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Introduction
Educational data mining (EDM) focuses on developing mathematical frameworks for 
analyzing large educational corpora (Baker, 2010, 2014). This field has grown to focus 
on predicting the success of students in various instructional settings from individual 
courses to entire educational systems (Costa et al., 2017; Knowles, 2015; Schwarzenberg 
et al., 2020; Silva & Fonseca, 2017). A concentration of research is focused on address-
ing educational concerns and detecting at-risk students in the learning environment 
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through the development of data pipelines to make forecasts of student retention and 
attrition (Beck & Davidson, 2001; Burgos et al., 2018; Chang et al., 2014; ECAR-Analyt-
ics Working Group, 2015; Gašević et al., 2016; Griff & Matter, 2008; Herzog, 2006; Olivé 
et al., 2020; Yu et al., 2010). Data science pipelines (Fig. 1) are a sequence of comput-
ing steps undertaken to assemble, process, and model data corpora records (Rupprecht 
et al., 2020; Shang et al., 2019; Skiena, 2017). Specific examples of the use of data pipe-
lines in education include the development of early warning systems (EWS), computa-
tional systems to track, monitor, and predict student performance (Howard et al., 2018; 
Hu et  al., 2014), and the design of system architecture to expedite data assembly and 
modeling for stakeholders (Ansari et al., 2017; Guruler et al., 2010). Data mining meth-
ods (DMMs) have enhanced the accuracy of these pipelines due to their ability to extract 
complex patterns and generate knowledge from large corpora (Rovira et al., 2017).

A critical component of EDM is assembling a collection of features (i.e., covariates, 
independent variables) that can be used to make evidence-based administrative and 
pedagogical decisions in order to improve the quality of student success and univer-
sity life (Tekin, 2014). In a large corpus, only a selection of available features tends to be 
associated with the dependent variable of interest (e.g., course grade, an indicator of on-
track graduation status). The remaining features may not be meaningfully informative 
and increase the magnitude of data that needs to be managed by pipelines, stored by the 
institution, and analyzed or interpreted.

Feature selection is the process of selecting a subset of all available features in a cor-
pus to enhance the efficacy of prediction models (Chandrashekar & Sahin, 2014; Koller 
& Sahami, 1996). As the number of features increases, the problem of finding an opti-
mal subset that models the target outcome becomes intractable because it is computa-
tionally impractical to evaluate all possible subsets of features (Kohavi and John, 1997). 
Therefore, sub-optimal screening methodologies (i.e., feature selection techniques) have 
been developed to flag and omit extraneous features from the final prediction model. 
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Fig. 1  Overview of a standard data science pipeline and proposed integration of feature selection with 
cross-validation
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If feature selection is poorly performed and erroneously omits features associated with 
the target outcome, then poor performance on independent corpora and inaccurate pre-
dictions in a large data science pipeline may occur (Urbanowicz et al., 2018). Moreover, 
identifying a set of informative variables can reduce data storage, reduce the complexity 
of prediction models, and aid in interpretability for stakeholders (Brooks & Thompson, 
2017; López-Zambrano et al., 2020).

Feature selection can be applied when evaluating a prediction model (Chong & Jun, 
2005; Xie et al., 2020) or during data preprocessing (Hancer et al., 2018; Talavera, 1999; 
Yu & Liu, 2003). The latter approach is more beneficial since reducing the number of 
features prior to constructing prediction models in pipelines may (1) reduce the com-
plexity of pipelines, (2) allow educational stakeholders to assemble, store, and work with 
a smaller set of features, and (3) make esoteric ‘black-box’ prediction algorithms more 
interpretable.

When training prediction models in data science pipelines, DMMs are generally run 
on different subsets of the training corpus to tune hyperparameters and build prediction 
models. To reduce overfitting and enable DMMs to generalize to independent corpora, 
cross-validation is traditionally used. This standard technique in the computational sci-
ences quantifies the differential efficacy of several candidate prediction algorithms for 
model validation and selection (Alpaydin, 2020; Arlot & Celisse, 2010; Kohavi, 1995; 
Shao, 1993). During this procedure, the training data are partitioned into k subsamples 
called folds (Allen, 1974; Arlot & Lerasle, 2016; Geisser, 1975). Each fold is used once as 
a validation set while the remaining k-1 folds encompass the training set. Other alterna-
tives for model selection (e.g., hold-out, resampling methodologies) limit the number of 
observations used to train the DMMs and are computationally intensive (Hawkins et al., 
2003; Skiena, 2017; Xiong et al., 2020). Since data features impact the performance of 
DMMs during training, it is imperative to ascertain the importance of different features 
to quantify variability in predictive efficacy at this critical juncture of the pipeline and 
identify candidate features impacting the performance of prediction algorithms.

Therefore, integrating feature selection with cross-validation may potentially simplify 
the data pipeline and make DMMs more interpretable. However, in order to quantify 
the association between features and the target outcome on subsets of the training data, 
a systematic consensus ranking system is needed to tabulate the merit of each feature 
across different data subsets. Moreover, a metric of stability is needed to quantify the 
robustness of the set of pertinent features identified on different subsets of the corpus to 
discern how similar these features are and how they affect predictive efficacy.

In this study, we introduce a methodology integrating feature selection with the cross-
validation step of data pipelines, as well as devise a consensus ranking scheme to com-
pare the sets of impactful features on subsets of the data using a selection of filter feature 
selection techniques. Unlike other feature selection techniques (i.e., wrapper and embed-
ded methods), filter methods are independent of the DMM (Bolón-Canedo et al., 2013). 
The three overarching goals of this study are to (1) present a modified and simplified 
data pipeline, (2) examine whether the use of filter feature selection techniques improve 
forecast accuracy when generating predictions of student success in undergraduate biol-
ogy, and (3) identify sets of academic and non-academic features that contribute to stu-
dent performance prior to model training. After introducing our research questions, we 
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discuss how our methodology can address limitations in prior feature selection EDM 
literature, before presenting our integrated pipeline and research context. We conclude 
with a discussion on how this methodology can make computational tools more inter-
pretable for faculty and stakeholders and guide them in the development of psychosocial 
support structures and educational interventions to foster student success.

Research questions
This study addressed the following three research questions:

(RQ 1) Do preprocessing feature selection techniques enhance the predictive efficacy 
of DMMs compared to when this step is omitted from the EDM pipeline?

(RQ 2) How consistent are the relevant features identified by the preprocessing feature 
selection techniques on subsets of the training data?

(RQ 3) What features do different feature selection techniques identify as contributing 
factors to student performance in the collegiate biology classroom, providing interpret-
able and actionable information for faculty and stakeholders?

Literature review
EDM studies generally identify the most important features in pipelines after the pre-
diction model has been fully developed using the Gini index to rank highly pertinent 
features (for examples see Hardman et  al., 2013; Alexandro, 2018; Xue, 2018; Berens 
et al., 2019). Aside from the fact that this index tends to favor continuous features and 
categorical features with many levels, all features are used in their final models to pre-
dict student performance outcomes. This can potentially reduce overall classification 
accuracy due to model overfitting (Breiman et al., 1984; Strobl et al., 2007). We review 
EDM research applying feature selection as a preprocessing step in pipelines below and 
address how integrating feature selection with cross-validation to rank features by their 
association with the target outcome can address the limitations in these studies.

Several EDM studies only use one preprocessing feature selection technique, such as 
chi-square attribute evaluation to rank features by their chi-squared statistic (e.g., Bucos 
& Drăgulescu, 2018; Kovačić, 2010). Kovačić (2010) used three decision tree algorithms 
to predict student attrition using demographics and collegiate course performance 
records at a New Zealand college. The authors identified (1) ethnicity, (2) course pro-
gram, and (3) course block as the most impactful features. Bucos and Drăgulescu (2018) 
focused on using five DMMs to model course performance in Romania. All DMMs 
yielded similar area under the curve (AUC) values, ranging between 0.81 and 0.83.

More detailed work has examined several preprocessing feature selection techniques. 
Ramaswami and Bhaskaran (2009) applied six feature selection techniques to model 
secondary school performance using student demographics and 4 DMMs. Correlation 
attribute evaluation (CAE) and information gain attribute evaluation (IG) achieved the 
highest AUC (0.729), selecting nine and seven features out of 32 possible ones, respec-
tively. Márquez-Vera et  al. (2016) used 10 preprocessing feature selection techniques 
and six DMMs to predict high school class performance in Mexico at seven distinct 
time points during a course. Their research was divided into three sections: (1) DMMs 
and feature selection techniques were run on all aggregated features starting from pre-
course, (2) models using a limited set of features appearing at least twice during ten-fold 
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cross-validation, across all feature selection techniques, were used to train separate mod-
els at each time frame, and (3) training corpora were balanced using an oversampling 
technique entitled SMOTE (Synthetic Minority Over-sampling Technique) (Chawla 
et al., 2002). The third scenario achieved the highest predictive accuracy, across all time 
points, compared to when preprocessing feature selection techniques were omitted from 
the data pipeline.

There are several limitations to these prior EDM studies. First, they do not provide 
a mathematical framework to compare the performance of the preprocessing feature 
selection techniques across independent corpora and assess whether the features iden-
tified are similar across different methods. While Márquez-Vera et  al. (2016) selected 
the top-tiered features in their corpora during cross-validation, their method requires 
the researcher to apply 10 feature selection techniques to the data simultaneously. Rank-
ing features using a single method would simplify the data science pipeline considerably. 
Furthermore, when ranking features, these EDM studies used a threshold or specified a 
predetermined number of features to include in the final model. This is also a common 
practice in other disciplines outside of EDM (Osman et al., 2017; Rachburee & Punlum-
jeak, 2015). However, in applied studies, it is unknown how many features should be 
used for developing prediction models. Research has offered little guidance on the num-
ber of features to select, except for Khoshgoftaar et al. (2007) who found that log2(m)

—features (rounded up to the nearest whole integer where m is the total number of fea-
tures) was the optimal number to select when studying binary classification with imbal-
anced data corpora.

Finally, preprocessing feature selection techniques are typically applied on the cleaned 
training data. Khoshgoftaar et al. (2010) investigated how the accuracy of feature selec-
tion methods changed when features were ranked on the cleaned training data and when 
it was performed on a subset of the data using their cutoff. They found that prediction 
models yielded higher accuracy when feature selection was performed on subsets of the 
training corpus. Unlike Márquez-Vera et al. (2016), this study did not perform feature 
selection during cross-validation.

Given the limitations of prior work, the following topics were identified as in need of 
attention. First, a statistical framework is essential to evaluate and compare the impactful 
features identified by these techniques. Second, a subset of the training corpus should be 
used to rank features. And third, feature selection should be integrated during the cross-
validation step. None of the prior studies noted above discuss developing a systematic 
consensus ranking scheme to assess the merit of each feature prior to model training. 
Consideration of all these factors may allow for the development of more robust and 
interpretable pipelines that incorporate preprocessing feature selection techniques.

Integration of feature selection with cross‑validation
Figure 2 illustrates our methodology integrating feature selection with cross-validation 
and applying a consensus ranking methodology to identify pertinent predictors prior to 
model testing. After filter feature selection techniques tabulate the association between 
each feature and the dependent variable on each training fold, the sorted order of the 
importance for the ith feature can be considered as a permutation Pj, j = 1,…l on l rank-
ings with a linear weight assigned to each of the l positions in the permutation. The 
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ranks, corresponding to the position of the features in ranked order can be aggregated 
across all folds and sorted to yield a final consensus.

The following steps are used to obtain a consensus ranking across all folds and fea-
ture rankings: (1) on each fold, sort the importance of the features in descending order 
based on values obtained from the filter feature selection techniques, (2) assign a rank-
ing for each feature based on their importance in modeling the target outcome, (3) sum 
the individual rankings across all folds, and (4) sort the summed ranks to yield a final 
consensus ranking. A lower consensus ranking (i.e., closer to 1) indicates that the feature 
is ranked as highly important in the majority of cross-validation folds. This consensus 
ranking methodology, entitled Borda’s method, has been applied in political science to 
tabulate election results where the voting method is a scoring rule rather than a plurality 
(Borda, 1781; Fraenkel & Grofman, 2014; Reilly, 2002). To our knowledge, this method-
ology has not been incorporated into a comprehensive EDM pipeline.

To illustrate this in further detail, a tabular example is presented in Table 1 using eight 
features {A, B, C, D, E, F, G, H} and three folds. Borda’s method identifies features A 
and D as having the lowest Borda count in our training corpus. Based on the consensus 
rankings, a prespecified number of features can be chosen or a cutoff (e.g., Khoshgoftaar 
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Table 1  Hypothetical example: Borda’s method with 8 features and three folds

Ranking 
position

Fold 1:
Assigned 
ranking

Fold 2:
Assigned 
ranking

Fold 3:
Assigned 
ranking

Sorted consensus 
ranking

Consensus 
ranking 
position

1 A: 1 B: 1 D: 1 A: 6 1

2 C: 2 D: 2 A: 2 D: 6 1

3 D: 3 A: 3 B: 3 B: 11 3

4 G: 4 G: 4 F: 4 G: 13 4

5 F: 5 F: 5 G: 5 F: 14 5

6 H: 6 E: 6 E: 6 C: 17 6

7 B: 7 C: 7 H: 7 E: 20 7

8 E: 8 H: 8 C: 8 H: 21 8
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et  al., 2007, 2010) can be applied. This method still works in the case of ties since all 
features whose Borda consensus ranking is less than a specified threshold (e.g., the four 
most important features) can be included in a final prediction model.

Application of modified pipeline to the science classroom
As an application, our investigation focused on implementing and evaluating the modi-
fied data science pipeline to forecast student performance in an introductory biology 
course at a public research institution in the United States. This classroom context was 
chosen because student success in this gateway baccalaureate science course is moderate 
for underrepresented minorities and first-generation college students at this institution 
and limits progress towards degree completion. Addressing this challenge is an institu-
tional priority.

3225 students enrolled in this course over six semesters from fall 2014 to spring 2017 
were studied (Table 2). The target outcome was each student’s transcript grade for the 
class categorized as a binary outcome: a failing course grade included marks of D+ and 
lower, while a passing course grade included marks of C− and higher. A corpus of 57 uni-
versity and course-specific features was obtained and amalgamated from the institution’s 
data warehouse. These features pertained to: (1) student demographics, (2) pre-college 
characteristics, (3) collegiate academic characteristics, (4) learning management system 
(LMS) logins, (5) financial aid metrics, and (6) biology course features. Summary statis-
tics for the features can be found in Additional file 1: Material A.

To investigate the differential predictive impact of the preprocessing feature selection 
techniques and DMMs at different time points in the course, models were constructed at 
pre-course, week 3, week 6, and week 9 (Fig. 3).

To examine the stability of our methodology, the data pipeline was applied to forecast 
student performance in a single semester using two, three, four, and five prior semesters 
of training data (Fig. 4).

Summary of modified data pipeline
Figure  5 depicts the modified data science pipeline for our study, which was imple-
mented in R software (R Core Team, 2017). In summary, the data science pipeline 
encompassed the following eight steps. A comprehensive and detailed discussion of 
these pipeline steps can be found in Additional file 1: Material G.

Table 2  Summary grade statistics by term

Semester Fail Pass Row total

Fall 2014 (n = 468) 93 (19.9%) 375 (80.1%) 468

Spring 2015 (n = 590) 44 (7.5%) 546 (92.5%) 590

Fall 2015 (n = 510) 116 (22.7%) 394 (77.3%) 510

Spring 2016 (n = 571) 24 (4.2%) 547 (95.8%) 571

Fall 2016 (n = 510) 74 (14.5%) 436 (85.5%) 510

Spring 2017 (n = 576) 27 (4.7%) 549 (95.3%) 576

Column total 378 (11.7%) 2847 (88.3%) 3225



Page 8 of 23Bertolini et al. Int J Educ Technol High Educ           (2021) 18:44 

Pre-Course Week 3 Week 6 Week 9

University Data
• Demographics
• Financial Aid
• Pre-College 

A�ributes
• College 

A�ributes
Course Data

• ACORNS Key 
Concepts

• ACORNS Pre-
Coherence

• CINS

University Data
• Semester Credit 

Hours
• LMS Logins (up 

to Week 3)

University Data
• LMS Logins (up 

to Week 6)

University Data
• LMS Logins (up 

to Week 9)

Course Data
• First 

Examina�on 
Score

Fig. 3  Features introduced at each time frame. Features are incrementally aggregated with those from prior 
time intervals

A. 2 Semesters of Training Data

Spring 2016
Fall 2016

Training Data

Spring 2017
Testing Data

Fall 2014
Spring 2015

Training Data

Fall 2015
Testing Data

Spring 2015
Fall 2015

Training Data

Spring 2016
Testing Data

Fall 2015
Spring 2016

Training Data

Fall 2016
Testing Data

B. 3 Semesters of Training Data

Spring 2016
Testing Data

Training Data
Fall 2014

Spring 2015
Fall 2015

Spring 2015
Fall 2015

Spring 2016

Training Data

Fall 2016
Testing Data

Fall 2015
Spring 2016

Fall 2016

Training Data

Spring 2017
Testing Data

C. 4 Semesters of Training Data

Spring 2015
Fall 2015

Spring 2016
Fall 2016

Training Data
Fall 2014

Spring 2015     
Fall 2015

Spring 2016

Fall 2016
Testing Data

Training Data

Spring 2017
Testing Data

D. 5 Semesters of Training Data

Fall 2014
Spring 2015

Fall 2015
Spring 2016

Fall 2016

Training Data

Testing Data
Spring 2017

Fig. 4  Prediction methodology overview.  Modified from Bertolini et al. (2021)

Data Manipulation

Data Preprocessing

Modeling & Evaluation

A.

B.

C.

B.

C.

• Apply the model to the 
testing data

• Calculate performance 
metrics

• Perform statistical tests 
to study the differential 
efficacy of the DMMs

• Extraction of university 
data

• Amalgamation of 
university and course-
specific data

• Split data into 
semesters for each 
design

• Partition data into 
training and testing 
sets

Data Integration Data Partition Model 
Evaluation Post-hoc Tests

A.

• Mice imputation
• Center and rescale 

variables: mean = 0 and 
standard deviation = 1

• Apply SMOTE to 
increase the number of 
observations in the 
minority class

• Apply 10-fold cross-
validation

• For each fold, rank 
predictors by Borda’s 
method

• Select top 6 predictors

Imputation/

Rescaling
SMOTE

Feature 
Selection

Fig. 5  Modified data science pipeline.  Modified from Bertolini et al. (2021)



Page 9 of 23Bertolini et al. Int J Educ Technol High Educ           (2021) 18:44 	

1.	 University-specific and course-specific data are assembled.
2.	 The amalgamated corpus is divided into training and testing sets per Fig. 4.
3.	 Categorical features are converted into indicator variables.
4.	 Missing data are imputed using the predictive mean matching technique in R’s Mul-

tivariate Imputation by Chained Equations (MICE) package (Buuren & Groothuis-
Oudshoorn, 2010).

5.	 Each feature is transformed to a z-score.
6.	 SMOTE is applied to the training data to address the class disparity.
7.	 Each DMM is trained using ten-fold cross-validation and applied to the testing data. 

When the four preprocessing filter feature selection techniques are applied, all fea-
tures are ranked by Borda’s method and the log2(m)—cutoff was applied to select 
57 = 5.83 ≈ 6 features to include in the final prediction model run on the testing cor-
pus.

8.	 The model’s performance on the testing set is evaluated using the AUC metric for 
each DMM. Model performance omitting our pipeline revision is compared.

In the pipeline, we examined a collection of four filter feature selection tech-
niques:  CAE, Fisher’s scoring algorithm (FSA), IG, and relief attribute evaluation 
(RAE) to remove irrelevant features during preprocessing. IG and RAE were imple-
mented in R via the FSelector package (Romanski & Kotthoff, 2013). A mathematical 
description of the preprocessing feature selection techniques can be found in Addi-
tional file 1: Material D.

Four common DMMs were also considered: logistic regression (LR), elas-
tic net regression (GLMNET), random forest (RF), and extreme gradient boost-
ing (XGBoost). All DMMs were implemented in R via the caret package (Kuhn, 
2015). The caretList function was used to tune DMM hyperparameters using a 
“tuneLength” parameter of six.

Statistical analysis

To address RQ 1, a heat map was used to visualize the mean percent difference in the 
AUC values between pipelines incorporating preprocessing feature selection tech-
niques and our ranking methodology, with pipelines omitting them for all four time 
points during the term. The statistical significance of these methods was ascertained 
using a multiple regression model. Estimated coefficients and p-values can be found 
in Additional file 1: Material H.

For RQ 2, the SC metric introduced by Nogueira and Brown (2016) was computed 
for all training and testing corpora to assess the stability of the filter feature selec-
tion techniques. In our research context, the number of data subsets is 10, corre-
sponding to each fold in ten-fold cross-validation. Analysis of variance (ANOVA) 
results can be found in Additional file 1: Material H.

For RQ 3, the Jaccard index was computed between each pair of preprocessing fea-
ture selection techniques to numerically quantify whether the top six features iden-
tified during the Borda tabulation were similar between techniques (Jaccard, 1901). 
A list of predictors identified as being most representative in modeling the target 
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outcome, across all time frames and preprocessing feature selection techniques, was 
generated. ANOVA results can be found in Additional file 1: Material H.

Results
(RQ 1) Do preprocessing feature selection techniques enhance the predictive efficacy of 
DMMs compared to when this step is omitted from the EDM pipeline? To examine the 
impact of the preprocessing feature selection techniques on the AUC metric, we tabu-
lated the percent difference in the mean AUC when feature selection techniques were 
applied and when these methods were omitted for each training and testing corpus 
(Fig. 6). A positive percent difference, denoted in parentheses, indicated that using the 
six features identified by Borda’s method improved the mean AUC compared to when all 
features were used in the pipeline. A negative percent difference indicated that using the 
limited set of features decreased the mean AUC and did not enhance overall predictive 
efficacy.

On average, the AUC results obtained for LR, RF, and XGBoost were 0.055 
(t-value = −  6.759, p-value < 0.0001, see Additional file  1: Material H), 0.073 
(t-value = −  8.962, p-value < 0.0001, see Additional file  1: Material H) and 0.094 
(t-value = −  11.523, p-value < 0.0001, see Additional file  1: Material H) points lower 
than GLMNET, respectively. Across all time frames and preprocessing feature selection 
techniques, the mean AUC values increased between 13.53 and 44.77% for LR. For this 
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Fig. 6  Average percent difference between the AUC values obtained using and omitting feature selection. In 
each data table entry, the first number denotes the mean AUC, across all training and testing corpora, when 
preprocessing feature selection are applied, and six features are used as input to the DMM. The entries in 
parenthesis correspond to the mean percent difference in the AUC, denoted by the colored palettes
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DMM, all percent differences for FSA exceeded 29.93%. By week 9, for the feature selec-
tion techniques CAE and FSA, the mean AUC values for LR exceeded 0.90 and achieved 
comparable performance with the ensemble method GLMNET. The largest improve-
ment in the mean AUC for GLMNET occurred prior to course commencement using 
FSA (2.29%).

Compared to when preprocessing feature selection techniques were omitted from 
the data science pipeline, FSA and CAE significantly increased the AUC, on average, 
by 0.058 (t-value = 6.435, p-value < 0.0001, see Additional file 1: Material H) and 0.040 
(t-value = 4.391, p-value < 0.0001, see Additional file 1: Material H) points, respectively. 
However, feature selection techniques reduced the mean AUC for RF and XGBoost 
across all techniques and time frames. During week 3, week 6, and week 9, the mean 
AUC values for RAE decreased between 21.15 and 29.85% for these ensemble DMMs. 
RAE was the worst performing preprocessing feature selection technique and yielded 
AUC values that were, on average, 0.068 points lower compared to when feature selec-
tion was omitted (t-value = − 7.501, p-value < 0.0001, see Additional file 1: H).

(RQ 2) How consistent are the relevant features identified by the preprocessing fea-
ture selection techniques on subsets of the training data? Ten training folds were used 
to evaluate feature relevancy prior to applying Borda’s method to select the top six fea-
tures in the data pipeline. The SC metric was used to assess the stability between the 
feature selection methods and identify whether the features chosen were similar across 
cross-validation folds and corpora. Table 3 depicts the mean SC metric by testing data 
semester (spring or fall), and training corpus size. Across all time frames, the preproc-
essing features selection techniques CAE and FSA were the most stable with mean SC 
values ranging between 0.87 and 1.00. The SC values for these filter methods were not 
statistical different from one another (t-ratio = −  0.860, adjusted p-value = 0.825, see 
Additional file 1: Material H). The values for IG were moderately high and the lowest 
mean SC metric occurred for a fall testing semester at week 6 using two training corpora 
(mean SC: 0.73). However, RAE was highly unstable across all training and testing cor-
pora. The highest mean SC metric was only 0.31 at week 9 using three training semes-
ters. The estimated mean difference between the SC values between IG and RAE was 
0.654 (t-ratio = 52.512, adjusted p-value < 0.0001, see Additional file 1: Material H).

(RQ 3) What features do different feature selection techniques identify as contributing 
factors to student performance in the collegiate biology classroom, providing interpret-
able and actionable information for faculty and stakeholders? The primary advantage of 
using preprocessing filter feature selection techniques is their ability to select and iden-
tify impactful features prior to model fitting in prediction pipelines. The Jaccard Index 
was tabulated for each pair of filter feature selection algorithms in order to identify 
whether the top six features (from Khoshgoftaar et al., 2007, 2010) used as input to the 
DMMs following the Borda tabulation were similar across all training and testing cor-
pora (Fig. 7). CAE and FSA yielded the most similar set of the highest ranked features, as 
indicated by mean Jaccard indices ranging between 0.70 and 0.78, across all DMMs and 
training corpora sizes. CAE and RAE identified a divergent set of features, as indicated 
by mean Jaccard indices ranging between 0.11 and 0.13, respectively. The Jaccard indices 
between the filter methods CAE and FSA were significantly higher than all other pairs 
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of filter methods (all t-ratios > 9.281, all adjusted p-values < 0.0001, see Additional file 1: 
Material H).

Additional file 1: Material C provides detailed figures examining the top six features 
identified across all prediction scenarios and time frames. Figure 8 provides a tabular 
summary of the highest ranked features across all training corpora by time frame. The 
count entry was calculated by tabulating the number of times the predictor appeared 
in the top six features identified by Borda’s method across all training corpora. The 
maximum count total is 10. Pre-collegiate and collegiate academic features encom-
passed the majority of the highly impactful predictors. Student collegiate grade point 
average (GPA), high school GPA, and performance on the CI assessments were highly 
ranked at pre-course and continued to be important predictors in subsequent weeks 

Table 3  Mean SC metric across all spring and fall testing corpora and training corpora sizes

Based on our prediction design, no fall testing corpus was available when five training semesters were used

Testing corpus Time frame Feature selection 
technique

Number of training semesters

2 3 4 5

Spring Pre CAE 0.94 0.96 0.96 0.96

FSA 0.94 0.95 0.87 1.00

IG 0.86 0.92 0.93 0.81

RAE 0.30 0.19 0.24 0.16

Week 3 CAE 0.95 0.90 0.91 0.89

FSA 0.96 0.95 1.00 0.90

IG 0.82 0.89 0.88 0.74

RAE 0.17 0.17 0.18 0.13

Week 6 CAE 0.95 0.97 1.00 0.90

FSA 0.92 0.94 0.89 0.94

IG 0.91 0.85 0.85 0.79

RAE 0.20 0.19 0.19 0.16

Week 9 CAE 1.00 0.96 1.00 0.89

FSA 0.96 1.00 1.00 1.00

IG 0.93 0.88 0.88 0.81

RAE 0.19 0.17 0.25 0.24

Fall Pre CAE 0.93 1.00 1.00

FSA 0.92 1.00 1.00

IG 0.86 0.85 0.86

RAE 0.19 0.23 0.25

Week 3 CAE 0.93 1.00 0.87

FSA 0.97 1.00 1.00

IG 0.79 0.86 0.88

RAE 0.23 0.13 0.17

Week 6 CAE 1.00 1.00 0.96

FSA 0.97 0.93 1.00

IG 0.73 0.76 0.85

RAE 0.16 0.14 0.21

Week 9 CAE 0.93 1.00 0.90

FSA 0.95 1.00 1.00

IG 0.83 0.96 0.80

RAE 0.16 0.31 0.15
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of the term. At week 3 and week 6, the highest ranked features pertained to the num-
ber of credits the student was currently taking (the same semester they were enrolled 
in the biology course). Aside from the student’s gender, limited demographic charac-
teristics were identified as being predictive of student classroom performance. While 

Fig. 7  Mean Jaccard index correlation matrix for each time frame and preprocessing feature selection 
technique

Fig. 8  Top predictors identified across all times frames and feature selection techniques
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LMS logins were not the highest ranked features, they did appear in the Borda tab-
ulation during the sixth week of the course. At week 9, the student’s first examina-
tion score was identified by all four filter techniques as being highly predictive of final 
course grade.

Discussion
This study explored three research questions concerning the use of preprocessing fea-
ture selection techniques in the development of modified and interpretable data science 
pipelines to forecast student performance. We discuss the answers to our research ques-
tions, the broader implications of this work, and conclude with the limitations of this 
study.

The answer to RQ 1 is that the preprocessing feature selection techniques CAE and 
FSA significantly improved the mean AUC for the DMMs LR and GLMNET in our data 
pipeline for collegiate biology. In other EDM studies, CAE was identified as being the 
most advantageous filter technique due to its ability to assess the impact of each pre-
dictor by its association with the target outcome (Mangal & Holm, 2018). Moreover, 
applied research in other subjects has shown that the predictive performance of DMMs 
improves when CAE was applied prior to model fitting, compared to other filter meth-
ods including IG (Anuradha & Velmurugan, 2016; Doshi, 2014; Karegowda et al., 2010). 
In simulation studies on synthetic corpora, CAE was shown to be the most suitable fil-
ter preprocessing feature selection technique for omitting most non-representative 
features of the target outcome (Bolón-Canedo et  al., 2013). However, several research 
studies have also found that CAE does not always yield an improvement in prediction 
performance. Osman et al. (2017) found that this technique only improved the predic-
tive efficacy of DMMs in 25% of models and performed 33% worse than wrapper meth-
ods, while Zaffar et al. (2018) found that CAE achieved comparable performance with 
IG and RAE. Considerably less research has examined FSA since this technique can only 
be applied when the outcome variable is categorical (Aggarwal, 2014).

Despite this, there is a large quantity of research outside of EDM which found that 
other filter preprocessing feature selection techniques, including IG and RAE, are more 
successful in selecting highly important features than CAE and FSA (Herrera et al., 2002; 
Koprinska et al., 2015; Yang & Pedersen, 1997). Bolón-Canedo et al. (2013) noted IG’s 
positive performance in corpora with a copious number of non-representative features 
and a small ratio between the number of observations and the number of non-represent-
ative features. Furthermore, IG and RAE have also been shown to produce less accu-
rate results when there is considerable variability and noise in the data corpus. For RAE, 
since this method is “intended as a screener to identify a subset of features that may not 
be the smallest,” it has the potential to identify redundant features as being highly pre-
dictive of the target outcome (Todorov, 2016, p. 96).

By using preprocessing filter techniques, instead of aggregating a large data corpus 
using all available features from stakeholders, researchers can extract a handful of rele-
vant features from different educational records in order to develop robust and interpret-
able pipelines to guide educational administrators and faculty in designing interventions 
to improve student learning outcomes. Furthermore, in education, some researchers are 
hesitant to incorporate a large number of features and multiple data sources to bolster 
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predictive models because they fear that errors in individual corpora will magnify when 
independent records are aggregated together (Bollier & Firestone, 2010; Strauss, 2016). 
We attribute the large amount of variability in the features assembled (see Additional 
file 1: Material A) as the likely reason for the overall poorer performance of IG and RAE 
across all DMMs and prediction methodologies in our modified pipeline.

The ensemble technique GLMNET significantly outperformed all other DMMs and 
improved the AUC metric when feature selection was applied as a preprocessing step 
to select six features. GLMNET is advantageous in binary classification due to its abil-
ity to select or exclude correlated covariates, and its use of regularization parameters to 
constrain the magnitudes of coefficients (Bertolini & Finch, in press; Jiménez et al., 2019; 
Kirpich et  al., 2018; Lu & Petkova, 2014). However, it is important to note that some 
applied research found that this method performed worse than other ensemble tech-
niques such as RF (Alexandro, 2018; Ransom et al., 2019).

The largest improvement in the AUC for feature selection was for the non-ensemble 
DMM LR. Traditionally, wrapper feature selection methods are commonly employed to 
improve predictive efficacy for LR (see Murtaugh, 1998; Harrell Jr, 2015). In our study, 
we demonstrated that preprocessing filter feature selection techniques also enhanced the 
performance of LR in achieving comparable AUC values with GLMNET and exceeded 
those of RF and XGBoost. While ensemble black-box techniques have been shown to 
enhance the performance of DMMs (Abdulazeez & Abdulwahab, 2018; Amrieh et  al., 
2016; Aulck et  al., 2017; Beemer et  al., 2018; Lisitsyna & Oreshin, 2019; Stapel et  al., 
2016), several EDM studies found that non-ensemble techniques performed better 
than ensemble models (Adekitan & Noma-Osaghae, 2019; Bucos & Drăgulescu, 2018). 
A limitation to these prior studies is that they neither incorporated preprocessing filter 
feature selection techniques nor utilized course-specific information in their analyses; 
rather, they focused on demographic and student academic achievements in their data 
pipelines.

We had anticipated that the ensemble techniques RF and XGBoost would be more 
competitive with the other DMMs. In particular, XGBoost has emerged as a prominent 
DMM and has won several data science competitions (Adam-Bourdarios et  al., 2015; 
Nielsen, 2016). However, there are still a small number of studies where XGBoost per-
formed worse than other ensemble algorithms (e.g., RF) for modeling a binary out-
come (Chen et  al., 2019; Gamie et  al., 2019). We chose to apply the linear version of 
the XGBoost algorithm, ‘xgbLinear’, because it uses a similar linear penalty function as 
GLMNET. Other extreme gradient boosting techniques include the tree-based algo-
rithms ‘xgbDART’ and ‘xgbTree’ in R’s caret package. For binary classification prob-
lems, ‘xgbTree’ and ‘xgbLinear’ have been shown to achieve comparable performance on 
standard machine learning data sets (Müller, 2018). Our research shows that filter meth-
ods have the potential to bolster the performance of non-ensemble DMMs and can be 
used for developing more robust and less convoluted educational data science pipelines, 
while making ensemble black-box methods more interpretable.

RQ 2 addressed how stable feature selection techniques are at selecting the most rele-
vant features on subsamples of the training data. Our methodology incorporated feature 
selection with the cross-validation step of the data science pipeline and evaluated stabil-
ity using the SC metric, a statistic that (to our knowledge) has not been applied in EDM. 
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Researchers seek stable algorithms so that data pipelines can generalize to independent 
corpora and consistent features can be identified as pertinent in modeling the target out-
come. The high stability of CAE and FSA in selecting similar sets of features during pre-
processing indicate that these methods can identify the features associated with student 
performance in data science pipelines for collegiate biology. Highly unstable techniques 
across all training and testing corpora such as RAE demonstrate that this algorithm had 
difficulty identifying features representative of the target outcome, leading to biased pre-
dictions. Educational researchers are encouraged to try various techniques in order to 
achieve optimal performance when constructing data-driven tools until more findings 
are published on the stability of these algorithms.

The answer to RQ 3 is that academic (pre-collegiate and collegiate) attributes and 
course-specific features were found to be more highly predictive of student performance 
than demographic factors. This finding is consistent with other education research 
(Miller-Cotto & Schunn, 2020; Salehi et al., 2019; Simmons & Heckler, 2020; Thomas & 
Galambos, 2004). It was surprising that LMS logins were not identified as being highly 
relevant in the majority of our prediction models, considering the prominence of digi-
tal tools in the classroom environment. However, the impact of LMS logins in predict-
ing student outcomes has been mixed in EDM. Some studies found them to be valuable 
for accurately predicting performance in online classroom settings (Al-Shabandar et al., 
2017; Lisitsyna & Oreshin, 2019; Morris et al., 2005; Tan et al., 2019); however, poorer 
prediction performance was achieved for blended courses incorporating online learning 
and in-class instruction (Conijn et al., 2016). Since the biology course studied is a lec-
ture-based in-person course where the LMS is used for instructor/student communica-
tion and for posting lecture notes, the course delivery method may be attributed to these 
predictors being less of a contributing factor to retention and attrition than in other 
studies. Since the introduction of online learning is becoming omnipresent in higher 
education, information and data acquired from these virtual tools can enhance the gen-
erality of student success predictions (Aljawarneh, 2020; Vovides et al., 2007). Given the 
recent shift to online instruction (Hodges et al., 2020), we are interested in extending our 
analysis to develop educational data pipelines to model student performance in these 
settings.

Communicating to faculty and other stakeholders how EDM pipelines and EWSs 
work is often challenging given the complexity of the corpora and associated analyti-
cal methods. The features responsible for DMM predictions can be murky, which lim-
its understanding of how failure predictions should be addressed (e.g., academic vs. 
non-academic interventions). Indeed, the production of interpretable knowledge is an 
important consideration for these computational tools (Conati et  al., 2018; Putnam & 
Conati, 2019), and data mining and ensemble learning have been criticized accordingly 
(Brooks et al., 2020; Elton, 2020; Jha et al., 2019). Interpretable pipelines that can offer a 
clearer understanding of the relationships between different features and their impact on 
model performance could help to generate understanding and formulate action among 
stakeholders (Arrieta et al., 2020; Rudin, 2019). Our modified pipeline allows for a com-
parative assessment of how specific feature subsets, identified by filter feature selection 
techniques during cross-validation, impact the sensitivity of DMMs in quantifying vari-
ability of student performance predictions in data pipelines.
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Since instructors may be unsure how to utilize predictions of student performance in 
the classroom, working with a limited set of features identified prior to developing a pre-
diction model is more feasible to address conceptual difficulties and facilitate a dialogue 
with academic stakeholders in taking a proactive approach to improve retention and aid 
struggling students. That way, supplemental instructional resources can be targeted for 
specific cohorts of students based on specific academic and/or non-academic attributes 
identified during data preprocessing to ensure high-risk students are targeted in receiv-
ing sufficient assistance and psychosocial support. More importantly, this methodology 
allows for the increased use of ensemble and “black-box” DMMs since educators have 
a better understanding of the student attributes that serve as inputs to these pipelines 
and their effect on prediction performance can be quantified in more direct ways. The 
interpretability of data pipelines and their underlying prediction algorithms in EDM will 
continue to play a major role in the application of computational tools that are used to 
infer student performance outcomes.

Limitations

Dimensionality reduction techniques (e.g., principal component analysis (Van der 
Maaten et al., 2009), autoencoders (Hinton & Salakhutdinov, 2006), and random projec-
tion (Bingham & Mannila, 2001) were not considered in this study despite their popular-
ity in fields outside of EDM. Unlike feature selection, these techniques provide limited 
interpretability due to altering the original representation and scale of the data (Alpay-
din, 2020; Mangal & Holm, 2018). A more detailed study comparing the predictive effi-
cacy of DMMs when feature selection and dimensionality reduction techniques are 
applied as a preprocessing step in our modified data science pipeline can be performed 
in future studies.

Wrapper and embedded feature selection methods were not considered despite their 
popularity in the data-enabled sciences. While other studies have examined these tech-
niques (see Chandrashekar & Sahin, 2014; Mangal & Holm, 2018), we chose to focus on 
filter methods since they are independent of the DMM. A more comprehensive study 
examining the predictive efficacy of wrapper and embedded techniques would be a prag-
matic next step.

In our prediction models, we chose to have the statistical software pick the hyperpa-
rameters for each DMM during training using a tuneLength value of six from the caret 
package in R. This may have contributed to the overall poorer prediction performance of 
RF and XGBoost. Examining a comprehensive grid search of tuning parameters, as well 
as focusing on other libraries and programming languages that implement these DMMs 
and preprocessing feature selection techniques, may enhance pipeline performance 
(Bertolini and Finch, in press). Furthermore, our feature selection methodology only 
examined a single filter cutoff (Khoshgoftaar et  al., 2007, 2010), and did not consider 
exploring other cutoffs examined in feature selection literature (Belanche & González, 
2011; Bolón-Canedo et al., 2013; Breiman et al., 1984). These alternative cutoffs can be 
examined in future studies.

Aside from the student’s first examination score, the other features incorporated 
into the data pipeline at weeks three, six, and nine did not include course assessments, 
CIs, nor standardized instruments that directly measured student comprehension, 
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memory retention of course topics, and concept mastery in the biology course. While 
students exhibit documented heterogeneous longitudinal learning patterns in large 
introductory collegiate science courses (see Sayre & Heckler, 2009; Nehm et al., 2012; 
Wang, 2018), the premise of this study centered on enhancing educational data pipe-
lines and therefore, we only included a limited set of course-specific features in the 
corpora. While not considered, the utility of other information extracted from LMSs 
aside from student login data (e.g., access to course deliverables) can be examined 
to further study student comprehension, learning, and course interaction throughout 
the duration of the class. Future studies should actively work to incorporate diverse 
course-specific data types quantifying memory retention into prediction pipeline 
studies.

A final limitation of this study is the application of this modified pipeline to a sin-
gle collegiate biology class. Since the performance of preprocessing feature selection 
techniques and DMMs differ based on the application and corpora examined, similar 
trends in student performance predictions for these algorithms may differ in other 
educational contexts (e.g., flipped classroom environment, quarter-long courses) and 
courses (e.g., introductory chemistry, physics, and mathematics courses). We are cur-
rently conducting a comprehensive simulation study examining the robustness of 
this modified pipeline to discern variability in its prediction performance. By using 
synthetic data in these studies, the results obtained would not be dependent on the 
underlying corpus and research context.

Conclusion
Our work introduced a systematic ranking system capable of identifying features associ-
ated with a target outcome during preprocessing. This step can potentially simplify tra-
ditional data pipelines, make ensemble DMMs more interpretable, and allow researchers 
to examine highly impactful features prior to training prediction models. In an applica-
tion to the collegiate biology classroom, this pipeline step improved predictive efficacy 
for the DMMs LR and GLMNET, compared to when all features were used. The features 
identified on training folds were stable, consistent across different corpora, and provided 
insight into the academic factors contributing to retention and attrition. By precisely 
pinpointing the features that directly contribute to student performance, educational 
researchers can use feature selection and the modified pipeline devised to develop and 
deploy targeted interventions to help improve the academic success of undergraduate 
students. Future work is exploring how the complexity of predictive tools impact the 
ways faculty make sense of and use these predictions in their classrooms.

Abbreviations
ANOVA: Analysis of variance; AUC​: Area under the curve; CAE: Correlation attribute evaluation; DMM: Data mining 
method; EDM: Educational data mining; EWS: Early warning system; FSA: Fisher’s scoring algorithm; GLMNET: Elastic net 
regression; GPA: Grade point average; IG: Information gain; LMS: Learning management system; LR: Logistic regression; 
MICE: Multivariate imputation by chained equations; RAE: Relief attribute evaluation; RF: Random forest; SMOTE: Syn-
thetic minority oversampling technique; XGBoost: Extreme gradient boosting.



Page 19 of 23Bertolini et al. Int J Educ Technol High Educ           (2021) 18:44 	

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s41239-​021-​00279-6.

Additional file 1. Material A: Summary statistics for features. Material B: AUC results for each preprocessing feature 
selection technique and DMM across all time frames, corpora sizes, and training and testing corpora. Material C: Top 
six ranked predictors selected by each preprocessing technique across all training corpora. Material D: Description of 
preprocessing feature selection techniques. Material E: Concept inventory assessments. Material F: Overview of data 
pipeline steps. Material G: Data pipeline for the collegiate biology classroom. Material H: AUC regression model & 
ANOVA analysis for SC metric and Jaccard index. Material I. Additional Materials References.

Acknowledgements
The authors thank Drs. Yaqi Xue and Nora Galambos for assembling the corpora analyzed in this study. We also thank the 
anonymous reviewers for their feedback.

Authors’ contributions
RB conceptualized the study. RB performed all data analyses and wrote the first draft of the manuscript. This work 
encompasses a portion of the doctoral dissertation of RB. All authors revised, read and approved the final manuscript.

Funding
The Howard Hughes Medical Institute (HHMI) Science Education Program provided funding. The views in this contribu-
tion reflect those of the authors and not necessarily those of HHMI.

Availability of data and materials
All data analyzed in this study are available from the corresponding author on reasonable request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Applied Mathematics and Statistics, Stony Brook University, Math Tower, Room P‑139A, Stony Brook, NY 
11794‑3600, USA. 2 Department of Ecology and Evolution, Program in Science Education, Stony Brook University, 650 Life 
Sciences Building, Stony Brook, NY 11794‑5233, USA. 

Received: 31 March 2021   Accepted: 9 June 2021

References
Abdulazeez, Y., & Abdulwahab, L. (2018). Application of classification models to predict students’ academic performance 

using classifiers ensemble and synthetic minority over sampling techniques. Bayero Journal of Pure and Applied 
Sciences, 11(2), 142–148.

Adam-Bourdarios, C., Cowan, G., Germain, C., Guyon, I., Kégl, B., & Rousseau, D. (2015). The Higgs boson machine learning 
challenge. In NIPS 2014 workshop on high-energy physics and machine learning. Montréal, Canada, 19–55.

Adekitan, A. I., & Noma-Osaghae, E. (2019). Data mining approach to predicting the performance of first year student in a 
university using the admissions requirement. Education and Information Technologies, 24(2), 1527–1543.

Aggarwal, C. C. (2014). Data classification: Algorithms and applications. CRC Press.
Alexandro, D. (2018). Aiming for success: Evaluating statistical and machine learning methods to predict high school student 

performance and improve early warning systems. Ph.D. thesis, University of Connecticut, Storrs, CT.
Aljawarneh, S. A. (2020). Reviewing and exploring innovative ubiquitous learning tools in higher education. Journal of 

Computing in Higher Education, 32(1), 57–73.
Allen, D. M. (1974). The relationship between variable selection and data augmentation and a method for prediction. 

Technometrics, 16(1), 125–127.
Alpaydin, E. (2020). Introduction to machine learning. MIT Press.
Al-Shabandar, R., Hussain, A., Laws, A., Keight, R., Lunn, J., & Radi, N. (2017). Machine learning approaches to predict learn-

ing outcomes in Massive open online courses. In 2017 International joint conference on neural networks (IJCNN). 
Anchorage: IEEE, 713–720.

Amrieh, E. A., Hamtini, T., & Aljarah, I. (2016). Mining educational data to predict student’s academic performance using 
ensemble methods. International Journal of Database Theory and Application, 9(8), 119–136.

Ansari, G. A., Parvez, M. T., & Al Khalifah, A. (2017). Cross-organizational information systems: A case for educational data 
mining. International Journal of Advanced Computer Science and Applications, 8(11), 169–175.

Anuradha, C., & Velmurugan, T. (2016). Feature selection techniques to analyse student academic performance using 
Naïve Bayes Classifier. In The 3rd international conference on small & medium business. New Delhi, India, 345–350.

Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4, 40–79.
Arlot, S., & Lerasle, M. (2016). Choice of V for V-fold cross-validation in least-squares density estimation. The Journal of 

Machine Learning Research, 17(1), 7256–7305.

https://doi.org/10.1186/s41239-021-00279-6


Page 20 of 23Bertolini et al. Int J Educ Technol High Educ           (2021) 18:44 

Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabnik, S., Barbado, A., García, S., Gil-López, S., Molina, D., Ben-
jamins, R., & Chatila, R. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and 
challenges towards responsible AI. Information Fusion, 58, 82–115.

Aulck, L., Aras, R., Li, L., L’Heureux, C., Lu, P., & West, J. (2017). STEM-ming the tide: Predicting STEM attrition using student 
transcript data. SIGKDD’s machine learning for education workshop. Halifax, Nova Scotia, Canada.

Baker, R. S. (2010). Data mining for education. International Encyclopedia of Education, 7(3), 112–118.
Baker, R. S. (2014). Educational data mining: An advance for intelligent systems in education. IEEE Intelligent Systems, 29(3), 

78–82.
Beck, H. P., & Davidson, W. D. (2001). Establishing an early warning system: Predicting low grades in college students from 

survey of academic orientations scores. Research in Higher Education, 42(6), 709–723.
Beemer, J., Spoon, K., He, L., Fan, J., & Levine, R. A. (2018). Ensemble learning for estimating individualized treatment 

effects in student success studies. International Journal of Artificial Intelligence in Education, 28(3), 315–335.
Belanche, L.A, & González, F.F. (2011). Review and evaluation of feature selection algorithms in synthetic problems. arXiv 

preprint arXiv: 1101.2320.
Berens, J., Schneider, K., Görtz, S., Oster, S., & Burghoff, J. (2019). Early detection of students at risk—predicting student 

dropouts using administrative student data from German universities and machine learning methods. Journal of 
Educational Data Mining, 11(3), 1–41.

Bertolini, R., & Finch, S. J. (in press). Synergistic effects between data corpora properties and machine learning perfor-
mance in data pipelines. International Journal of Data Mining, Modelling, and Management.

Bertolini, R., Finch, S. J., & Nehm, R. H. (2021). Testing the impact of novel assessment sources and machine learning meth-
ods on predictive outcome modeling in undergraduate biology. Journal of Science Education and Technology, 30(2), 
193–209.

Bingham, E., & Mannila, H. (2001). Random projection in dimensionality reduction: applications to image and text data. 
In Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining. San 
Francisco, CA, 245–250.

Bollier, D., & Firestone, C. M. (2010). The promise and peril of big data (pp. 1–66). Aspen Institute, Communications and 
Society Program.

Bolón-Canedo, V., Sánchez-Maroño, N., & Alonso-Betanzos, A. (2013). A review of feature selection methods on synthetic 
data. Knowledge and Information Systems, 34(3), 483–519.

Borda, J. C. (1781). Mémoire sur les élections au scrutin. Mémoires de l’Académie royale des Sciences de Paris pour l’Année, 
1781, 657–665.

Breiman, L., Friedman, J., Stone, C.J., & Olshen, R.A. (1984). Classification and regression trees. CRC press.
Brooks, C., & Thompson, C. (2017). Predictive modelling in teaching and learning. In C. Lang, G. Siemens, A. Wise, & D. 

Gašević (Eds.), Handbook of learning analytics (pp. 61–68). SOLAR, Society of Learning Analytics and.
Brooks, J.P., Edwards, D.J., Larson, C.E., & Van Cleemput, N. (2020). Conjecturing-based computational discovery of patterns 

in data. arXiv preprint arXiv: 2011.11576.
Bucos, M., & Drăgulescu, B. (2018). Predicting student success using data generated in traditional learning environments. 

TEM Journal, 7(3), 617–625.
Burgos, C., Campanario, M. L., De La Peña, D., Lara, J. A., Lizcano, D., & Martínez, M. A. (2018). Data mining for modeling 

students’ performance: A tutorial action plan to prevent academic dropout. Computers & Electrical Engineering, 66, 
541–556.

Buuren, S. V., & Groothuis-Oudshoorn, K. (2010). mice: Multivariate imputation by chained equations in R. Journal of 
Statistical Software, 45(3), 1–68.

Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 
16–28.

Chang, M. J., Sharkness, J., Hurtado, S., & Newman, C. B. (2014). What matters in college for retaining aspiring scientists 
and engineers from underrepresented racial groups. Journal of Research in Science Teaching, 51(5), 555–580.

Chawla, N. V. M., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. 
Journal of Artificial Intelligence Research, 16, 321–357.

Chen, J., Li, H., Luo, L., Zhang, Y., Zhang, F., Chen, F., & Chen, M. (2019). Machine learning—Based forecast for hemorrhagic 
stroke healthcare service demand considering air pollution. Journal of Healthcare Engineering. https://​doi.​org/​10.​
1155/​2019/​74632​42

Chong, I. G., & Jun, C. H. (2005). Performance of some variable selection methods when multicollinearity is present. 
Chemometrics and Intelligent Laboratory Systems, 78(1–2), 103–112.

Conati, C., Porayska-Pomsta, K., & Mavrikis, M. (2018). AI in education needs interpretable machine learning: Lessons from 
open learner modelling. arXiv preprint arXiv: 1807.00154.

Conijn, R., Snijders, C., Kleingeld, A., & Matzat, U. (2016). Predicting student performance from LMS data: A comparison of 
17 blended courses using Moodle LMS. IEEE Transactions on Learning Technologies, 10(1), 17–29.

Costa, E. B., Fonseca, B., Santana, M. A., De Araújo, F. F., & Rego, J. (2017). Evaluating the effectiveness of educational data 
mining techniques for early prediction of students’ academic failure in introductory programming courses. Com-
puters in Human Behavior, 73, 247–256.

Doshi, M. (2014). Correlation based feature selection (CFS) technique to predict student performance. International 
Journal of Computer Networks & Communications, 6(3), 197.

ECAR-Analytics Working Group. (2015). The predictive learning analytics revolution: Leveraging learning data for student suc-
cess: ECAR working group paper. Louisville, CO: ECAR.

Elton, D. C. (2020). Self-explaining AI as an alternative to interpretable AI. International conference on artificial general intel-
ligence (pp. 95–106). Springer.

Fraenkel, J., & Grofman, B. (2014). The Borda Count and its real-world alternatives: Comparing scoring rules in Nauru and 
Slovenia. Australian Journal of Political Science, 49(2), 186–205.

Gamie, E.A., El-Seoud, M.S.A., & Salama, M.A. (2019). A layered-analysis of the features in higher education data set. In Pro-
ceedings of the 2019 8th international conference on software and information engineering. Cairo, Egypt, pp 237–242.

https://doi.org/10.1155/2019/7463242
https://doi.org/10.1155/2019/7463242


Page 21 of 23Bertolini et al. Int J Educ Technol High Educ           (2021) 18:44 	

Gašević, D., Dawson, S., Rogers, T., & Gasevic, D. (2016). Learning analytics should not promote one size fits all: The effects 
of instructional conditions in predicting academic success. The Internet and Higher Education, 28, 68–84.

Geisser, S. (1975). The predictive sample reuse method with applications. Journal of the American Statistical Association, 
70(350), 320–328.

Griff, E. R., & Matter, S. F. (2008). Early identification of at-risk students using a personal response system. British Journal of 
Educational Technology, 39(6), 1124–1130.

Guruler, H., Istanbullu, A., & Karahasan, M. (2010). A new student performance analysing system using knowledge discov-
ery in higher educational databases. Computers & Education, 55(1), 247–254.

Hancer, E., Xue, B., & Zhang, M. (2018). Differential evolution for filter feature selection based on information theory and 
feature ranking. Knowledge-Based Systems, 140, 103–119.

Hardman, J., Paucar-Caceres, A., & Fielding, A. (2013). Predicting students’ progression in higher education by using the 
random forest algorithm. Systems Research and Behavioral Science, 30(2), 194–203.

Harrell Jr, F. E. (2015). Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and 
survival analysis. Cham: Springer.

Hawkins, D. M., Basak, S. C., & Mills, D. (2003). Assessing model fit by cross-validation. Journal of Chemical Information and 
Computer Sciences, 43(2), 579–586.

Herrera, P., Yeterian, A., & Gouyon, F. (2002). Automatic classification of drum sounds: A comparison of feature selection 
methods and classification techniques. International conference on music and artificial intelligence (pp. 69–80). 
Springer.

Herzog, S. (2006). Estimating student retention and degree-completion time: Decision trees and neural networks vis-à-vis 
regression. New Directions for Institutional Research, 2006(131), 17–33.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 
504–507.

Hodges, C., Moore, S., Lockee, B., Trust, T., & Bond, A. (2020). The difference between emergency remote teaching and 
online learning. Educause Review, 27, 1–12.

Howard, E., Meehan, M., & Parnell, A. (2018). Contrasting prediction methods for early warning systems at undergraduate 
level. The Internet and Higher Education, 37, 66–75.

Hu, Y. H., Lo, C. L., & Shih, S. P. (2014). Developing early warning systems to predict students’ online learning performance. 
Computers in Human Behavior, 36, 469–478.

Jaccard, P. (1901). Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bulletin De 
Société Vaudoise Des Sciences Naturelles, 37, 241–272.

Jha, S., Sahai, T., Raman, V., Pinto, A., & Francis, M. (2019). Explaining AI decisions using efficient methods for learning 
sparse Boolean formulae. Journal of Automated Reasoning, 63(4), 1055–1075.

Jiménez, S., Angeles-Valdez, D., Villicaña, V., Reyes-Zamorano, E., Alcala-Lozano, R., Gonzalez-Olvera, J. J., & Garza-Villarreal, 
E. A. (2019). Identifying cognitive deficits in cocaine dependence using standard tests and machine learning. 
Progress in Neuro-Psychopharmacology and Biological Psychiatry, 95, 109709.

Karegowda, A. G., Manjunath, A. S., & Jayaram, M. A. (2010). Comparative study of attribute selection using gain ratio and 
correlation based feature selection. International Journal of Information Technology and Knowledge Management, 
2(2), 271–277.

Khoshgoftaar, T.M., Gao, K., & Seliya, N. (2010). Attribute selection and imbalanced data. Problems in software defect 
prediction. In Proceedings of the 22nd IEEE international conference on tools with artificial intelligence (Volume 1). IEEE, 
137–144.

Khoshgoftaar, T.M., Golawala, M., & Hulse, J.V. (2007). An empirical study of learning from imbalanced data using random 
forest. In Proceedings of the 19th IEEE international conference on tools with artificial intelligence (Volume 2). IEEE, 
310–317.

Kirpich, A., Ainsworth, E. A., Wedow, J. M., Newman, J. R., Michailidis, G., & McIntyre, L. M. (2018). Variable selection in omics 
data: A practical evaluation of small sample sizes. PLoS One, 13(6), e0197910.

Knowles, J. E. (2015). Of needles and haystacks: Building an accurate statewide dropout early warning system in Wiscon-
sin. Journal of Educational Data Mining, 7(3), 18–67.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. International 
Journal of Ambient Computing and Intelligence, 14(2), 1137–1145.

Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1–2), 273–324.
Koller, D., & Sahami, M. (1996). Toward optimal feature selection. In Proceedings of the thirteenth international conference on 

machine learning. Morgan Kaufmann Publishers Inc., pp 284–292.
Koprinska, I., Rana, M., & Agelidis, V. G. (2015). Correlation and instance based feature selection for electricity load forecast-

ing. Knowledge-Based Systems, 82, 29–40.
Kovačić, Z. (2010). Early prediction of student success: Mining students enrollment data. In Proceedings of informing sci-

ence & IT education conference (InSITE2010). Cassino, Italy, 647–665.
Kuhn, M. (2015). Caret: classification and regression training. Astrophysics Source Code Library.
Lisitsyna, L., & Oreshin, S.A. (2019). Machine learning approach of predicting learning outcomes of MOOCs to increase its 

performance. In Smart education and e-learning (pp. 107-115). Springer, Singapore.
López-Zambrano, J., Lara, J. A., & Romero, C. (2020). Towards portability of models for predicting students’ final perfor-

mance in university courses starting from Moodle logs. Applied Sciences, 10(1), 354.
Lu, F., & Petkova, E. (2014). A comparative study of variable selection methods in the context of developing psychiatric 

screening instruments. Statistics in Medicine, 33(3), 401–421.
Mangal, A., & Holm, E. A. (2018). A comparative study of feature selection methods for stress hotspot classification in 

materials. Integrating Materials and Manufacturing Innovation, 7(3), 87–95.
Márquez-Vera, C., Cano, A., Romero, C., Noaman, A.Y.M., Mousa Fardoun, H., & Ventura, S. (2016). Early dropout prediction 

using data mining: A case study with high school students. Expert Systems, 33(1), 107–124.
Miller-Cotto, D., & Schunn, C. (2020). Mind the gap: how a large-scale course re-design in economics reduced perfor-

mance gaps. The Journal of Experimental Education. https://​doi.​org/​10.​1080/​00220​973.​2020.​18057​17

https://doi.org/10.1080/00220973.2020.1805717


Page 22 of 23Bertolini et al. Int J Educ Technol High Educ           (2021) 18:44 

Morris, L. V., Finnegan, C., & Wu, S. S. (2005). Tracking student behavior, persistence, and achievement in online courses. 
The Internet and Higher Education, 8(3), 221–231.

Müller, F. (2018). XGBoost tree vs. linear. https://​www.​statw​orx.​com/​ch/​blog/​xgboo​st-​tree-​vs-​linear/.
Murtaugh, P. A. (1998). Methods of variable selection in regression modeling. Communications in Statistics - Simulation 

and Computation, 27(3), 711–734.
Nehm, R. H., Beggrow, E. P., Opfer, J. E., & Ha, M. (2012). Reasoning about natural selection: Diagnosing contextual compe-

tency using the ACORNS instrument. The American Biology Teacher, 74(2), 92–98.
Nielsen, D. (2016). Tree boosting with XGBoost—Why does XGBoost win “Every” machine learning competition? M.S. thesis, 

Norwegian University of Science and Technology, Trondheim, Norway.
Nogueira, S., & Brown, G. (2016). Measuring the stability of feature selection. Joint European conference on machine learn-

ing and knowledge discovery in databases (pp. 442–457). Springer.
Olivé, D. M., Huynh, D. Q., Reynolds, M., Dougiamas, M., & Wiese, D. (2020). A supervised learning framework: Using assess-

ment to identify students at risk of dropping out of a MOOC. Journal of Computing in Higher Education, 32(1), 9–26.
Osman, H., Ghafari, M., Nierstrasz, O., & Lungu, M. (2017). An extensive analysis of efficient bug prediction configurations. 

In Proceedings of the 13th international conference on predictive models and data analytics in software engineering. 
Toronto, Canada, 107–116.

Putnam, V., & Conati, C. (2019). Exploring the need for explainable artificial intelligence (XAI) in intelligent tutoring sys-
tems (ITS). In IUI Workshops (Vol. 19).

R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundations for Statisti-
cal Computing.

Rachburee, N., & Punlumjeak, W. (2015). A comparison of feature selection approach between greedy, IG-ratio, Chi-
square, and mRMR in educational mining. In 2015 7th international conference on information technology and 
electrical engineering (ICITEE). IEEE, 420–424.

Ramaswami, M., & Bhaskaran, R. (2009). A study on feature selection techniques in educational data mining. Journal of 
Computing, 1(1), 7–11.

Ransom, C. J., Kitchen, N. R., Camberato, J. J., Carter, P. R., Ferguson, R. B., Fernández, F. G., Franzen, D.W., Laboski, C.A., 
Myers, D.B., Nafziger, E.D., Sawyer, J.E., & Shanahan, J. F. (2019). Statistical and machine learning methods evaluated 
for incorporating soil and weather into corn nitrogen recommendations. Computers and Electronics in Agriculture, 
164, 104872.

Reilly, B. (2002). Social choice in the south seas: Electoral innovation and the borda count in the Pacific island countries. 
International Political Science Review, 23(4), 355–372.

Romanski, P., & Kotthoff, L. (2013). Package ‘FSelector’. R Package Documentation, 18.
Rovira, S., Puertas, E., & Igual, L. (2017). Data-driven system to predict academic grades and dropout. PLoS One, 12(2), 

e0171207.
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable 

models instead. Nature Machine Intelligence, 1(5), 206–215.
Rupprecht, L., Davis, J. C., Arnold, C., Gur, Y., & Bhagwat, D. (2020). Improving reproducibility of data science pipelines 

through transparent provenance capture. Proceedings of the VLDB Endowment, 13(12), 3354–3368.
Salehi, S., Burkholder, E., Lepage, G. P., Pollock, S., & Wieman, C. (2019). Demographic gaps or preparation gaps?: The large 

impact of incoming preparation on performance of students in introductory physics. Physical Review Physics 
Education Research, 15(2), 020114.

Sayre, E. C., & Heckler, A. F. (2009). Peaks and decays of student knowledge in an introductory E&M course. Physical Review 
Special Topics - Physics Education Research, 5(1), 013101.

Schwarzenberg, P., Navon, J., & Pérez-Sanagustín, M. (2020). Models to provide guidance in flipped classes using online 
activity. Journal of Computing in Higher Education, 32(2), 282–306.

Shang, Z., Zgraggen, E., Buratti, B., Kossmann, F., Eichmann, P., Chung, Y., Binnig, C., Upfal, E., & Kraska, T. (2019). Democra-
tizing data science through interactive curation of ML pipelines. In Proceedings of the 2019 international conference 
on management of data. ACM, New York, NY, 1171–1188.

Shao, J. (1993). Linear model selection by cross-validation. Journal of the American Statistical Association, 88(422), 486–494.
Silva, C., & Fonseca, J. (2017). Educational data mining: A literature review. Europe and MENA cooperation advances in 

information and communication technologies: Advances in intelligent systems and computing (Vol. 520, pp. 87–94). 
Springer.

Simmons, A. B., & Heckler, A. F. (2020). Grades, grade component weighting, and demographic disparities in introductory 
physics. Physical Review Physics Education Research, 16(2), 020125.

Skiena, S. S. (2017). The data science design manual. Springer.
Stapel, M., Zheng, Z., & Pinkwart, N. (2016). An ensemble method to predict student performance in an online math 

learning environment. In Proceedings of the 9th international conference on educational data mining. Raleigh, North 
Carolina, USA, 231–238.

Strauss, V. (2016). ‘Big data’ was supposed to fix education. It didn’t. It’s time for ‘small data.’ The Washington Post. 
http://​washi​ngton​post.​com/​news/​answe​rsheet/​wp/​2016/​05/​09/​big-​data-​was-​suppo​sed-​to-​fix-​educa​
tion-​it-​didn’t-​its-​time-​for-​small-​data/.

Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustra-
tions, source, and a solution. BMC Bioinformatics, 8(1), 1-21.

Talavera, L. (1999). Feature selection as a preprocessing step for hierarchical clustering. In ICML (Vol. 99), 389–397.
Tan, T. Y., Jain, M., Obaid, T., & Nesbit, J. C. (2019). What can completion time of quizzes tell us about students’ motivations 

and learning strategies? Journal of Computing in Higher Education, 32(2), 1–17.
Tekin, A. (2014). Early prediction of students’ grade point averages at graduation: A data mining approach. Eurasian 

Journal of Educational Research, 54, 207–226.
Thomas, E. H., & Galambos, N. (2004). What satisfies students? Mining student-opinion data with regression and decision 

tree analysis. Research in Higher Education, 45(3), 251–269.

https://www.statworx.com/ch/blog/xgboost-tree-vs-linear/
http://washingtonpost.com/news/answersheet/wp/2016/05/09/big-data-was-supposed-to-fix-education-it-didn’t-its-time-for-small-data/
http://washingtonpost.com/news/answersheet/wp/2016/05/09/big-data-was-supposed-to-fix-education-it-didn’t-its-time-for-small-data/


Page 23 of 23Bertolini et al. Int J Educ Technol High Educ           (2021) 18:44 	

Todorov, A. (2016). An overview of the RELIEF algorithm and advancements. In statistical approaches to gene X environ-
ment interactions for complex phenotypes. MIT Press, 95–116.

Urbanowicz, R. J., Meeker, M., La Cava, W., Olson, R. S., & Moore, J. H. (2018). Relief-based feature selection: Introduction 
and review. Journal of Biomedical Informatics, 85, 189–203.

Van der Maaten, L., Postma, E., & Van den Herik, J. (2009). Dimensionality reduction: A comparative. Journal of Machine 
Learning Research, 10(66–71), 13.

Vovides, Y., Sanchez-Alonso, S., Mitropoulou, V., & Nickmans, G. (2007). The use of e-learning course management systems 
to support learning strategies and to improve self-regulated learning. Educational Research Review, 2(1), 64–74.

Wang, Y. (2018). Longitudinal learning dynamics and the conceptual restructuring of evolutionary understanding. Ph.D. thesis, 
Stony Brook University, Stony Brook, New York.

Xie, Y., Li, Y., Xia, Z., & Yan, R. (2020). An improved forward regression variable selection algorithm for high-dimensional 
linear regression models. IEEE Access, 8, 129032–129042.

Xiong, Z., Cui, Y., Liu, Z., Zhao, Y., Hu, M., & Hu, J. (2020). Evaluating explorative prediction power of machine learning algo-
rithms for materials discovery using k-fold forward cross-validation. Computational Materials Science, 171, 109203.

Xue, Y. (2018). Testing the differential efficacy of data mining techniques to predicting student outcomes in higher education. 
Ph.D. thesis, Stony Brook University, Stony Brook, New York.

Yang, Y., & Pedersen, J.O. (1997). A Comparative Study on Feature Selection in Text Categorization. In Proceedings of the 
14th international conference on machine learning (ICML). Morgan Kaufmann, San Francisco, CA, 412–420.

Yu, C. H., DiGangi, S., Jannasch-Pennell, A., & Kaprolet, C. (2010). A data mining approach for identifying predictors of 
student retention from sophomore to junior year. Journal of Data Science, 8(2), 307–325.

Yu, L., & Liu, H. (2003). Feature selection for high-dimensional data: A fast correlation-based filter solution. In Proceedings 
of the 20th international conference on machine learning (ICML-03). Morgan Kaufmann, San Francisco, CA, 856–863.

Zaffar, M., Savita, K. S., Hashmani, M. A., & Rizvi, S. S. H. (2018). A study of feature selection algorithms for predicting stu-
dent academic performance. International Journal of Advanced Computer Science and Applications, 9(5), 541–549.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Enhancing data pipelines for forecasting student performance: integrating feature selection with cross-validation
	Abstract 
	Introduction
	Research questions
	Literature review
	Integration of feature selection with cross-validation
	Application of modified pipeline to the science classroom
	Summary of modified data pipeline
	Statistical analysis

	Results
	Discussion
	Limitations

	Conclusion
	Acknowledgements
	References


