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Abstract

Ocean acidification (OA) and coastal eutrophication affect coastal marine organisms. We studied the physiological
responses of Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta) to increased concentrations of CO2 and NH4

+.
Incubation treatments were applied at two different pH units (low, 7.5; high (control), 7.9) and three different NH4

+

concentrations (low, 10; medium, 50; high, 100 μM). Growth, rates of photosynthetic oxygen evolution, and NH4
+

uptake rates were affected by both elevated CO2 and NH4
+ conditions. The changes in the pH of culture media

were influenced by elevated CO2 or NH4
+ treatments. However, chlorophyll fluorescence was affected only by the

level of NH4
+. These results indicate that the physiological responses of G. lemaneiformis might be enhanced when

the concentrations of CO2 and NH4
+ rise. Therefore, cultures of this alga could provide a good mitigation solution

against ongoing problems with OA and coastal eutrophication.
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Background
In coastal regions, marine organisms face serious environ-
mental problems caused by anthropogenic eutrophication
and, more recently, ocean acidification, or OA (Fei 2004;
Doney et al. 2009; Boyd 2011). The combinations of ocean
acidification and changing states of eutrophication affect
the physiology of marine species (Reymond et al. 2013;
Chen et al. 2016). A report by the Intergovernmental
Panel on Climate Change (IPCC 2014) revealed that, since
the Industrial Revolution, atmospheric CO2 concentra-
tions have increased from 280 to 400 ppm while pH values
have decreased 0.1 units. Orr et al. (2005) have predicted
that pH values will decline by 0.3 to 0.4 units if atmos-
pheric CO2 concentrations reach above 800 ppm. This
OA phenomenon influences the physiology of marine
biota such as calcifying species, phytoplankton, and
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seaweeds (Hinga 2002; Gao and Zheng 2010; Cornwall
et al. 2012; Kram et al. 2016). Although OA can have a
negative impact on the metabolism of calcifying organisms
(Hofmann and Bischof 2014; Kram et al. 2016), many
macroalgae respond positively under acidified condi-
tions (Zou 2005; Sarker et al. 2013; Kram et al. 2016).
For example, many macroalgal species utilize carbon-
concentrating mechanisms (CCMs) that enable them
to acquire CO2 from HCO3

−. When concentrations of
dissolved inorganic carbon (DIC) are elevated, macro-
algae take up this DIC and conserve energy by down-
regulating their CCMs (Beardall et al. 1998; Sarker
et al. 2013). In this process, the growth of seaweeds
might be enhanced under higher CO2 concentrations
(Beardall et al. 1998; Sarker et al. 2013).
Coastal eutrophication is a severe challenge that has

resulted from human activities such as aquaculture,
industrialization, and urbanization. Higher concentra-
tions of nutrients, e.g., nitrogen (N) and phosphorus (P),
can improve photosynthetic rates in primary producers,
including seaweeds (Chen et al. 2016; Xu et al. 2017b).
However, excessive inputs of those nutrients can change
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the function and structure of a marine ecosystem
(Valiela et al. 1997; Wu et al. 2015). In addition,
eutrophication could also cause ocean acidification in
the coastal zones because of the active respiration of
bacteria (Cai et al. 2011).
Gracilariopsis lemaneiformis (Bory de Saint-Vincent)

E.Y.Dawson, Acleto & Foldvik (Gracilariales, Rhodo-
phyta, formerly Gracilaria lemaneiformis) is distributed
in tropical and warm-temperate regions, and is culti-
vated worldwide, especially in Chile, China, and Taiwan
(Armisen 1995; Tseng 2001; Yang et al. 2015). In China,
this alga is cultivated on a large scale because it is an
economically important source of agar (Fei 2004; Wang
et al. 2010). Furthermore, this species has been studied
as a valuable component of Integrated Multi-Trophic
Aquaculture and as a bioremediation agent (Yang et al.
2006, 2015; Wu et al. 2015).
The physiological responses of G. lemaneiformis have

previously been monitored in experiments that combined
various CO2 levels with a range of nutrient concentrations
or light intensities (Zou and Gao 2009; Xu et al. 2010; Xu
and Gao 2012; Chen et al. 2017). The results from those
studies indicated that plant growth, photosynthesis, rate of
nutrient uptake, and levels of biochemical components and
amino acids are increased under elevated CO2 conditions,
light intensities, or nutrient concentrations (Zou and Gao
2009; Xu et al. 2010; Xu and Gao 2012; Chen et al. 2017).
However, that earlier research did not focus on the physio-
logical reactions of G. lemaneiformis under higher CO2 and
ammonium (NH4

+) concentrations. Therefore, we looked
at whether this species has the capacity to mitigate the ef-
fects of OA and coastal eutrophication by measuring
growth rates, pH changes in the culture medium, oxygen
evolution by photosynthesis, the rate of ammonium uptake
(an indicator of plant capacity for nutrient removal), and
chlorophyll fluorescence (for assessing photosynthetic effi-
ciency). We then analyzed the interactions among different
combinations of CO2 and NH4

+ levels.

Methods
We collected Gracilariopsis lemaneiformis at culture
farm near Nanao Island, Shantou, China (23° 20′ N,
Table 1 Parameters of seawater carbonate system under tested pH

Culture conditions TA pCO2 CO2

LpHLA 2012.75 ± 1.77 1420.09 ± 1.27 46.11

LpHMA 2017.33 ± 1.87 1423.37 ± 1.34 46.22

LpHHA 2015.42 ± 6.29 1405.93 ± 3.86 45.60

HpHLA 2022.16 ± 2.60 394.69 ± 0.53 12.82

HpHMA 2021.86 ± 2.40 394.63 ± 0.49 12.81

HpHHA 2019.51 ± 5.00 389.79 ± 1.35 12.69

Values are means ± SD. Both pH and TA (μmol kg−1) were measured directly for ea
(μmol kg−1), and DIC (μmol kg−1) were calculated according to the CO2SYS program
116° 55′ E), in March of 2016. Samples were trans-
ported to the field station near the farm and washed
several times to remove any epiphytes. They were ac-
climated for 24 h before the experiments under 20 °
C, 100 μmol photons m−2 s−1 (12:12 light/dark; a LI-
250 light meter, LI-COR, USA). For each treatment,
fresh samples (2 g) were placed in culture vessels
containing 250 mL of filtered seawater. All experi-
ments utilized a factorial design that included two pH
conditions (low 7.5; high 7.9, control) and three am-
monium concentrations (low 10; medium 50; high
100 μM). The low NH4

+ level was based on the am-
bient NH4

+ (8.84 ± 1.42 μM) concentration at the
sampling site. The medium and high NH4

+ concentra-
tions were assumed severe eutrophication conditions and
were made by adding to ambient NH4

+ level, respectively.
The low-pH condition indicated elevated CO2 concentra-
tion in the future condition and high-pH condition has
shown the ambient CO2 level. The six culture treat-
ments (four replicates each) were identified as follows:
LpHLA, low pH + low NH4

+; HpHLA, high pH + low
NH4

+; LpHMA, low pH + medium NH4
+; HpHMA,

high pH + medium NH4
+; LpHHA, low pH + high

NH4
+; and HpHHA, high pH + high NH4

+. The low-
pH medium was prepared by mixing filtered seawater
with pure CO2-enriched seawater from a CO2 tank.
Gattuso et al. (2010) indicated that mixing of high
CO2 seawater is the reasonable method as similar as
CO2 bubbling. The medium and high NH4

+ concen-
trations were obtained by adding 50 or 100 μM
NH4Cl, respectively, to the medium. All media were
changed every day. Total alkalinity (TA) was mea-
sured by the electro-titration method (Gran 1952;
precision ±4 μmol kg−1). The amounts of DIC and
the pCO2 values were calculated by the CO2SYS pro-
gram (Lewis and Wallace 1998) (Table 1). The dis-
sociation constant and KSO4 values were defined by
Millero et al. (2006) and Dickson (1990).
The growth of G. lemaneiformis was quantified by

measuring the change in fresh weight (FW) after 3 days
of incubation. The relative growth rate (RGR; % day−1)
was calculated as follows:
conditions

CO3
2− HCO3

− DIC

± 0.04 52.60 ± 0.05 1878.61 ± 1.67 1977.32 ± 1.76

± 0.04 52.72 ± 0.05 1882.94 ± 1.77 1981.88 ± 1.87

± 0.13 53.76 ± 0.13 1879.16 ± 5.03 1978.52 ± 5.29

± 0.02 146.20 ± 0.20 1651.11 ± 2.21 1810.13 ± 2.42

± 0.02 146.18 ± 0.18 1650.86 ± 2.04 1809.85 ± 2.23

± 0.04 148.36 ± 0.28 1645.46 ± 4.43 1806.51 ± 4.76

ch scenario, whereas pCO2 (μatm), CO2 (μmol kg−1), CO3
2− (μmol kg−1), HCO3

−

of Lewis and Wallace (1998)



Table 2 Results from two-way ANOVA of physiological activities
(relative growth rate (% day−1), extent of variation in pH,
photosynthetic oxygen evolution rate (μmol O2 g−1 FW h−1),
ammonium uptake rate (μmol NH4

+ g−1 FW h−1), and photosynthetic
efficiency (Fv/Fm)) by samples of Gracilariopsis lemaneiformis

Parameter/source of variation df MS F value p value

Relative growth rate

pH level 1 0.69 21.50 <0.01

NH4
+ concentration 2 4.26 132.54 <0.01

pH level × NH4
+ concentration 2 0.12 3.66 0.04

Extent of variation in pH

pH level 1 1.09 166.48 <0.01

NH4
+ concentration 2 0.38 57.63 <0.01

pH × NH4
+ 2 0.01 0.10 0.90

Photosynthetic oxygen evolution rate

pH level 1 198.72 68.85 <0.01

NH4
+ concentration 2 3678.60 1274.53 <0.01

pH × NH4
+ 2 22.50 7.80 <0.01

NH4
+ uptake rate

pH level 1 0.17 24.72 <0.01

NH4
+ concentration 2 85.78 12,108.59 <0.01

pH × NH4
+ 2 0.13 18.95 <0.01

Photosynthetic efficiency

pH level 1 <0.01 0.58 0.46

NH4
+ concentration 2 0.13 51.60 <0.01

pH × NH4
+ 2 <0.01 0.92 0.42

Fig. 1 Relative growth rates (% day−1) of Gracilariopsis lemaneiformis
at different pH and NH4

+ treatments. Bars not labeled with same letter
indicate significant differences among culture conditions at p < 0.05.
Values are means ± SD (n = 4)
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RGR ¼ lnW 2– lnW 1ð Þ � 100� T–1

where W1 is the initial fresh weight, W2 is the final fresh
weight, and T is the incubation period (3 days).
Over a 12-h period, we monitored changes in pH in

the culture media, the rate of oxygen evolution, and
NH4

+ uptake. An Orion-250A meter (Thermoscientific,
USA) was used to measure pH at 0, 2, 4, 6, and 12 h.
We also assessed the changes in pH in vessels contain-
ing media but no specimens (blanks), under low- and
high-pH conditions.
Rates of photosynthetic oxygen evolution (μmol O2 g

−1 FW h−1) were recorded with a Clark-type microelec-
trode oxygen sensor (Unisense, Denmark), which was
calibrated with a mixture of C6H7NaO6 (sodium ascor-
bate) of 0.4 g and NaOH (sodium hydroxide) of 2 g in
the 100-mL dilution water.
The rate of NH4

+ uptake (μmol NH4
+ g−1 FW h−1)

was calculated as the amount lost from each culture
medium over 12 h. The measurement method of NH4

+

uptake rates were described by Parsons et al. (1984). The
following equation was used in the calculation:

V ¼ Si–Sfð Þ � vol�W–1 � T–1

where Si is the initial concentration of NH4
+, Sf is the

final concentration after T hours of incubation, vol is the
volume of the medium, and W is the fresh weight of
each algal specimen.
Chlorophyll fluorescence was determined after 3 days

with a Plant Efficiency Analyzer (PEA, Hansatech, UK).
The maximum quantum yield (Fv/Fm) of Photosystem II
was calculated as follows:

Fv=Fm ¼ Fm−Foð Þ=Fm

where Fm is maximum fluorescence after dark adapta-
tion and Fo is minimum fluorescence after dark adapta-
tion. Algal samples were placed in leaf-clip holders and
Fv/Fm was measured by applying a saturating pulse after
the samples were dark-adapted for 15 min.
One- and two-way ANOVA were conducted with

all experimental data. Normality and homogeneity
were investigated before the statistical analysis began.
After that, Tukey’s tests were used to compare
among treatments, and the threshold for statistically
significant differences was set at p < 0.05. All ana-
lyses were performed with the SPSS software pro-
gram (version 23.0).

Results
Results of physiological responses of Gracilariopsis lemanei-
formis under elevated CO2 and NH4

+ treatments were sum-
marized in Table 2. During the incubation period, the
relative growth rate of Gracilariopsis lemaneiformis in-
creased under elevated CO2 and NH4

+ treatments. The
maximum RGR was 2.95 ± 0.20% day−1 under LpHHA con-
ditions while the minimum RGR, 1.07 ± 0.21% day−1, was
achieved under HpHLA conditions (Fig. 1). At the high NH4
+ levels, RGR was greater at pH 7.5 than at pH 7.9 (HA:
F = 6.04, p = 0.04).
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Alterations in pH in the culture media containing algal
specimens were significantly affected by initial pH or
NH4

+ levels. The extent of variation in pH ranged from
0.44 ± 0.02 to 1.26 ± 0.18 units, and the maximum and
minimum changes in pH were associated with LpHHA

and HpHLA, respectively (Fig. 2; Table 3). At each pH
level, the medium and high NH4

+ concentrations were
significantly different from the low NH4

+ condition
(LpH: F = 17.08, p = 0.01; HpH: F = 78.98, p < 0.01). At
individual NH4

+ levels, the change in pH was signifi-
cantly greater in the low-pH treatment than in the high-
pH treatment (LA: F = 6.65, p = 0.04; MA: F = 6.94,
p = 0.04; HA: F = 138.86, p < 0.01). The pH values in
blank culture media were remain constant over 12 h that
pH values were affected only photosynthesis oxygen evo-
lution of G. lemaneiformis.
Photosynthetic oxygen evolution was affected by ele-

vated levels of CO2 and NH4
+. Rates were

62.28 ± 1.71 μmol O2 g−1 FW h−1 under HpHLA and
111.48 ± 0.95 μmol O2 g

−1 FW h−1 under LpHHA (Fig. 3).
When compared at the same initial pH, those rates in-
creased significantly as the NH4

+ level rose (LpH:
F = 479.22, p < 0.01; HpH: F = 854.92, p < 0.01). Under
medium and high NH4

+ conditions, the rate was greater at
Fig. 2 Extent of variation in pH over time in response to different
culture treatments. Data are means ± SD (n = 4)
low than at high pH but there was no significant differ-
ence at the low NH4

+ level (LA: F = 0.26, p = 0.63; MA:
F = 7.94, p = 0.03; HA: F = 7.67, p = 0.03).
The rate of NH4

+ uptake was significantly affected by
elevated concentrations of CO2 and NH4

+, with rates
ranging from 0.84 ± 0.01 to 7.43 ± 0.03 μmol NH4

+ g
−1 FW h−1 (Fig. 4). Uptake was more rapid under LpHHA

conditions and slowest under HpHLA treatment. When
those rates were compared at the same pH, values in-
creased under higher NH4

+ concentrations (LpH:
F = 3230.83, p < 0.01; HpH: F = 25,898.16, p < 0.01). Fur-
thermore, at the same level of NH4

+, uptake was more
rapid under LpHHA than under HpHHA treatment (HA:
F = 6.50, p = 0.04).
When values of the chlorophyll fluorescence were used

as a proxy to represent photosynthetic efficiency, they
ranged from 0.55 ± 0.22 (HpHLA) to 0.64 ± 0.02 (LpHHA)
(Fig. 5). Although values of Fv/Fm were significantly af-
fected under high NH4

+ levels and under both pH con-
ditions (LpH: F = 44.64, p < 0.01; HpH: F = 15.91,
p < 0.01), they were not significantly influenced by NH4
+ conditions (LA: F = 0.60, p = 0.47; MA: F = 1.23,
p = 0.31; HA: F = 0.92, p = 0.37).

Discussion
Growth of Gracilariopsis lemaneiformis was affected by
elevated CO2 and NH4

+ treatments and there were in-
teractions of both factors. Previous studies have revealed
similar results with G. lemaneiformis, Hypnea spinella,
Chondrus crispus, Pyropia haitanensis, and Ulva pertusa
(Yu and Yang 2008; Suárez-Álvarez et al. 2012; Sarker
et al. 2013; Chen et al. 2016; Kang and Chung 2017).
When DIC concentrations rise in the ocean, many
macroalgal species conserve energy by regulating their
CCMs, thereby improving their growth performance
(Sarker et al. 2013). For example, red algae within the
Gracilaria genus used external carbonic anhydrase to in-
crease their capacity for HCO3

− utilization, which boosts
their growth under elevated CO2 conditions (Israel and
Beer 1992; García-Sánchez et al. 1994; Zou et al. 2004).
Greater availability of nutrients can also enhance the
growth of macroalgae (Yu and Yang 2008). Although
greater accumulations of nitrogen can stimulate growth,
Xu et al. (2010) reported that G. lemaneiformis develop-
ment was influenced by either CO2 or the level of phos-
phorus, but those two factors did not show synergistic
effects. Our results indicated that RGR were lower than
those of other experiments. We speculated that short-
term incubation period and high stocking density could
be the reason of lower RGR. Kim et al. (2013) indicated
that high stocking density might cause lower growth
rates than those of light shading of the culture vessels.
We assumed the high stocking density conditions of
aquaculture farm to find realistic growth of G.



Table 3 Maximum pH values and extent of variation in response over 12-h period to different treatment combinations

Maximum pH values Extent of variation

LpH (low pH) HpH (high pH) LpH (low pH) HpH (high pH)

LA (low NH4
+) 8.36 ± 0.03a 8.34 ± 0.02a 0.86 ± 0.03a 0.44 ± 0.02b

MA (medium NH4
+) 8.66 ± 0.01b 8.61 ± 0.04b 1.16 ± 0.01c 0.71 ± 0.04a

HA (high NH4
+) 8.78 ± 0.18b 8.77 ± 0.07b 1.28 ± 0.18c 0.87 ± 0.07a

Data are means ± SD (n = 4). Within a column, values not followed by the same letter are significantly different at p < 0.05
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lemaneiformis. In addition, Xu et al. (2017a) found that
the RGRs of short-time cultivation period were higher
than those of long-time cultivation time. They explained
that decreased of RGRs resulted from the acclimation to
culture conditions.
The pH values in the culture medium could be used

as an indicator of physiological characteristics of the
macroalgae (Maberly 1990; Murru and Sandgren 2004).
The pH of our culture medium was altered in response
to increases in CO2 or NH4

+ concentrations. The
addition of CO2 gas caused pH values to decline while
the concentration of DIC, such as CO2(aq), and HCO3

−

increased. This change in pH was more dramatic in the
low-pH medium than under high-pH conditions. The
DIC concentrations were elevated in the culture
medium, which lead to increases in pH levels by photo-
synthesis (Zhang et al. 2012). In addition, we did not
find any inhibition of photosynthesis. When pH values
are >9.0, photosynthesis of some species is more likely
to be inhibited (Maberly 1990; Björk et al. 2004). Zou
et al. (2004) indicated that inorganic carbon (Ci) affinity
and photosynthetic rates at pH 9.0 were decreased in G.
lemaneiformis. In case of pH values over 9.0, this alga
does not accumulate CO2 because of poor capacity of
HCO3

− utilization (Zou et al. 2004).
Fig. 3 Rates of photosynthetic oxygen evolution (μmol O2 g
−1 FW h

−1) of Gracilariopsis lemaneiformis at different pH and NH4
+ treatments.

Bars not labeled with same letter indicate significant differences
among culture conditions at p < 0.05. Values are means ± SD (n = 4)
Photosynthetic oxygen evolution in our Gracilariopsis
lemaneiformis samples was also increased by elevated
CO2 and NH4

+ levels. The same has been reported for
Hizikia fusiforme (currently, Sargassum fusiforme),
Hypnea spinella, and Pyropia haitanensis (Zou 2005;
Suárez-Álvarez et al. 2012; Chen et al. 2016). Zou et al.
(2004) showed that the photosynthesis of G. lemaneifor-
mis is already saturated under normal DIC concentra-
tions found in natural seawater. However, we noted that
this species was also influenced by the synergism be-
tween CO2 and NH4

+. Similarly, Xu et al. (2010) has
shown that the maximum net photosynthetic rate for G.
lemaneiformis is influenced by increases in both CO2

and phosphorus concentrations.
The uptake of NH4

+ was influenced by treatment with
exogenous CO2 and NH4

+. Research with Gracilaria sp.,
G. chilensis, Hizikia fusiforme, Gracilariopsis lemaneifor-
mis, Pyropia yezoensis, P. haitanensis, and U. pertusa
has demonstrated that all respond to elevated levels of
CO2 or NH4

+ (Gao et al. 1993; Zou 2005; Xu et al. 2010;
Kang et al. 2014; Chen et al. 2016; Kang and Chung
2017). Increasing the concentration of CO2 can enhance
nitrogen uptake and the activity of nitrate reductase
(Gordillo et al. 2001; Xu et al. 2010; Hofmann et al.
2013; Liu and Zou 2015). In various seaweeds, the up-
take of NH4

+ is greater when the initial NH4
+

Fig. 4 Ammonium uptake rates (μmol NH4
+ g−1 FW h−1) of

Gracilariopsis lemaneiformis under different pH levels and NH4
+

treatments. Bars not labeled with same letter indicate significant
differences among culture conditions at p < 0.05. Values are means
± SD (n = 4)



Fig. 5 Photosynthetic efficiency (Fv/Fm) of Gracilariopsis
lemaneiformis at different pH levels and NH4

+ treatments. Bars not
labeled with same letter indicate significant differences among
culture conditions at p < 0.05. Values are means ± SD (n = 4)
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concentration is high (Dy and Yap 2001). In addition,
when more nutrients are available, they are more easily
absorbed (Runcie et al. 2003; Pérez-Mayorga et al. 2011).
Therefore, because NH4

+ uptake by our G. lemaneifor-
mis samples was more rapid under the elevated CO2 and
NH4

+ treatment, we speculate that this was due to the as-
sociated rise in photosynthesis.
Chlorophyll fluorescence, which can reflect photosyn-

thetic efficiency, is enhanced by increased N concentra-
tions (Dawes and Koch 1990). However, the role of CO2

is debatable with some studies showing that Fv/Fm is not
affected by elevated CO2 levels (Hofmann et al. 2012;
Olischläger et al. 2013; Kram et al. 2016) and others in-
dicating that chlorophyll fluorescence increases under
high CO2 concentrations (Chen et al. 2015). We found
here that the photosynthetic efficiency of G. lemaneifor-
mis was more strongly affected by greater NH4

+ concen-
trations than by higher CO2 levels. Because of these
contrasting reports, direct measurement of oxygen evo-
lution is now considered a more appropriate method
than chlorophyll fluorescence for monitoring changes in
efficiency (Kram et al. 2016).
Our data provided evidence that the physiological ac-

tivities of G. lemaneiformis are enhanced under elevated
CO2 and NH4

+ treatments. We predict that mass pro-
duction of this species in China will increase in response
to OA and eutrophication. Kim and Yarish (2014) indi-
cated that productivity of Gracilaria sp. was enhanced
under elevated CO2 levels with high stocking density
and irradiance. The biomass production of G. chilensis
was also increased at elevated CO2 levels or high nutri-
ent concentrations (Buschmann et al. 1994). The in-
crease of harvest can be used as agar materials, seafood,
and feed for abalone (Tseng 2001; Fei 2004; Yang et al.
2015). Yang et al. (2015) have suggested that large-scale
cultivation of Gracilaria can improve water quality by
uptake of excessive nutrients and potential carbon sink
absorber along the coast of China. Therefore, this alga
could provide a good solution for mitigation against the
problems associated with such marine challenges. If we
are to achieve practical results, future investigations will
require more large-scale, long-term experiments. Those
projects must also focus on the synergistic effects of sev-
eral environmental factors, e.g., temperature, light inten-
sity, level of salinity, and nutrient concentrations.

Conclusions
The combined treatment of elevated CO2 and NH4

+

heightened the physiological reactions of G. lemaneifor-
mis, as demonstrated by changes in relative growth
rates, rates of photosynthetic oxygen evolution, and the
uptake of ammonium. The pH values were affected each
elevated CO2 or NH4

+ treatments. In contrast, we noted
that chlorophyll fluorescence was affected only by alter-
ing the concentration of NH4

+.

Abbreviations
OA: Ocean acidification; RGR: Relative growth rates
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