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Abstract

combined liver and lung metastases (n = 14).

single-molecule molecular inversion probe method.

metastases (71% vs. 48%, p < 0.001).

Background: Mutations in the RAS/RAF pathway predict resistance to anti-epidermal growth factor receptor
antibodies in colorectal cancer (CRC), and may be targets for future therapies. This study investigates concordance
of BRAF, HRAS, KRAS, NRAS and PIK3CA mutation status in primary CRC with matched liver (n=274), lung (n=114) or

Methods: Next generation sequencing was performed on DNA from formalin-fixed paraffin embedded CRC and
matched liver and/or lung metastases, for recurrent mutations in BRAF, HRAS, KRAS, NRAS and PIK3CA and using the

Results: Paired sequencing results on all five genes were reached in 249 of the 402 cases (62%). The obtained

number of unique reads was not always sufficient to confidently call the absence or presence of mutations for all
regions of interest. The mutational status of matched pairs was highly concordant; 91.1% concordance for all five
genes, 95.5% for KRAS, 99.1% for NRAS. Lung metastases more often harboured RAS mutations compared to liver

Conclusions: In this large series of CRC we show that both primary tumors and corresponding metastases can be
used to determine the mutational status for targeted therapy, given the high concordance rates. Next generation
sequencing including a single molecule tags is feasible, however in combination with archival formalin-fixed
paraffin embedded material is limited by coverage depth.
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Background

Monoclonal antibodies against the Epidermal Growth
Factor Receptor (EGFR) are nowadays firmly established
within treatment regimens for patients with metastatic
colorectal cancer (CRC). These antibodies inhibit ligand
induced stimulation of several intracellular signalling path-
ways such as RAS/RAF/MAPK and phosphoinositide-3
(PI3K) pathway, which results in decreased stimulation of
cell cycle progression, proliferation, angiogenesis and
stimulation of apoptosis. The presence of activating
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mutations in the RAS/RAF signalling pathway limits the
effects of this treatment [1-3]. It is therefore standard pro-
cedure to perform molecular testing in order to determine
the indication for these types of therapy. In previous work
we have shown that for a limited number of KRAS muta-
tions there is minimal discordance between primary CRC
and liver metastases [4]. However, we performed conven-
tional Sanger sequencing and did not test all relevant RAS
genes, nor BRAF and PIK3CA genes.

Next generation sequencing is increasingly performed
in daily clinical practice. One advantage over Sanger
sequencing is that low-frequency mutations can be
detected. However, application of enrichment methods
to gain sufficient quantities of DNA may result in ampli-
fication bias. To overcome this issue single molecule tags
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can be used [5, 6]. Consequently, in the current study
we applied a single-molecule molecular inversion probe
(smMIP)-based next generation sequencing approach to
investigate concordance rates for all relevant BRAF,
HRAS, KRAS, NRAS and PIK3CA mutations in CRC
with matched lung and liver metastases.

Methods

Patient selection

All patients with histologically confirmed CRC who under-
went surgical resection of the primary tumor and a suffi-
cient biopsy or surgical resection of the corresponding liver
or lung metastasis between 1984 and 2011 were included in
this analysis. In case of multiple primary tumors or
metastases, all material was used for sequencing. Formalin-
fixed-parafin-embedded (FFPE) material from three large
pathology laboratories; Radboud university medical center,
Nijmegen, Rijnstate hospital, Arnhem and Laboratory of
Pathology East Netherlands, Hengelo, was used. The Insti-
tutional Review Board of the Radboud university medical
center, Nijmegen, ruled that the current study does not
require informed consent according to Dutch law, but
based on national guidelines for the use of archival material,
the Institutional Review Board agrees with the study
proposal (CMO 2013/048, date 23/4/2013).

DNA extraction and mismatch repair status analysis

FFPE tissue blocks were cut at 4 um thickness and stained
with haematoxylin and eosin (HE). The slide with highest
tumor cell percentage was selected and the presence of
tumor was marked by an expert pathologist (IN). Samples
with tumor cell percentages above 30% were included. Sub-
sequently the blocks were cut at 20-40 mm thickness and
macrodissected for DNA extraction. DNA was extracted
according to the manufacturer’s protocol (QIAamp DNA
Micro Kit, Qiagen, Hilden, Germany), and DNA concentra-
tion was determined with Qubit (2.0, Life Technologies,
Foster city, CA, USA). For each sample approximately 250
nanogram of DNA was included.

Mismatch repair status analysis was assessed by immu-
nohistochemistry. Microsatellite instability (MSI) analysis
was performed in all cases with absence or unequivocal
protein expression, using five microsatellite markers
(NR21, NR24, NR27, BAT 25 and BAT 26, pentaplex PCR
system). A tumor was defined as MSI if at least two of the
five markers showed instability [7].

Mutational analysis smMIP sequencing

smMIP based sequencing was used to detect mutations
in BRAF (exon 15, targeted codons D594-K601), HRAS
(exon 2, targeted codons G12, G13, exon 3, targeted co-
dons, A59, Q61), KRAS (exon 2, targeted codons G12,
G13, exon 3, targeted codons A59, Q61, exon 4 targeted
codons K117, A146), NRAS (exon 2, targeted codons
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G12, G13, exon 3, targeted codons A59, Q61, exon 4
targeted codons K117, A146), and PIK3CA (exon 10, tar-
geted codons E542-Q546, exon 21, targeted codons
M1043-G1049). This technique is clinically validated
and implemented in the routine diagnostics workflow of
our hospital and is extensively described elsewhere [6].
In short, smMIPs are long oligonucleotides consisting of
two targeting arms, the extension probe and the ligation
probe, joined by a backbone including a single molecule
tag. The probe sequences are complementary to the
sequences surrounding the target region. During the
capture reaction, the smMIP mixture is hybridized to
the DNA, followed by gapfilling through extension and
ligation, resulting in a circular smMIP. Exonuclease
treatment removes all linear DNA. The circular smMIP
are amplified by PCR using barcoded primers recogniz-
ing sequences in the backbone of the smMIP. After
target enrichment, products were pooled with compar-
able amounts of the smMIP enriched products (based
on an agarose gel) and sequenced on a NextSeq500
instrument (Illumina, San Diego, CA, USA). The com-
mercial analysis software Sequence Pilot (JSI medical
systems, Ettenheim, Germany) was used for variant iden-
tification. Sequencing reads are aligned and reads shar-
ing the same unique single molecule tag are merged into
a consensus read sequence. This reduces the number of
sequencing artifacts, mutations present in the genomic
template are maintained. The settings as described by
Eijkelenboom et al. [6] were used for generating the con-
sensus reads and for variant calling. The transcripts for
variant annotation were: BRAF ENST00000288602; KRAS
ENST00000311936; PIK3CA ENST00000263967; HRAS
ENST00000451590; NRAS ENST00000369535. After vari-
ant calling using the commercial software, all variants
were manually inspected and curated based on Cosmic
(Cosmic v.81 (May 2017), Sanger Institute) and Alamut
(AlamutVisual 2.9.0 (Dec. 2016), Interactive Biosoftware).
Furthermore, in the downstream analysis the minimum
mutant allele frequency was set at 5%. In fact, 96% of the
variants selected had an allele frequency greater than or
equal to 10%. Therefore, the minimum absolute coverage
to reliably exclude the presence of mutations was set at
125 combined. This threshold excludes, with an approxi-
mate certainty of >90%, the presence of a mutation at
minimally 10% mutant allele frequency within the covered
regions.

Statistical analysis

To compare patient and primary tumor characteristics
between patients with wild-type and mutant sequencing
results Wilcoxon’s rank sum test or x2 for numerical or
categorical variables, respectively was used. Differences
in mutation status between the primary tumor and cor-
responding metastasis were analyzed by calculating the
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percentage of concordance and discordance. Concord-
ance was defined as both primary tumor and metastasis
having no mutations (wildtype-wildtype) or exactly the
same mutation (mutation-mutation, same variant). Dis-
cordance was defined as a mutation in either tumor or
metastasis which was not found in the corresponding
counterpart (wildtype-mutant, mutant-wildtype) or as
two different mutations in tumor and metastasis (mu-
tant-mutant, different variants). Statistical analyzes were
performed using the statistical software package SPSS
20.0 (SPSS Inc., Chicago, Illinois, USA). Differences were
considered to be statistically significant with a P-value
below 0.05. All statistical tests were two-sided.

Results

A total of 402 patients with CRC were included, 274
with liver metastases, 114 with lung metastases and 14
with both liver and lung metastases. The majority of
patients presented with a solitary liver metastasis (253
patients), 10 patients had multiple liver metastases
(range 2-5), nine patients had two primary tumors to-
gether with one liver metastasis and two patients had
two primaries and two liver metastases sequenced. In
most patients with lung metastases (nz = 103) one metas-
tasis was available for testing, nine patients had two lung
metastases and two patients presented with two pri-
maries and one lung metastasis.
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Concordant cases

“In the paired samples with high enough coverage for all
five genes, the overall concordance rate for these five
genes together was 91.1% (216 concordant/237 samples
in total).” The individual concordance rate for BRAF was
99.6% (246/247), for HRAS 100% (364/364), for KRAS
95.5% (193/202), for NRAS 99.1% (228/230) and for
PIK3CA 94.7% (213/255). All discordant cases for BRAF
and NRAS were based on mutations present in the pri-
mary tumor, as were the majority of the KRAS (6/7) and
PIK3CA discordant cases (9/13) (Fig. 1). The observed
discordance in RAS was clinically relevant (i.e. would
result in a different treatment approach) in 9 patients
(3.9%).

Differences between liver and lung metastases

The overall mutation frequency in patients with lung
metastases was higher than the mutation frequency in
patients with liver metastases (Fig. 2).

The concordance rate in mutational status for all
five genes was not statistically different for tumors
with liver metastases and tumors with lung metastases
(91.2% (166 concordant/182 total) vs. 89.1% (49 con-
cordant/55 total), p =0.64). The rate of MSI was rela-
tively low (2.2%), all patients with lung metastases
were MSS and only eight patients with liver metasta-
ses showed MSI (3.2%).
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Fig. 1 Overview of specific mutation and MMR status in primary tumors and matched single metastases. a. Liver metastases, b. Lung metastases. Grey
bars: insufficient unique reads to confidently classify the paired sample as wildtype or mutant (this could be due to insufficient reads of either the
primary tumor, the metastasis or both). The last two rows of the figure depict the exact number of samples and the percentage of samples. A
percentage less than 1% is depicted with a " Abbreviations: MMR: mismatch repair; MSI: microsatellite instable; MSS: microsatellite stable
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Fig. 2 Overview of specific mutations found in patients with liver and lung metastases. An overall mutation frequency in percentages is given for
different genes in the table. For specific mutations, the actual number of mutations is depicted. *Patients with both liver and lung metastases
are excluded

Multiple metastases

In 10 of the 14 patients with liver and lung metastases
we obtained sequencing results of all tumor samples. In
four patients we did not retrieve sufficient unique
sequence reads (in three due to the primary tumor, in
one due to failure of all samples). Identical results in
mutation status of primary tumor, liver and lung metas-
tases were observed in 9 of the 10 patients (Fig. 3a).

In 10 of the 21 patients with multiple liver or lung
metastases, sequencing results were obtained for both
primary tumor and metastases. Insufficient sequence
coverage was due to failure of all samples (two patients),
failure of primary tumor (six patients) or failure of
metastases (three patients). Seven of the ten patients
showed concordance of primary tumor and metastases
(Fig. 3b,c). Discordance was due to mutations limited
to the primary tumor (one case) and to the metastases
(two cases).

Coverage

With our settings, we obtained paired sequencing results
in 62.0% (249 concordant/402 total). The minimum
coverage depth was reached for BRAF, HRAS, KRAS,
NRAS and PIK3CA in 68, 72, 58, 58 and 63% of the 415

primary tumors and in 80, 83, 68, 70 and 74% of the 443
metastases (Fig. 4). According to the type of material
analyzed, metastases are more often complete on all five
genes (69% of metastases vs. 59% of primary tumors,
p =0.003).

Comparison with sanger sequencing

In all patients KRAS Sanger sequencing was performed
for exon 2. Good quality results of both Sanger and
smMIP sequencing were available for 292 patients. In 81
patients results were only obtained with Sanger sequen-
cing; coverage for the smMIP analysis was too low. In 29
patients results were only obtained with smMIP sequen-
cing. When results from both techniques were available
(n =292), concordance was 100%.

Discussion

This is the first large study that compares mutation
status between primary tumors and their corresponding
liver and lung metastases using a single molecule tag
approach. We observed an overall concordance rate of
91% in all five genes in paired samples. Concordance
rates above 99% were reached for BRAF, HRAS and
NRAS, concordance for KRAS and PIK3CA were 96 and
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patients with both liver and lung metastases; 1 discordant patient with a PIK3CA alteration limited to the primary tumor. b: 5 patients with
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95%, respectively. Comparable concordance rates for
KRAS and BRAF are described in three smaller series
[8—10]. In contrast, a discordance rate of 23% for KRAS
and 7% for BRAF was detected in a study of 43 primary
tumors and matched liver metastases [11]. Although an
increased KRAS discordance rate was previously re-
ported in CRC with lung metastases [12], we did not
observe a difference in concordance rate between liver
and lung metastases. These high concordance rates
implicate that, in the treatment-naive setting, there is no
need for additional biopsies from metastatic sites in
order to obtain a molecular profile to decide on anti-
EGEFR therapy. This is an important message, given the
impact of additional interventions on patients, like
shown in the meta-analysis of CT guided lung biopsies
with overall complication rates of 24 to 38% [13]. Next
to the increased costs and complications, the delay due
to additional biopsies and subsequent testing might be
considerable. Mutation analysis based on the primary
tumor, would have incorrectly withhold anti-EGFR treat-
ment to 8 patients (3.4%) and one patient (0.5%) would
have incorrectly received anti-EGFR therapy. Neverthe-
less, acquired resistance after anti-EGFR therapy, with
novel KRAS or NRAS mutations in 38 to 60% of cases
indicate the necessity of additional biopsies in that set-
ting [14-16]. We observed mutations in the RAS/RAF
pathway in 62% of the metastases, ranging from 73% in
lung metastases and 56% in liver metastases. The differ-
ence between mutation frequency in liver and lung
metastases is mainly caused by the higher incidence of
RAS mutations in lung metastases (71% vs. 47%). This
high occurrence of RAS mutations in colorectal cancer
with lung metastases is in line with literature [12, 17, 18].
KRAS mutations are also increased in colorectal bone and
brain metastases [19]. Distinct metastatic patterns are
observed for BRAF mutations as well, which are mainly
associated with peritoneal and distant lymph node metas-
tases [20, 21]. Furthermore, as expected [22, 23], a low
percentage of MSI was observed, and only in patients with
liver metastases (3.2%). This confirms the inverse relation
between MSI CRC and lung metastases [21]. MSI/BRAF
mutated CRC seems to have a preference for widespread
disease including peritoneal metastases, thus falling out-
side our current selection and explaining our relatively
low incidence of MSI.

Our study illustrates the main limitation of next gener-
ation sequencing using single molecule tags, which is
coverage dependency. This is even more apparent in our
study because we need good coverage for all five genes
in two or more samples per patient. In clinical setting
limited coverage for an exon of a gene that is not
directly involved in resistance to therapy, is less often a
problem. However, this is potentially important since a
test is only as strong as its lowest coverage. Sufficient
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unique sequence reads are required to reliably identify
the presence or absence of a mutation. Adjusting the
settings would increase the number of false positive and
false negative calls. We have chosen a certainty level of
>90% to reliably identify or exclude the presence of a
mutation. Currently, there are no guidelines on what
level of certainty is acceptable in the molecular setting.
Since this has potentially major impact on important
treatment decisions, it is vital that oncologists become
aware of this issue.

In our study the insufficient coverage was most likely a
result of fragmented DNA due to FFPE fixation. Additional
sequencing of the same cases did not result in a large
improvement of coverage, probably because of this frag-
mented DNA. All archived material was obtained from a
wide timeframe, ranging from 1984 to 2011. Although sub-
analysis did not show any correlation between year of
resection and completeness of sequencing, older samples
are believed to have more fragmented DNA [24, 25].

Conclusion

In colorectal cancer it is a standard procedure to per-
form molecular testing to determine RAS/RAF mutation
status for targeted therapy. However, whether to test pri-
mary tumor or metastasis remains a matter of debate. In
our manuscript, we have performed next generation
sequencing including single molecule tags of the RAS/
RAF pathway related genes in a large set of primary
colorectal cancer cases with matched liver and lung
metastases (n =402). With this unique technique, we
observed a high concordance in RAS/RAF mutation
status between tumors and corresponding metastases.
Therefore, discordance in mutation status of anti-EGFR
related genes is not an issue for molecular testing in
treatment-naive CRC.
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