the span of integration can be reduced to the range
0 ≤ φ ≤ π using the symmetry C−1(n) = C−1(−n).
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Special cases
In this section we show that the Green tensor (32) generalizes other results obtained in
the literature.

The weakly non-local Green tensor GNL

Lazar and Po (2015b) have considered a simplified strain gradient elasticity theory under
the assumption

Dijmkln = CijklLmn , (46)

a framework which was named Mindlin’s strain gradient elasticity with weak non-
locality because of its relation to non-local theories (Lazar, M et al.: Nonlocal anisotropic
elasticity: fundamentals and application to three-dimensional dislocation problems, sub-
mitted for publication) (Lazar and Agiasofitou 2011). The Green tensor (32) recovers our
previous result as a special case. In fact, under the previous assumption, we have

�(κ) = I
√

κTLκ , (47)

and

exp
{−|κ · x| �−1(κ)

}
�−1(κ) = I

exp
(
− |κ ·x|√

κTLκ

)

√
κTLκ

.

Therefore the Green tensor becomes

GNL(R) = 1
16π2

∫

S
C−1(κ)

exp
(
− |κ ·x|√

κTLκ

)

√
κTLκ

dω , (48)

which is the expression given in Lazar and Po (2015b).

The Green tensor of anisotropic gradient elasticity of Helmholtz type GH

An even simpler theory, named Mindlin’s gradient elasticity of Helmholtz type, has been
proposed by Lazar and Po (2015a). The theory is characterized by only one gradient
length scale parameter 
, which renders the tensor L diagonal:

L = 
2 I . (49)

The non-singular Green tensor of this theory is obtained by substituting (49) in (48),
thus yielding

GH(R) = 1
16π2


∫

S
C−1(κ) exp

(
−|κ · x|




)
dω , (50)

which coincides with the expression given in Lazar and Po (2015a).

The isotropic Green tensor GI

The isotropic tensor C has components
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Cijkl = λδijδkl + μ
(
δikδjl + δilδjk

)
, (51)

where λ and μ are the Lamé constants. On the other hand, the isotropic tensor D reads

Dijmkln = a1
2
(
δijδkmδln + δijδknδlm + δklδimδjn + δklδinδjm

)

+ a3
2
(
δjkδimδkl + δikδjmδnl + δilδjmδkn + δjlδimδkn

)

+ a5
2
(
δjkδinδlm + δikδjnδlm + δjlδkmδin + δilδkmδjn

)

+ 2a2 δijδklδmn + a4
(
δilδjkδmn + δikδjlδmn

)
, (52)

where a1, a2, a3, a4, a5 are the gradient parameters in isotropic Mindlin’s first strain gra-
dient elasticity theory (Mindlin 1964) (see also Mindlin (1968b), Lazar and Po (2016)).
Therefore, the matrices C(κ) andD(κ) become, respectively

Cik(κ) = (λ + 2μ)κiκk + μ
(
δik − κiκk

)
, (53)

Dik(κ) = 2(a1 + a2 + a3 + a4 + a5)κiκk

+ 1
2

(a3 + 2a4 + a5)
(
δik − κiκk

)

= (λ + 2μ) 
21κiκk + μ 
22
(
δik − κiκk

)
. (54)

The two characteristic lengths 
1 and 
2 introduced above are defined as


21 = 2(a1 + a2 + a3 + a4 + a5)
λ + 2μ

, (55)


22 = a3 + 2a4 + a5
2μ

. (56)

Owing to the special structure6 of C(κ) and D(κ), the following results are easily
obtained:

C− 1
2

ij (κ) = 1√
μ

(
δij − κiκj

) − 1√
λ + 2μ

κiκj (57)

�−1
ij (κ) = 1


2

(
δij − κiκj

) + 1

1

κiκj . (58)

The matrix �−1 admits the eigenvalue 1/
1, corresponding to the eigenvector v̂1 =
κ . The degenerate eigenvalue 1/
2 has multiplicity two, corresponding to two arbitrary
eigenvectors v̂2 and v̂3 perpendicular to κ . Choosing such eigenvectors to be mutually
orthogonal, the matrix �−1 admits the eigen decomposition �−1 = QD−1QT . Here

Q =[ v̂1 v̂2 v̂3] (59)

is an orthogonal matrix whose columns are the eigenvectors of �−1, and

D−1 = diag
{
1

1

,
1

2

,
1

2

}
(60)

is the diagonal matrix of its eigenvalues. This special form ofQ yields the identity
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C− 1
2Q = Q diag

{
− 1√

λ + 2μ
,

1√
μ
,

1√
μ

}
. (61)

Using these results in (32), we obtain

GI(x) = 1
16π2

∫

S
C− 1

2Q exp
{−|κ · x|D−1} D−1QTC− 1

2 dω

= 1
16π2

∫

S
Q diag

⎧
⎨

⎩
e

−|κ ·x|

1


1(λ + 2μ)
,
e

−|κ ·x|

2


2μ
,
e

−|κ ·x|

2


2μ

⎫
⎬

⎭
QTdω

= 1
16π2

∫

S

e
−|κ ·x|


1

(λ + 2μ)
1
v̂1 ⊗ v̂1dω

+ 1
16π2

∫

S

e
−|κ ·x|


2

μ
2

(
v̂2 ⊗ v̂2 + v̂3 ⊗ v̂3

)
dω . (62)

Because they form an orthonormal basis, the three eigenvectors satisfy the identity v̂1⊗
v̂1 + v̂2 ⊗ v̂2 + v̂3 ⊗ v̂3 = I, hence we have

GI(x) = 1
16π2

∫

S

⎡

⎣ e
−|κ ·x|


1

(λ + 2μ)
1
κ ⊗ κ + e

−|κ ·x|

2

μ
2
(I − κ ⊗ κ)

⎤

⎦ dω . (63)

The integral over the unit sphere is carried out using the relation

∫

S

e
−|κ ·x|






κiκj dω = 2π ∂i∂jA(x, 
) , (64)

where the scalar function A(x, 
) is

A(x, 
) = x + 2
2

x
− 2
2

x
e−x/
 . (65)

The scalar function A(x, 
) can be regarded as a regularized distance function in the
sense that A(x, 
) tends to x when x/
 � 1, while it smoothly approaches 2
 for small x,
as shown in Fig. 2. By sake of (64), the Green tensor finally becomes:

Gij(x) = 1
8πμ

[ μ

λ + 2μ
∂i∂jA(x, 
1) + (

δij� − ∂i∂j
)
A(x, 
2)

]
. (66)

This result can also be obtained by direct inverse Fourier transform of (23), as shown in
Appendix 1. A more detailed analysis of the isotropic Green tensor (66) can be found in
Lazar and Po (2018).

A comparison withmolecular statics: The Kelvin problem
In this section, we compare the Green tensor obtained fromMindlin’s strain gradient elas-
tic theory to that obtained from an atomistic system. This study was carried out using
Minimol (Tadmor and Miller 2011) which is a KIM-compliant molecular dynamics (MD)
and molecular statics (MS) program. The Open Knowledgebase of Interatomic Models
(KIM) is a project focused on creating standards for atomistic simulations including an
application programming interface (API) for information exchange between atomistic
simulation codes and interatomic potentials (Tadmor et al. 2011, 2013).
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Fig. 2 Plot of the regularized distance function A(x, 
)

We choose face-centered-cubic Aluminum and Copper for this comparison, and con-
sider the following two interatomic potentials: the modified-embedded-atom-method
(MEAM) by Lee et al. (2001), and the embedded-atom-potential by Mendelev et al.
(2008), which are archived in the OpenKIM repository. Elastic and gradient-elastic con-
stants for these potentials were computed using the method described in Admal et al.
(2016), and they are available on the KIM repository (Lee 2014; Mendelev 2014). For con-
venience, the values of the independent elastic and gradient-elastic constants are reported
in Table 1. These components are used to populate the elastic tensors C and D (Admal
et al. 2016; Auffray et al. 2013). The Voigt structure of the resulting tensors C and D is
shown in Fig. 3.
The atomistic system is constructed by stacking together 15×15×15 unit cells resulting

in 13500 atoms. A force of 0.0116 eV/Å in the x1 direction is imposed on the central

Table 1 Elastic and gradient-elastic constants obtained from the interatomic potentials Lee (2014)
and Mendelev (2014)

Cu EAM Cu MEAM Al MEAM

C1,1 [ eV/Å3] 1.0868 1.0994 7.1366·10−1

C1,2 [ eV/Å3] 7.9386·10−1 7.7973·10−1 3.8649·10−1

C4,4 [ eV/Å3] 5.2252·10−1 5.1043·10−1 1.9704·10−1

D1,1 [ eV/Å] 1.1182 6.5018·10−1 1.0855

D1,2 [ eV/Å] 3.5814·10−1 3.6659·10−1 1.4572·10−1

D1,3 [ eV/Å] 3.7951·10−1 2.4150·10−1 1.5934·10−1

D2,2 [ eV/Å] 4.7935·10−1 7.3885·10−1 8.4221·10−1

D2,3 [ eV/Å] 3.0103·10−1 2.0651·10−1 1.5671·10−1

D2,4 [ eV/Å] 1.2789·10−1 4.7496·10−1 7.1708·10−1

D2,5 [ eV/Å] 1.0652·10−1 -4.2545·10−2 -1.1434·10−2

D3,3 [ eV/Å] 4.3662·10−1 2.9055·10−1 2.7613·10−1

D3,5 [ eV/Å] 1.2789·10−1 -1.8275·10−2 -1.2408·10−1

D16,16 [ eV/Å] 1.4925·10−1 3.7419·10−2 1.6786·10−1

D16,17 [ eV/Å] 1.0652·10−1 3.7394·10−2 1.5006·10−1
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a b c

d e f
Fig. 3 Voigt representation of the elastic tensorsC and gradient-elastic tensorD for fcc Al and Cu, computed
from the interatomic potentials Lee (2014) and Mendelev (2014). a and d Cu for EAM potential (Mendelev
2014). b and e Cu for MEAM potential (Lee 2014). c and f Al for MEAM potential (Lee 2014)

atom of the system, and displacement boundary conditions are imposed on five layers of
atoms close to the boundary using the classical solution given in Eq. (45). The padding
atoms thickness is 0.15 times the size of the box. A MS simulation is carried out using
the above-mentioned boundary conditions resulting in a deformed crystal. The resulting
displacement field normalized with respect to the force on the central atom yields the
atomistic Green tensor component fields.
Simulation results are shown in Fig. 4, where we compare the Green tensor compo-

nents G11(x1, 0, 0) and G22(x1, 0, 0). Despite the fact that these potentials were never
fitted to gradient-elastic constants, it can be observed that the analytical predictions are
in good agreement with MS calculations, with a maximum error at the origin in the
order of 5-30%, depending on the potential used. It should be noted that, compared to
the EAM potential, the MEAM potential better compares to the analytical results, pos-
sibly as a result of artifacts in gradient-elastic constants evaluated by EAM potentials
(Admal et al. 2016).

Summary and conclusions
In this paper we have derived an expression for the Green tensor of Mindlin’s anisotropic
strain gradient elasticity, which possesses up to 21 elastic constants and 171 gradient elas-
tic constants in the general case of triclinic media. The Green tensor is found in terms of
a matrix kernel integrated over the unit sphere in Fourier space. Such representation is
similar to that of the classical anisotropic Green tensor, which requires integration over
the equatorial plane of the unit sphere. In contrast to its classical counterpart, however,
the Green tensor of Mindlin’s anisotropic strain gradient elasticity is non-singular at the
origin, while its gradient is finite but discontinuous at the origin. It is shown that the
non-singular Green tensor converges to the classical tensor a few characteristic lengths



Po et al. Materials Theory             (2019) 3:3 Page 13 of 16

a b

c d

e f
Fig. 4 Components of the Green tensor for fcc Al and Cu, and comparison to atomistic calculations obtained
from the interatomic potentials Lee (2014) and Mendelev (2014). a-b Cu for EAM potential (Mendelev 2014).
c-e Cu for MEAM potential (Lee 2014). e-f Al for MEAM potential (Lee 2014)

away from the origin. Therefore, the Green tensor ofMindlin’s first strain gradient elastic-
ity can be regarded as a physical regularization of the classical anisotropic Green tensor.
Moreover, existing expressions of the Green tensor found in the literature are recovered
as special cases. Because the Green tensor regularizes its classical counterpart without
unphysical singularities, it offers a more realistic description of near-core elastic fields
of defects in micro-mechanics, and it provides more accurate boundary conditions for
atomistic and ab-initio energy-minimization calculations. As an illustrative example, we
have computed the displacement field induced by a concentrated force acting at the ori-
gin (Kelvin problem), and compared the analytical predictions to atomistic calculations
when the elastic and gradient-elastic moduli are consistently derived from the inter-
atomic potentials. Despite the fact that these potentials were not fitted to gradient-elastic
constants, it is shown that the analytical predictions are in good agreement with MS cal-
culations, with a maximum error at the origin in the order of 5-30%, depending on the
potential used.
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Endnotes
1 The inelastic distortion comprises plastic effects, and is typically an incompatible field.

When the inelastic distortion is absent the elastic distortion is compatible.
2Due to the centrosymmetry, there is no coupling between eij and ∂mekl.
3 The Fourier transform and its inverse are defined as, respectively (Vladimirov 1971):

f̂ (k) =
∫

R3
f (x) e−ik·x dV , (67)

f (x) = 1
(2π)3

∫

R3
f̂ (k) eik·x dV̂ . (68)

For a real-valued function, the inverse Fourier transform is

f (x) = 1
(2π)3

∫

R3
f̂ (k) cos (k · x) dV̂ . (69)

4The proof of (31) descends from the fact that�2(κ) is a real SPDmatrix, and therefore
it admits the eigen-decomposition

�2(κ) = Q(κ)D2(κ)QT (κ) , (70)

where D2(κ) = diag
{
λ2i (κ)

}
is the diagonal matrix of the positive eigenvalues of

�2(κ), and Q(κ) is the orthogonal matrix of its eigenvectors. With this observation, we
immediately obtain
∫ ∞

0

[
I + k2�2(κ)

]−1 cos(kκ · x) dk=
∫ ∞

0

[
Q(κ)

(
I + k2D2(κ)

)
QT (κ)

]−1
cos(kκ · x) dk

= Q(κ)

∫ ∞

0
diag

{
cos(kκ · x)
1 + k2λ2i (κ)

}

dkQT (κ) .

With the help of the definite integral 3.767 in Gradshteyn and Ryzhik (2007), we obtain
∫ ∞

0

[
I + k2�2(κ)

]−1 cos(kκ · x) dk = π

2
Q(κ) diag

{
e−|κ ·x|/λi(κ)

λi(κ)

}

QT (κ)

= π

2
Q(κ) diag

{
e−|κ ·x|/λi(κ)

}
D−1(κ)QT (κ)

= π

2
Q(κ) exp

{−|κ · x|D−1(κ)
}
QT (κ)�−1(κ)

= π

2
exp

{−|κ · x|�−1(κ)
}

�−1(κ).

In the last step we have used the property that the matrix exponential is an isotropic
tensor-valued function of its argument.

5Using the eigen-decomposition (70):

lim|κ ·x|/λi→∞ exp
{−|κ · x|�−1(κ)

}
�−1(κ)

= lim|κ ·x|/λi→∞ Q(κ) exp
{−|κ · x|D−1(κ)

}
D−1(κ)QT (κ)

= lim|κ ·x|/λi→∞Q(κ) diag
{
exp {−|κ · x|/λi(κ)}

λi(κ)

}
QT (κ)

= Q(κ)
2I
x

δ(κ · x̂)QT (κ) = 2I
x

δ(κ · x̂) .
6 Consider a matrix A with structure

Aij = aκiκj + b(δij − κiκj) . (71)
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If a > b > 0, then the matrix is SPD, and a unique SPD square root of Aij exists with form

A
1
2
ij = √

aκiκj +
√
b(δij + κiκj) . (72)

Moreover, the inverse of Aij reads

A−1
ij = 1

a
κiκj + 1

b
(δij − κiκj) . (73)

Appendix 1: Direct derivation of Mindlin’s isotropic strain gradient elasticity of
form II
Plugging (53) and (54) into (23) we have

G(k) =
[
(λ + 2μ)

(
1 + k2
21

)
κ ⊗ κ + μ

(
1 + k2
22

)
(I − κ ⊗ κ)

]−1

k2
. (74)

Owing to its special structure (see footnote 6), the matrix in the numerator can be easily
inverted. In index notation the result is

Gij(k) = κiκj

(λ + 2μ) k2
(
1 + k2
21

) + δij − κiκj

μk2
(
1 + k2
21

)

= kikj
(λ + 2μ) k4

(
1 + k2
21

) + k2δij − kikj
μk4

(
1 + k2
21

) . (75)

Using the general form of the Fourier transform of the derivative, the Green tensor in
real space is obtained as

Gij(x) = − ∂i∂j

λ + 2μ
F−1

[
1

k4
(
1 + k2
21

)

]

− δij� − ∂i∂j

μ
F−1

[
1

k4
(
1 + k2
21

)

]

. (76)

Now consider the identity

F−1
[

1
k4

(
1 + k2
2

)

]

= F−1
[
1
k4

− 
2

k2
+ 
4

1 + k2
21

]

= − 1
8π

(
x + 2
2

x
− 2
2

x
e−x/


)

= − 1
8π

A(x, 
) . (77)

Using (77) in (76), the Green tensor (66) is readily recovered.

Abbreviations
API: Application programming interface; EAM: Embedded atom method; KIM: Open Knowledgebase of interatomic
models; MEAM: Modified embedded atom method; PDE: Partial differential equation; SPD: Symmetric positive definite

Funding
G.P. acknowledges the support of the U.S. Department of Energy, Office of Fusion Energy, through the DOE award
number DE-SC0018410, the Air Force Office of Scientific Research (AFOSR), through award number FA9550-16-1-0444,
and the National Science Foundation, Division of Civil, Mechanical and Manufacturing Innovation (CMMI), through award
number 1563427 with UCLA. N.A. acknowledges the support of the US Department of Energy’s Office of Fusion Energy
Sciences, Grant No. DE-SC0012774:0001. M.L. gratefully acknowledges a grant from the Deutsche
Forschungsgemeinschaft (Grant No. La1974/4-1).

Availability of data andmaterials
Elastic and gradient-elastic material constants used to obtain the results in “A comparison with Molecular Statics: The
Kelvin problem” section are freely available as part of the Open Knowledgebase of Interatomic Models (KIM).

Authors’ contributions
G.P. and M.L. obtained the expression of the Green Tensor. N.A. and G.P. carried out the numerical analysis. All authors
read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.



Po et al. Materials Theory             (2019) 3:3 Page 16 of 16

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles 90095, CA,
USA. 2Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables 33146, FL, USA.
3Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles 90095, CA, USA.
4Department of Physics, Darmstadt University of Technology, Hochschulstr. 6, 64289 Darmstadt, Germany. 5Department
of Mechanical Science and Engineering University of Illinois Urbana–Champaign, Illinois, USA.

Received: 15 November 2018 Accepted: 18 February 2019

References
N. C. Admal, J. Marian, G. Po, The atomistic representation of first strain gradient elastic tensors. J. Mech. Phys. Solids. 99,

93–115 (2016)
H. Askes, E. C. Aifantis, Gradient elasticity in statics and dynamics: an overview of formul‘ations, length scale identification

procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011)
N. Auffray, H. Le Quang, Q. C. He, Matrix representations for 3D strain gradient elasticity. J. Mech. Phys. Solids. 61,

1202–1223 (2013)
D. J. Bacon, D. M. Barnett, R. O. Scattergood, Anisotropic continuum theory of defects. Prog. Mater. Sci. 23, 51–262 (1979)
D. M. Barnett, The precise evaluation of derivatives of the anisotropic elastic Green functions. Phys. Stat. Sol. (B). 49,

741–748 (1972)
A. A. Becker, The Boundary Element Method in Engineering: A Complete Course. (Mcgraw-Hill, 1992)
A. C. Eringen,Microcontinuum field theories: I. Foundations and solids. (Springer Science & Business Media, 1999)
A. C. Eringen, Nonlocal continuum field theories. (Springer Science & Business Media, 2002)
I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed. (Academic Press, 2007)
G. Green, An Essay on the Application of Mathematical Analysis to the Theories of Electricity andMagnetism. (Nottingham (the

author), 1828)
L. Kelvin,Mathematical and Physical Papers, Vol. 1. (Cambridge University Press, Cambridge, 1882), p. 97
E. Kröner, On the physical reality of torque stresses in continuummechanics. Int. J. Engng. Sci. 1, 261–278 (1963)
M. Lazar, Irreducible decomposition of strain gradient tensor in isotropic strain gradient elasticity. Z. Angew. Math. Mech.

96, 1291–1305 (2016)
M. Lazar, E. Agiasofitou, Screw dislocation in nonlocal anisotropic elasticity. Int. J. Eng. Sci. 49, 1404–1414 (2011)
M. Lazar, G. Po, On Mindlin’s isotropic strain gradient elasticity: Green tensors, regularization, and operator-split. J.

Micromech. Mol. Phys., 1840008 (2018)
M. Lazar, G. Po, The non-singular Green tensor of gradient anisotropic elasticity of Helmholtz type. Eur. J. Mech. A Solids.

50, 152–162 (2015a)
M. Lazar, G. Po, The non-singular Green tensor of Mindlin’s anisotropic gradient elasticity with separable weak

non-locality. Phys. Lett. A. 379, 1538–1543 (2015b)
B.-J. Lee, Second nearest-neighbor modified embedded-atom-method (2NN MEAM) (2014). https://openkim.org/cite/

MD_111291751625_001
B.-J. Lee, M. I. Baskes, H. Kim, Y. Koo Cho, Second nearest-neighbor modified embedded atom method potentials for bcc

transition metals. Phys. Rev. B. 64, 184102 (2001)
I. M. Lifshitz, L. N. Rosenzweig, On the construction of the Green tensor for the basic equation of the theory of elasticity of

an anisotropic medium. Zh. Eksper. Teor. Fiz. 17, 783–791 (1947)
M. I. Mendelev, M. J. Kramer, C. A. Becker, M. Asta, Analysis of semi-empirical interatomic potentials appropriate for

simulation of crystalline and liquid Al and Cu. Phil. Mag. 88, 1723–1750 (2008)
M. I. Mendelev, FS potential for Al (2014). https://openkim.org/cite/MO_106969701023_001
R. D. Mindlin, Micro-structure in linear elasticity. Arch. Rational. Mech. Anal. 16, 51–78 (1964)
R. D. Mindlin, N. N. Eshel, On first strain gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968a)
R. D. Mindlin, inMechanics of Generalized Continua, IUTAM Symposium. ed. by E. Kröner, Theories of elastic continua and

crystal lattice theories (Springer, Berlin, 1968b), pp. 312–320
R. D. Mindlin, Elasticity, piezoelectricity and crystal lattice dynamics. J. Elast. 2, 217–282 (1972)
T. Mura,Micromechanics of Defects in Solids, 2nd edn, (Martinus Nijhoff, Dordrecht, 1987)
C. Polizzotto, Anisotropy in strain gradient elasticity: Simplified models with different forms of internal length and moduli

tensors. Eur. J. Mech.-A/Solids. 71, 51–63 (2018)
D. Rogula, Some basic solutions in strain gradient elasticity theory of an arbitrary order. Arch. Mech. 25, 43–68 (1973)
E. B. Tadmor, R. S. Elliott, J. P. Sethna, R. E. Miller, C. A. Becker, The potential of atomistic simulations and the

Knowledgebase of Interatomic Models. JOM. 63, 17–17 (2011)
E. B. Tadmor, R. S. Elliott, S. R. Phillpot, S. B. Sinnott, NSF cyberinfrastructures: a new paradigm for advancing materials

simulation. Curr. Opin. Solid State Mater. Sci. 17(6), 298–304 (2013)
E. B. Tadmor, R. E. Miller,Modelingmaterials: continuum, atomistic andmultiscale techniques. (Cambridge University Press,

2011)
J. L. Synge, The Hypercircle in Mathematical Physics. (Cambridge University Press, Cambridge, 1957)
C. Teodosiu, Elastic Models of Crystal Defects. (Springer, Berlin, 1982)
D. R. Trinkle, Lattice Green function for extended defect calculations: Computation and error estimation with long-range

forces. Phys. Rev. B. 78, 014110 (2008)
V. S. Vladimirov, Equations of Mathematical Physics. (Marcel Dekker, Inc., New York, 1971)

https://openkim.org/cite/MD_111291751625_001
https://openkim.org/cite/MD_111291751625_001
https://openkim.org/cite/MO_106969701023_001

	Abstract
	Keywords

	Introduction
	Mindlin's anisotropic gradient elasticity
	The Green tensor of Mindlin's first strain gradient elasticity 
	The first two gradients of the Green tensor
	The classical limit

	Special cases
	The weakly non-local Green tensor GNL
	The Green tensor of anisotropic gradient elasticity of Helmholtz type GH
	The isotropic Green tensor GI

	A comparison with molecular statics: The Kelvin problem
	Summary and conclusions
	Appendix 1: Direct derivation of Mindlin's isotropic strain gradient elasticity of form II
	Abbreviations
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

