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Great expectations: minor differences 
in initial instructions have a major impact 
on visual search in the absence of feedback
Patrick H. Cox* , Dwight J. Kravitz and Stephen R. Mitroff 

Abstract 

Professions such as radiology and aviation security screening that rely on visual search—the act of looking for targets 
among distractors—often cannot provide operators immediate feedback, which can create situations where perfor-
mance may be largely driven by the searchers’ own expectations. For example, if searchers do not expect relatively 
hard-to-spot targets to be present in a given search, they may find easy-to-spot targets but systematically quit search-
ing before finding more difficult ones. Without feedback, searchers can create self-fulfilling prophecies where they 
incorrectly reinforce initial biases (e.g., first assuming and then, perhaps wrongly, concluding hard-to-spot targets are 
rare). In the current study, two groups of searchers completed an identical visual search task but with just a single dif-
ference in their initial task instructions before the experiment started; those in the “high-expectation” condition were 
told that each trial could have one or two targets present (i.e., correctly implying no target-absent trials) and those in 
the “low-expectation” condition were told that each trial would have up to two targets (i.e., incorrectly implying there 
could be target-absent trials). Compared to the high-expectation group, the low-expectation group had a lower hit 
rate, lower false alarm rate and quit trials more quickly, consistent with a lower quitting threshold (i.e., performing less 
exhaustive searches) and a potentially higher target-present decision criterion. The expectation effect was present 
from the start and remained across the experiment—despite exposure to the same true distribution of targets, the 
groups’ performances remained divergent, primarily driven by the different subjective experiences caused by each 
groups’ self-fulfilling prophecies. The effects were limited to the single-targets trials, which provides insights into the 
mechanisms affected by the initial expectations set by the instructions. In sum, initial expectations can have dramatic 
influences—searchers who do not expect to find a target, are less likely to find a target as they are more likely to quit 
searching earlier.
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Significance statement
In professions such as radiology and airport security 
screening, success in visual search—looking for tar-
gets among distractors–can be a matter of life-or-death. 
Therefore, it is critical to understand the factors that 
influence performance. Many professional searches are 
carried out in situations where feedback on accuracy is, 

at best, delayed, but more often never received. When 
searching in the absence of feedback, the searchers’ ini-
tial expectations may play an outsized role in determin-
ing search performance. In this study, searchers’ initial 
expectations about the trial distributions, namely the 
possibility of target-absent trials, were set by a sim-
ple manipulation of the wording of the pre-experiment 
instructions. In the absence of feedback, participants 
with incorrect low-expectations of a target being present 
performed less thorough searches than those with correct 
high-expectations, resulting in more missed targets. This 
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effect was present from the beginning of the experiment 
such that it created a self-fulfilling prophecy whereby, 
despite the same true underlying distribution of targets, 
the low-expectation group actually experienced a lower 
target prevalence rate. This generated sustained differ-
ences in expectations leading to performance differences 
across the experiment. Interestingly, the effect was spe-
cific to the single-target trials; being more likely to find 
a single target did not make the high-expectation group 
any better at detecting two targets in the same search dis-
play. Beyond serving as a reminder of the importance of 
carefully crafting instructions for academic experiments, 
this study highlights the outsized effect that initial expec-
tations can have on search performance in the absence of 
feedback—a scenario that describes many critical real-
world searches. The current work further highlights the 
importance of setting accurate expectations based on the 
true target distribution, pointing to the need for profes-
sional search industries to fully understand the nature of 
their environment.

Introduction
Visual search, finding targets among non-target distrac-
tors, is a nearly ubiquitous cognitive act that underlies 
everyday activities (e.g., finding your keys, looking for 
a friend in a crowd) as well as highly-important profes-
sional tasks (e.g., airport baggage screening, radiology). 
While efficient and effective performance is useful in eve-
ryday searches (no one wants to spend an hour locating 
their car keys), it is absolutely vital for many professional 
searches. Taking too long or making mistakes can lead 
to serious, even life-or-death, outcomes in professional 
settings such as radiology, pathology, aviation security 
screening, lifeguarding, border patrol efforts, and various 
military activities.

Given the prominent role of visual search in so many 
facets of life, it is not surprising that it has been widely 
studied (for overviews see Clark et  al., 2012; Wolfe, 
2020a). Much has been learned about the processes 
underlying search and the practical factors that affect 
performance through research in cognitive psychology 
(for reviews see Chan & Hayward, 2013; Eckstein, 2011 
and Nakayama & Martini, 2011), academic radiology 
(e.g., Krupinski, 2010, 2015; Kundel et al., 1978), aviation 
security (e.g., Mitroff et  al., 2018; Wetter, 2013), mili-
tary research (e.g., Cornes et al., 2019; Janelle & Hatfield, 
2008), and more. Collectively, these efforts have served to 
isolate core cognitive mechanisms that drive search per-
formance and inform how to optimize performance in a 
range of practical settings (Wolfe, 2020b).

Since the initial investigations of search (e.g., Koopman, 
1956; Poulton, 1890), there has always been a clear and 
explicit acknowledgement that one of the primary goals 

of the research efforts is to elucidate factors that impact 
search performance. Through both theoretical and 
applied investigations there has been a focus on potential 
influences, including such factors as the number of non-
target items present in the search (e.g., Palmer, 1994), the 
physical and conceptual relationship between the targets 
and distractors (e.g., Biggs et  al., 2015), external factors 
such as time pressure (e.g., Pieters & Warlop, 1999) and 
task goals (e.g., Clark et al., 2014), and individual differ-
ences (e.g., Biggs et  al., 2013; Boot et  al., 2009). Impor-
tantly, such factors do not influence performance in 
isolation—each can impact search on their own but they 
can also interact with one another in both potentially 
helpful or detrimental ways.

Pre‑search expectations in the absence of feedback
The current project focused on one particular factor that 
can influence search performance—searchers’ initial pre-
search expectations. Expectations, the belief that some-
thing will happen, can be set in a variety of ways for a 
search task; for example, searchers can be provided with 
explicit information, including pre-search instructions 
(e.g., Madrid & Hout, 2019; Yarbus, 1967), cues presented 
during active search (e.g., Posner et al., 1980), and post-
search feedback (e.g., Chabukswar et  al., 2003). Like-
wise, expectations can develop with experience across 
search experience (e.g., Wolfe et  al., 2005); for example, 
in “contextual cueing” experiments (Chun & Jiang, 1998), 
searchers become progressively more efficient at finding 
a target when the same search array is repeated over the 
course of an experimental session.

Prior research has shown that various forms of expec-
tations can significantly impact search performance. For 
example, the impact of searchers’ expectations is clear 
from the fact that when searchers do not regularly see a 
target, they miss more of the targets that are actually pre-
sent (e.g., Gur et al., 2004; Wolfe et al., 2005). This “low 
prevalence effect” has been attributed to both a lower 
quitting threshold such that participants spend less time 
searching on trials where there is no target found and to 
a criterion shift such that the searchers require more evi-
dence to label something as a target (e.g., Wolfe & Van 
Wert, 2010). That is, when searching in a low-prevalence 
target environment, the argument is that searchers are 
quicker to decide that no target is present and they may 
not conduct an exhaustive search of the whole display 
and at the perceptual level the decision criterion to call 
a stimulus a target is stricter (Hout et al., 2015; Godwin 
et  al., 2015). Research into this effect suggests that the 
prevalence effect gradually builds over recent experience 
(Ishibashi et al., 2012; Wolfe & Van Wert, 2010).

Interestingly, it has been shown that feedback can 
impact the effect of low prevalence on expectations. 
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While the majority of the academic work focusing on 
prevalence effects has provided participants with full 
and accurate feedback (e.g., Wolfe et  al., 2005; Wolfe & 
Van Wert, 2010; Ishibashi et  al., 2012; Ishibashi & Kita, 
2014, but see Lau & Huang, 2010 as an example of a 
study without feedback) one of the exceptions is reveal-
ing. Two experiments in Wolfe et  al. (2007) presented 
searchers with a long sequence of low-prevalence search 
(1% target prevalence) with an occasional burst of high-
prevalence search (50% target prevalence) inserted into 
the sequence. Critically, one of the experiments con-
tained feedback on all trials while the other only included 
feedback during the high-prevalence bursts. There was 
negligible impact of the burst of high-prevalence target 
trials on subsequent periods of low-prevalence search 
performance in the presence of full feedback, but when 
accuracy feedback was provided only during the high-
prevalence bursts, but not the low-prevalence periods, 
in the other experiment, there was a significant inocula-
tion against the low-prevalence effect. That is, feedback 
on accuracy during the high-prevalence bursts created 
expectations about the underlying target frequency that 
carried over into the low-prevalence search periods when 
there was no feedback during those periods to confirm 
that the underlying target distribution had changed. 
Relatedly, another line of research has demonstrated that 
feedback alone can drive changes in search behavior; 
when participants were presented with false performance 
feedback they shifted their target-present decision crite-
rion (Schwark et al., 2012), even in the complete absence 
of actual targets (Schwark et al., 2013).

While much has been revealed about how various 
forms of expectations can affect search performance, 
there are open questions that can have meaningful 
impacts on professional search situations. Specifically, 
further understanding the impact on search perfor-
mance of initial expectations (e.g., task instructions) in 
the absence of feedback is needed given that most profes-
sional searches lack timely feedback. Radiologists exam-
ining routine cases do not receive real-time feedback 
as to whether their evaluations are correct or incorrect. 
Aviation security screeners can potentially receive imme-
diate feedback if they correctly (or incorrectly) detect a 
prohibited item in a passenger’s bag and pull the bag 
for secondary search, but they will receive no, or highly 
delayed, feedback if they do not pull a bag for secondary 
search.

Arguably, without immediate feedback, professional 
searchers are largely left to perform “in the dark” where 
they do not know if their ongoing performance is appro-
priate or in need of adjustment. Performing a visual 
search task without feedback can place searchers into a 
situation where their initial expectations as they start to 

engage in the search can potentially have an unreasona-
bly large impact on their performance; this is problematic 
because initial pre-search expectations may not always 
map correctly onto the reality of the search environment 
at any given moment. For example, pre-search expecta-
tions can change in professional search environments; 
radiologists can be provided with patient history and 
aviation security screeners can move between various 
environments (e.g., the US standard lanes vs. PreCheck 
lanes). Regardless of context, however, all such searches 
require a high level of accuracy.

Self‑fulfilling prophecy of search without feedback
Searching without feedback can create a self-fulfilling 
prophecy where the searchers’ initial expectations going 
into the search can dramatically shape their actual per-
formance during the search, which in turn serves to bol-
ster their initial expectations. In general, if searchers do 
not know if targets are present and/or how many pos-
sible targets might be present in any given search, then 
they must adopt a quitting threshold that will determine 
when they stop looking and move on to the next search 
(Cain et  al., 2012; Chun & Wolfe, 1996). In some situa-
tions where accuracy is vital, searchers will ideally adopt 
a fully exhaustive search strategy where they do not quit 
the specific search until they have inspected and con-
sidered every possible item. However, many factors can 
lead to non-exhaustive search strategies, including time 
pressure (Pieters & Warlop, 1999) and expectations (e.g., 
in low prevalence search; Wolfe & Van Wert, 2010). The 
choice of a quitting threshold can be driven by feedback; 
when searchers are provided with trial-by-trial, real time 
feedback on search accuracy, they can adapt their quit-
ting threshold to appropriately map the structure of 
their search environment. For example, when receiving 
feedback in low prevalence search environments that an 
exceedingly few trials have a target present, searchers will 
generally speed up and adopt a lower quitting threshold 
(e.g., Wolfe et al., 2007).

Consider a search environment that can contain an 
equal number of both relatively easy and relatively hard 
to detect targets (e.g., water bottle vs. bullets in aviation 
security screenings; high-salience black T vs. low-sali-
ence light gray T in Fig.  1a). In such a search environ-
ment, the relatively easy-to-spot targets, on average, 
will be found quicker—but that does not make them any 
more prevalent; they are just quicker to be found since 
they stand out more. If the searchers receive real-time 
accuracy feedback on target detection, then they can 
learn that easy and hard targets are equally likely in this 
particular environment, and they may adjust their quit-
ting threshold to search longer when they do not quickly 
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spot an easy target in anticipation that a hard target 
might be present.

Now, take the above search scenario in the absence of 
feedback. The searchers, on average, will find the easy 
targets quicker and more easily, and they will be less 
likely to detect the hard targets. Without trial-by-trial 
accuracy feedback, the searchers might incorrectly con-
clude that easy targets are more prevalent than hard tar-
gets, and might adopt a lower quitting threshold such 
that they will quit the search sooner since their own 
experiences during the search suggest that targets are 
likely to be detected quickly.

When search environments do not provide immedi-
ate feedback, the searchers’ initial expectations about the 
nature of the search can create a self-fulfilling prophecy 
that is divorced from the actual nature of the true search 
parameters. Continuing with our hypothetical search 
scenario where there are an equal number of easy- and 
hard-to-spot targets, imagine there are two groups of 

participants—the first group a priori expects few, if any, 
trials to contain a target while the second group expects 
every trial to contain at least one target. The first group 
might adopt a lower quitting threshold going into the 
search and prematurely end their search before fully 
inspecting every item, while the second group might 
adopt a higher quitting threshold and will conduct more 
exhaustive searches (Fig. 1b). The first group will mostly 
find the easy targets but miss the hard targets (Fig.  1c) 
while the second group will likely find both easy and hard 
targets (Fig.  1d). Without feedback, there is nothing to 
adjust these behaviors and the two groups’ actual experi-
ences will reflect their initial expectations and reinforce 
their respective initial quitting threshold settings. Low 
expectation may also lead to a stricter decision criterion 
for labeling an item as a target (e.g., Wolfe & Van Wert, 
2010). This is a distinct possibility given that decision cri-
teria have also been shown to be strongly influenced by 
feedback (Schwark et al., 2012, 2013).
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Fig. 1 Example stimuli and theoretical model illustrating the predicted results. a Example dual-target display. The easy target (dark gray rotated 
T) is located in the upper left quadrant and the hard target (light gray T) is located in the lower left. b Theoretical depiction of underlying difficulty 
distributions from which the “Hard” (light gray) and “Easy” (dark gray) targets for each trial were drawn from. More difficult-to-find targets fall farther 
to the right on the distribution and will take longer to find. The prediction is that expectations about the underlying trial structure differentially set 
the quitting threshold (low-expectation in orange, high-expectation in blue). c Hypothetical distribution of found targets for the low-expectation 
quitting threshold in panel B. d Hypothetical distribution of found targets for the high-expectation quitting threshold in panel B. Comparing 
panels C and D, illustrates the prediction that the higher quitting threshold leads to higher hit rates by allowing time for the searcher to find the 
more difficult targets from the far right of the distribution in panel B. In turn, the mean response time for finding a target increases with the higher 
quitting threshold, particularly for the hard targets
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Current study
The current project explored how initial pre-search 
expectations could have a lasting impact on visual search 
when no feedback is provided. Two groups of searchers 
completed the same search task, with one sole difference 
between groups—one sentence of the initial instructions 
was altered between the groups. One group (“low-expec-
tation” group) was given a sentence in the instructions 
that incorrectly implied that search trials could have 
0, 1, or 2 targets and the other group (the “high-expec-
tation” group) was given a sentence in the instructions 
that correctly implied that search trials could have 1 or 
2 targets. There were no other differences between the 
two conditions and the critical question was whether 
this small difference in instructional wording at the start 
of the experiment could meaningfully impact search 
performance.

The current hypothesis was that the one-sentence 
instruction manipulation would set different expecta-
tions about the presence of target-absent trials leading 
the “low-expectation” group to conduct less thorough 
searches than the “high-expectation” group (Fig. 1b) due 
to a lower quitting threshold (e.g., Lau & Huang, 2010) 
and possibly require more evidence to call a stimulus a 
target than the “high-expectation” group due to a higher 
decision criterion (e.g., Wolfe et al., 2007). As shown in 
the theoretical model in Fig.  1, the difference between 
the two groups was expected to be more extreme on rela-
tively harder trials which should be more affected by vari-
ation in quitting thresholds and decision criteria. Further, 
the current project explored whether this potential 
effect would manifest as an initial, short-lived difference 
or whether it would remain as a lasting effect on search 
performance across the full experimental session. The 
hypothesis was that despite exposure to the same true 
distribution of trials, the instruction manipulation would 
lead to different expectations, and, without feedback on 
search accuracy, the groups would have different subjec-
tive experiences of the same underlying target distribu-
tion (Fig.  1). The different subjective experiences would 
serve as reinforcement of the initial difference in expec-
tation, functioning as a self-fulfilling prophecy whereby 
the initial difference in expectation is matched in each 
groups’ experience despite the absence of an actual dif-
ference in the true target distribution across groups. This 
could cause the difference between the groups to remain, 
or even amplify, across the experiment.

The specific predictions from the hypothesized dif-
ference in quitting threshold between the high- and 
low-expectation groups (Fig.  1b) were fewer timeouts 
(participants were given a 15  s time limit, see Methods 
below), lower total search times on miss trials, and, con-
sequently, lower hit rates for the low-expectation group 

(Fig.  1c, d). The specific predictions from the hypoth-
esized potential difference in the target-present decision 
criterion were a lower hit rate and lower false alarm rate 
for the low-expectation group.

Methods
Two independent participant groups completed the same 
experimental protocol with the only difference being 
their initial task instructions. The experimental meth-
ods are described in detail below, and they were the same 
design employed in Adamo et al. (2019). The data for the 
low-expectation group were previously published as part 
of a different project with different goals (Porfido et  al., 
2020; start of semester Spring 2019 cohort).

Participants
Participants were recruited from The George Washing-
ton University’s Psychology department’s subject pool 
and received course credit. There were two independ-
ent participant cohorts recruited at the beginning of the 
Spring 2019 semester with data collected first for the 
low-expectation group and then for the high-expecta-
tion group: the low-expectation group (N = 39, 9 male/ 
30 female, mean age 19.67 years, SD 1.47, data collected 
1/16/2019–1/28/2019) and the high-expectation group 
(N = 45, 5 male/ 40 female, mean age 19.42 years, SD 1.16, 
data collected 1/28/2019–2/11/2019). Recent work dem-
onstrated that participants recruited from a course-credit 
subject pool at the start of the semester performed better 
at visual search (e.g., were more accurate) and were more 
compliant than participants from the end of the semester 
(Porfido et al., 2020). All of the participants in the current 
study were from the start of the semester (or close to it), 
and the cohort collected later was the high-expectation 
group—the cohort predicted to have higher accuracy.

Four additional participants from each group were 
determined to have contributed outlier data, and their 
data were removed from all analyses. Outliers were 
defined as participants whose data were more than two 
standard deviations from the mean for their own group 
for easy single-target hit rate (1 low- and 2 high-expecta-
tion), false alarm rate (2 low- and 1 high-expectation), or 
timeout rate (1 low- and 1 high-expectation).

Stimuli
The stimuli are identical to previously published work 
(Adamo et  al., 2019; different salience condition). Each 
search display contained 25 items (each 1.3° × 1.3° assum-
ing a 60  cm viewing distance) presented in an invisible 
8 × 7 grid (jittered 0–4 pixels from the center of each 
position within the grid). All items were pairs of perpen-
dicular bars with a small gap between them; targets were 
perfectly aligned to create a ‘T’ shape and distractors had 
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the crossbars slightly offset by 1–5 pixels from center to 
create an ‘L’ shape. Each item was presented in one of 
four rotations (0°, 90°, 180°, and 270°) on a white back-
ground. Items were either easy-to-spot high-salience (a 
grey of 57–65% black; 50% of targets; 5% of distractors) or 
hard-to-spot low-salience (a grey of 22–45% black; 50% 
of targets; 95% of distractors). Each display contained one 
or two targets with the remaining items being distrac-
tors. Displays were generated as matched triplets where 
each dual-target trial (i.e., a trial with two targets present) 
was made up of an easy target, a hard target, and 23 dis-
tractors. Then the matching easy single-target trial was 
made by converting the hard target into a low-salience 
distractor and the hard single-target trial was created by 
converting the easy target into a high-salience distractor. 
This matched display process was implemented in line 
with suggestions for properly examining the impact of 
multiple targets on visual search (Adamo et al., 2019).

Procedure
Participants were seated approximately 60  cm from a 
19-in LCD monitor without head restraint. The stimuli 
were presented with MATLAB Psychtoolbox (Kleiner 
et al., 2007). Participants used a computer mouse to click 
on found targets and pressed the spacebar when finished 
searching to advance to the next trial. To mimic the time 
pressures of real world searches, participants had a 15-s 
time limit per trial—this particular time limit was based 
on previous studies (Fleck et  al., 2010). Failure to com-
plete the search in the time allotted resulted in a timeout 
warning message. Targets found up to that point were 
counted as hits and participants then pressed the space-
bar to advance to the next trial. Participants started with 
12 practice trials, which consisted of a randomized pres-
entation of an equal number of each of the three types of 
trial (dual-target, easy single-target, and hard single-tar-
get) with feedback on hits, misses, and false alarms. Note, 
the practice trials were made up of the same distribution 
of trials as the experiment, so neither group experienced 
target-absent trials in the practice. Participants then 
completed 9 experimental blocks that each contained 
33 trials with no feedback on accuracy (only the timeout 
warning). Each block contained an equal number of each 
trial type (dual-target, easy single-target, hard single-tar-
get) amounting to 99 total trials of each type across the 
entire experiment. Displays from the matched triplets 
were distributed across the first, middle and last third 
of the blocks in a counterbalanced fashion (See Adamo 
et  al., 2019 for additional details). The dual-target trials 
played a key role in the procedural manipulation to gen-
erate different expectations across groups, but they were 
secondary for the planned analyses; the primary focus 
was on first target search performance.

Critical procedural manipulation of interest
The manipulation of interest in the current study was the 
pre-experiment instructions provided to the participants. 
The participants in the low-expectation group received 
the following instructions: “On each trial there will be up 
to 2 targets, meaning you will find 0, 1, or 2 targets.” The 
participants in the high-expectation condition received 
the following instructions: “On each trial there will be 1 
or 2 targets”. There were no other methodological differ-
ences between the two participant cohorts.

Statistical analyses
Unless otherwise noted, the comparisons of depend-
ent variables of interest across participant groups were 
carried out using two-sample t-tests. The measures of 
timeout rate, total search time, and false alarm were not 
normally distributed so the nonparametric Mann–Whit-
ney U test was used to compare groups. Chi-squared 
tests were used to compare the proportion of partici-
pants from each group who only missed single targets 
due to timeouts.

Support for the null hypothesis that there was no dif-
ference across the two groups for the accuracy measures 
on dual-target trials was assessed using a Bayes factor 
two-sample t-test using the JZS prior with the scale fac-
tor r set to 1 (as described by Rouder et al., 2009). Bayes 
factor analyses were also used to assess non-significant 
interaction effects in the analyses of instruction group by 
experimental block. This analysis was conducted using 
the Bayesian repeated measures ANOVA in JASP (van 
den Bergh et al., 2019) to compare the posterior probabil-
ity of a model with the main effects of group and block 
but no interaction term as the null hypothesis (H0) to the 
posterior probability of a full model with the main effects 
and the interaction term as the alternative hypothesis 
(H1). All Bayes factors (Bf01) are reported as the ratio of 
the posterior probabilities with the null hypothesis in the 
numerator, meaning larger numbers correspond to more 
support for the null hypothesis. Bayes factors greater 
than 3.2, meaning the null hypothesis is 3.2 times more 
likely than the alternative, are taken as “substantial evi-
dence” and Bayes factors greater than 10, meaning the 
null hypothesis is 10 times more likely than the alter-
native, are taken as “strong evidence” (Kass & Raftery, 
1995).

Results
The primary variables of interest were measures of accu-
racy (hit rate, false alarm rate) and response time (time to 
find first target, search termination time on miss trials), 
as well as timeout rate. The analyses focused on whether 
performance differed between the participant groups 
(low-expectation and high-expectation). To anticipate 
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the results, the simple one-sentence difference in the 
initial pre-experiment instructions led to multiple sig-
nificant differences that suggest the two groups differed 
in their quitting threshold and decision criterion for labe-
ling a stimulus a target, but the differences were specific 
to the single-target trials.

Timeout rates and search termination times
Evidence for a lower quitting threshold in the low-expec-
tation group compared to the high-expectation group 
can be seen via analyses of the timeouts and total search 
time. Participants were to terminate each trial by press-
ing the spacebar when they had either clicked on each 
target they found or decided to move on to the next trial. 
Participants were encouraged not to reach the 15-s time-
out limit by issuing a warning that they were too slow if 
the timeout limit was reached.

Analysis of the timeout rates by group provided sup-
port for an effect of the instructions manipulation on the 
quitting threshold. The nonparametric Mann–Whitney 
U test was used to compare groups because the time-
out rate data were not normally distributed. Consistent 
with a lower threshold for quitting, the low-expectation 
group had a significantly lower timeout rate than the 
high-expectation group for hard single-target trials (low-
expectation: mean = 4.72%, SD = 6.76%, high-expecta-
tion: mean = 11.99%, SD = 6.74%; Z = 4.95; p < 0.001) and 
easy single-target trials (low-expectation: mean = 2.46%, 
SD = 2.86%, high-expectation: mean = 4.35%, SD = 3.82%; 
Z = 2.73; p < 0.01), see Fig. 2a. However, there was no dif-
ference in timeout rates on dual-target trials (low-expec-
tation: mean = 1.35%, SD = 2.72%, high-expectation: 
mean = 1.17%, SD = 1.43%; Z = 1.23; p = 0.22).

Striking support for an effect of the instruction manip-
ulation on quitting thresholds came from comparing the 
proportion of participants who only missed targets due 
to timeouts using chi-squared tests. Specifically, this 
analysis looked at the rate of participants who never ter-
minated a trial prior to the 15-s limit without finding a 
target—their only missed targets came from trials in 
which they searched fruitlessly for 15  s, see Fig. 2b. On 
the hard single-target trials, 1/39 (2.56%) low-expecta-
tion participants only missed targets due to timeouts 
compared to a much larger proportion of 31/45 (68.89%) 
for the high-expectation group (χ2 = 38.97; p < 0.001). The 
same pattern held for the easy single-target trials, 2/39 
(5.13%) low-expectation participants only missed targets 
due to timeouts compared to 26/45 (57.78%) for the high-
expectation group (χ2 = 26.06; p < 0.001).

Lastly, total search time (time when the participants 
terminated the trial by pressing spacebar) was compared 
between the two participant groups. For this analy-
sis, trials that reached the 15-s timeout limit before the 
participants terminated the trial were included in the 
analyses with a value of 15  s since removing the time-
out trials would have removed many of the high-expec-
tation participants from the analysis who lacked misses 
that were not timeouts (see analysis of timeouts above). 
Note that truncating the total search time distribution 
by assigning timeouts with a value of exactly 15 s would 
work against the current hypotheses given that the high-
expectation group reached the timeout limit more often. 
Due to the boundary at 15  s, the total search time data 
were not normally distributed, therefore the nonpara-
metric Mann–Whitney U test was used to compare 
groups. Total search time for the low-expectation group 

a b c 

Fig. 2 Analysis of timeout rates and search termination times for the high-expectation (blue) and low-expectation (orange) groups. Reported 
p-values are from planned pairwise comparisons. All error bars depict the S.E.M. a Timeout rates for hard and easy single-target trials, p-values from 
Mann–Whitney U tests. b The proportion of participants in each group whose misses were entirely due to timeouts for hard and easy single-target 
trials, p-values from chi-squared tests. c Total search times on hard and easy single-target trials where the participants failed to find the target, 
p-values from Mann–Whitney U tests
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was significantly shorter on trials without successfully 
finding a target on both hard single-target trials (low-
expectation: mean = 9.43  s, SD = 2.12  s, high-expecta-
tion: mean = 13.74 s, SD = 2.40 s; Z = 6.34; p < 0.001) and 
easy single-target trials (low-expectation: mean = 9.60  s, 
SD = 2.15  s, high-expectation: mean = 13.35  s, 
SD = 2.70  s; Z = 5.41; p < 0.001; N.B., performance on 
easy single targets was very high—two participants from 
the high-expectation and one from the low-expectation 
group never missed an easy target and could not be 
included in this analysis), see Fig.  2c. In contrast, when 
a target was found on single-target trials, there was no 
significant difference in the total search time between the 
two groups for either the hard single-target trials (low-
expectation: mean = 9.56 s, SD = 1.61 s, high-expectation: 
mean = 9.03  s, SD = 1.58  s; Z =  − 1.27; p = 0.20) or the 
easy single-target trials (low-expectation: mean = 8.88  s, 
SD = 1.54 s, high-expectation: mean = 8.43 s, SD = 1.70 s; 
Z =  − 1.12; p = 0.26). No significant difference in time-to-
quit between groups once a target was detected indicates 
that instruction manipulation successfully set different 
expectations specifically for 0 vs 1 target, but not 1 versus 
2 targets.

Hit rate and response time
Table 1 provides accuracy and response time results and 
statistical tests comparing the two groups for each meas-
ure. For single-target trials, a 2 × 2 ANOVA on hit rate 
with factors of group (low- and high-expectation) and 
target difficulty (easy, hard) produced significant main 
effects of both factors and a significant interaction (main 
effect of group F(1,82) = 23.86, p < 0.001, ηp

2 = 0.225; 
target difficulty F(1,82) = 268.09, p < 0.001, ηp

2 = 0.766; 
group x difficulty interaction F(1,82) = 19.37, p < 0.001, 
ηp

2 = 0.191). As predicted the low-expectation group 
had a lower hit rate than the high-expectation group 
for both hard single-target trials (low-expectation: 
mean = 70.33%, SD = 11.67%, high-expectation: 
mean = 82.56%, SD = 9.87%; t(82) = 5.20; p < 0.001) and 
easy single-target trials (low-expectation: mean = 90.97%, 
SD = 7.02%, high-expectation: mean = 94.46%, 
SD = 4.56%; t(82) = 2.73; p < 0.01). Furthermore, as pre-
dicted, the effect of the instruction manipulation was 
greater for the hard targets, see Fig. 3a.

The 2 × 2 ANOVA on hit rate in the dual-target trials 
showed no significant main effect of group, no signifi-
cant interaction, and only a main effect of target difficulty 
(main effect of group F(1,82) = 0.15, p = 0.70, ηp

2 = 0.002; 
target difficulty F(1,82) = 261.64, p < 0.001, ηp

2 = 0.761; 
group × difficulty interaction F(1,82) = 0.11, p = 0.74, 

Table 1 Measures of search performance by group with statistical comparisons

Significant differences between groups are indicated in bold italics

Experimental measure Low-expectation group High-expectation group Statistical comparison

Total search time

Hard single-target misses 9.43 s (2.12 s) 13.74 s (2.40 s) Z = 6.34; p < 0.001
Easy single-target misses 9.60 s (2.15 s) 13.35 s (2.70 s) Z = 5.41; p < 0.001
Hard single-target hits 9.56 s (1.61 s) 9.03 s (1.58 s) Z =  − 1.27; p = 0.20

Easy single-target hits 8.88 s (1.54 s) 8.43 s (1.70 s) Z =  − 1.12; p = 0.26

Timeout rate

Hard single-target trials 4.72% (6.76%) 11.99% (6.74%) Z = 4.95; p < 0.001
Easy single-target trials 2.46% (2.86%) 4.35% (3.82%) Z = 2.73; p < 0.01
Dual-target trials 1.35% (2.72%) 1.17% (1.43%) Z = 1.23; p = 0.22

Hit rate

Hard single-target trials 70.33% (11.67%) 82.56% (9.87%) t(82) = 5.20; p < 0.001
Easy single-target trials 90.97% (7.02%) 94.46% (4.56%) t(82) = 2.73; p < 0.01
Hard (dual-target trials) 64.89% (12.95%) 64.85% (15.38%) t(82) =  − 0.10; p = 0.92

Easy (dual-target trials) 88.05% (7.16%) 86.80% (7.01%) t(82) =  − 0.81; p = 0.42

Dual-target: Both Hit 56.16% (14.23%) 53.09% (18.76%) t(82) =  − 0.84; p = 0.41

Hit response time

Hard single-target trials 5.40 s (0.84 s) 5.93 s (0.88 s) t(82) = 2.80; p < 0.01
Easy single-target trials 3.28 s (1.02 s) 3.43 s (1.15 s) t(82) = 0.64; p = 0.52

False alarm rate

Hard single-target trials 3.16% (6.46%) 5.84% (7.04%) Z = 2.78; p < 0.01
Easy single-target trials 2.88% (6.65%) 3.30% (4.34%) Z = 1.79; p = 0.07

Dual-target trials 2.31% (4.49%) 2.31% (3.04%) Z = 0.39; p = 0.70
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ηp
2 = 0.001). Bayes factor analyses on the lack of a dif-

ference in the hit rate on dual-target trials for the hard 
targets (B01 = 5.95) and easy targets (B01 = 4.41) found 
substantial evidence for the null hypothesis in both cases. 
This lack of a difference on dual-target trials suggests that 
the instruction manipulation sets differing expectations 
about the first to-be-found target, specifically, consistent 
with the instructions differing only in the possibility of 0 
target trials occuring.

For response time (time to click on the target) on single-
target trials, the 2 × 2 ANOVA produced significant main 
effects of group and target difficulty, but not a significant 
interaction (main effect of group F(1,82) = 4.31, p = 0.041, 
ηp

2 = 0.050; target difficulty F(1,82) = 276.541, p < 0.001, 
ηp

2 = 0.771; group × difficulty interaction F(1,82) = 1.82, 
p = 0.18, ηp

2 = 0.191) and a Bayes factor analysis compar-
ing models with  (H1) and without  (H0) the interaction 
term did not support either model (Bf01) = 1.96. Planned 
post hoc comparisons-revealed that the low-expectation 
group had significantly faster response times than high-
expectation group for the hard single targets (low-expec-
tation: mean = 5.40  s, SD = 0.84  s, high-expectation: 
mean = 5.93  s, SD = 0.88  s; t(82) = 2.80; p < 0.01), but 
did not significantly differ in response time on easy sin-
gle targets (low-expectation: mean = 3.28  s, SD = 1.02  s, 
high-expectation: mean = 3.43 s, SD = 1.15 s; t(82) = 0.64; 
p = 0.52), see Fig. 3b. Note that the significant difference 
in response times between the groups for the hard, but 
not the easy, targets should not be interpreted as a signif-
icant difference in the size of the effect of the instruction 

manipulation for hard vs. easy targets as the interaction 
term in the group by difficulty ANOVA (p = 0.18) was 
not significant and the Bayes factor for including the 
interaction was inconclusive (Bf01) = 1.96). Dual-target 
response time data in the current study were not particu-
larly informative since the response time for the second 
target was confounded by the motor response to the first 
target. As such, they are not discussed further.

Dual target accuracy and the subsequent search miss 
(SSM) effect
Previous research has demonstrated that searchers, 
both professionals and non-professionals, are signifi-
cantly worse at finding a target if they have already found 
another target in the same search array (e.g., Berbaum 
et al., 1990; Biggs & Mitroff, 2015; Fleck et al. 2010). The 
decreased ability to find a second target after finding a 
first was originally described in radiology and referred 
to as “satisfaction of search” (Smith, 1967), but has been 
more recently been referred to as the “subsequent search 
miss” (SSM) effect to reflect the multiple underlying cog-
nitive mechanisms at play (Adamo et  al., 2013). In the 
current study, there was no significant difference in dual-
target accuracy (defined as the percentage of dual-target 
trials where both targets where found) between groups 
(low-expectation: mean = 56.16%, SD = 14.23%, high-
expectation: mean = 53.09%, SD = 18.76%; t(82) =  − 0.84; 
p = 0.41) and a Bayes factor analysis found substantial 
evidence in favor of the null hypothesis (B01 = 4.31). 
However, measuring the SSM effect involves specifically 

a b 

Fig. 3 a Hit rate and b response time data and analyses for easy and hard single-target trials for the high-expectation (blue) and low-expectation 
(orange) groups. p-values are from planned comparisons across groups using two-sample t-tests. The error bars depict the S.E.M
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comparing accuracy for a second-target to a single-target 
accuracy baseline (a number of different metrics have 
recently been proposed for measuring the SSM effect, see 
Adamo et al., 2019; Becker et al., 2020). Therefore, despite 
the lack of a significant difference in dual-target accuracy, 
there was a significant difference in the measures of the 
SSM effect between groups using all of the metrics from 
both Adamo et al., 2019 and Becker et al. 2020. Critically, 
these differences were driven by the difference in the sin-
gle-target baseline, so reffering to them as true differences 
in the SSM effect is complicated (see discussion). For 
example, a metric comparing the dual-target accuracy 
to the expected dual-target accuracy derived from the 
single-target accuracies (the independence assumed met-
ric proposed in Adamo et al., 2019) showed a significant 
decrement for dual-target performance for both groups 
(i.e., both groups showed an SSM effect; low-expectation: 
mean = 8.22%, SD = 8.64%, t(38) = 5.94; p > 0.001; high-
expectation: mean = 25.16%, SD = 13.59%, t(44) = 12.42; 
p > 0.001), but that decrement was larger for the high-
expectation group (t(82) = 6.70; p > 0.001).

Stability of initial expectation effect
Repeated measures ANOVAs were conducted to exam-
ine the evolution of the significant instruction manipula-
tion effects reported above. The instruction manipulation 
groups served as a 2-level between-subject factor (low-
expectation, high-expectation) and the experimental 
blocks served as a 9-level within-subject factor (blocks 
1–9). The primary interest in these analyses were the 
interaction terms, as significant interactions would sug-
gest that the two groups were differentially affected 
by experience across the full experimental session 
while non-significant interactions would be consist-
ent with an initial difference between the groups being 

maintained across the full experiment. The ANOVA 
for the hard single-target hit rate showed a main effect 
of group (F(1,82) = 26.58; p < 0.001; ηp

2 = 0.245), but 
no main effect of block (F(8,656) = 1.49; p = 0.16; 
ηp

2 = 0.018) nor a significant interaction (F(8,656) = 1.46; 
p = 0.17; ηp

2 = 0.018), see Fig.  4a. The ANOVA for 
the easy single-target hit rate revealed main effects of 
group (F(1,82) = 7.36; p < 0.01; ηp

2 = 0.082) and block 
(Greenhouse–Geisser corrected; F(6.19,507.46) = 5.15; 
p < 0.001; ηp

2 = 0.059) but no significant interaction 
(Greenhouse–Geisser corrected; F(6.19,507.46) = 1.53; 
p = 0.17; ηp

2 = 0.018), see Fig.  4b. The ANOVA for the 
hard single-target response time showed a main effect of 
group (F(1,82) = 10.52; p < 0.005; ηp

2 = 0.114) and block 
(F(8,656) = 2.05; p < 0.05; ηp

2 = 0.024), but no significant 
interaction (F(8,656) = 0.86; p = 0.55; ηp

2 = 0.010), Fig. 4c. 
Follow up Bayes factor analyses were conducted for each 
dependent variable of interest comparing a model with 
only the main effects without the interaction term  (H0) to 
a full model including main effects and interactions (H1). 
The Bayes factors for each comparison provided strong 
evidence for the model without the interaction term 
(hard single-target hit rate: B01 = 16.68; easy single-target 
hit rate: B01 = 12.58; hard single-target response time: 
B01 = 89.44). Given there was no effect of the instruction 
manipulation on the easy single-target response time 
data, the effect was not examined by block.

The block x group analyses suggest that the instruc-
tion manipulation effects on single-target hit rate and 
response time were present from the beginning of the 
experiment and did not significantly decrease. That is, 
despite the fact that participant groups were run on 
the same underlying distribution of targets, their pre-
experiment expectations appear to have set the groups 
onto different trajectories that were not impacted by the 

a b c

Fig. 4 Analysis of the significant effects of high-expectation (blue) versus low-expectation (orange) on hit rate and response time as a function 
of experimental block to examine the evolution of the effect over time. The difference between groups was present at the beginning of the 
experiment and remained present over the course of the experiment for a easy single-target hit rate, b hard single-target hit rate, and c hard 
single-target response time. The group x block interaction effect was not significant for all three measures. Error bars depict the S.E.M
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true trial structure. Specifically, this is consistent with 
the hypothesis that the initial instructions set the par-
ticipants’ expectations about target prevalence, with the 
low-expectation group setting a lower quitting threshold 
and higher target-present decision criterion. Without 
feedback, this expectation was able to shape the experi-
enced target distribution creating a self-fulfilling proph-
ecy wherein the low-expectation group experienced 
fewer targets, and fewer hard targets in particular.

Item‑level false alarm rates
The above analyses established an effect of the simple 
instruction manipulation on search performance, but 
questions remain about the cause(s) of the effect. The 
prediction, illustrated in Fig.  1, was that the instruction 
manipulation would alter participants’ quitting thresh-
old, but it was possible that the participants’ decision 
criterion could have also been affected when evaluating 
each individual stimulus within a display (Wolfe & Van 
Wert, 2010). The current experiment did not include tar-
get-absent trials, which does not allow for assessing false 
alarms at the trial level and signal detection theory analy-
sis. However, the response mechanism did allow for an 
item-level analysis of false alarms; on each trial partici-
pants used the computer mouse to click on any item they 
felt was a target, which provided an assessment of false 
alarms as the rate at which they incorrectly identified dis-
tractors as targets.

Item-level false alarms were relatively infrequent 
(Table  1) and false alarm rates were not normally dis-
tributed across participants, necessitating the use of 
nonparametric statistical comparisons. The Mann–
Whitney U test was used to compute statistically sig-
nificant differences in false alarm rate between the 
low- and high-expectation groups across trials. There 
were significant differences between the low- and high-
expectation groups in the percentage of trials that con-
tained item-level false alarms for the hard single-target 
trials (low-expectation mean = 3.16%, SD = 6.46% vs. 
high-expectation mean = 5.84%, SD = 7.04%, Z = 2.78, 
p < 0.01) and a trend for easy single-target trials (low-
expectation mean = 2.88%, SD = 6.65% vs. high-expecta-
tion mean = 3.30%, SD = 4.34, Z = 1.79, p = 0.073). There 
was no significant difference for dual-target trials (low-
expectation mean = 2.31%, SD = 3.04% vs. high-expecta-
tion mean = 3.01%, SD = 4.49%, Z = 0.39, p = 0.70). These 
results suggest that in addition to a change in quitting 
threshold, the instruction manipulation might have also 
led to a shift in the decision criterion.

Discussion
In this study, two participant groups completed the same 
simple visual search task, but with one difference in their 
procedures—the “low-expectation” group was given ini-
tial instructions that suggested that there could be no-
target trials and the “high-expectation” group that was 
given initial instructions that suggested that all trials 
contained at least one target. This singular difference in 
the initial experimental instructions placed the partici-
pant groups on different trajectories from the start based 
on their pre-search expectations about the nature of the 
search environment (i.e., whether it would be typical or 
atypical to fail to find a target on a given trial).

The initial expectations in the absence of feedback cre-
ated completely different search experiences between 
the groups. Specifically, a significant change in quitting 
threshold, as well as a potential change in the target-pre-
sent decision criterion, made it so that the low-expecta-
tion group experienced a search environment in which 
targets were not always expected, hard-to-spot targets 
seemed to be more rare, and it was more sensible to quit 
a trial without having found any target. Without trial-
by-trial accuracy feedback, the difference in each group’s 
initial search expectations led to performance differences 
that remained across the experiment—regardless of the 
fact that the groups were doing the identical task.

Interestingly, the effect of the instruction manipula-
tion was specific to the single targets in the current study. 
While the high-expectation group was more accurate 
on single-target trials, this advantage did not translate 
to improved performance on dual-target trials. The lack 
of an effect on second-target search can most clearly be 
seen in the equivalent dual-target accuracies between 
groups. This change in single-target performance without 
a change in dual-target performance has implications for 
calculating and reasoning about SSM error rates. Given 
that measures of the SSM effect (or multiple target search 
difficulty in general) compare dual-target performance 
to a single-target baseline (Adamo et  al., 2019; Becker 
et al., 2020), the SSM metrics showed a larger effect for 
the high-expectation group than the low-expectation 
group despite no difference in the dual-target perfor-
mance. Whether or not this should be truly classified as 
an increase in the SSM effect is a potentially interesting 
point for debate for those interested in properly quanti-
fying SSM errors. This difference in the measured SSM 
effect driven by higher single-target performance for the 
high-expectation group is clearly a different scenario 
than if the difference in the SSM effect were due to lower 
dual-target performance for the low-expectation group. 
Since the SSM effect is theoretically meant to represent 
a decrement in second-target performance caused by 
the finding of a first target, it, arguably, does not seem 
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appropriate to classify the current results as an increase 
in the SSM effect given the equivalent dual-target 
performance.

A potential limitation of the current finding is that 
the instruction manipulation could have operated in 
a categorical fashion; it is possible that the participants 
were either expecting no-target trials (high-expectation 
group) or not (low-expectation group). As such, it is an 
open question how the findings would extend to a situa-
tion where the expectations were manipulated in a more 
graded fashion. For example, it would be interesting to 
examine the current instruction manipulation when 
there were no-target trials actually present. Likewise, 
it would be possible to set the expectations as a higher 
vs. lower probability of no-target trials rather than all-
or-none. Experiments exploring these conditions were 
underway, but data collection was interrupted by the 
Covid-19 pandemic. Preliminary data with no-target tri-
als present and the 0, 1, or 2 instruction and no feedback 
indicated there might be a continuum of expectation 
based on the distribution of targets found rather than 
the true underlying distribution in line with the current 
results and predictions. Further interesting extensions of 
these findings could involve manipulating time pressure 
by changing or removing the time limit, by instantiating a 
reward structure for speed, or by punishing participants 
for timeouts.

While the current study demonstrated significant dif-
ferences in performance based on initial expectations, 
not every search setting will be equally susceptible. There 
are a wide variety of professional, and non-professional, 
settings that involve visual search, and each has its own 
set of particular circumstances. For example, if a search 
is easy enough that, despite any initial expectation dif-
ferences, target accuracy is near perfect, then initial dif-
ferences in expectations would not lead to a difference in 
experience of the underlying target distribution, and any 
initial differences in search times would likely dissipate 
over time. However, many critical professional searches 
are quite difficult with imperfect accuracy (e.g., Pinto & 
Brunese, 2010), suggesting this would not be a mitigating 
factor in many cases.

Overall, the current results are rather straightfor-
ward—in the absence of corrective feedback, searchers 
will experience a self-fulfilling prophecy wherein their 
own expectations actually mold their experiences. More 
broadly though, this project is a stark reminder of the 
importance of subtle differences of instruction word-
ing. A single sentence difference in the initial instruc-
tions led to different expectations, which, in turn, led 
to significantly different search behavior. This has clear 
implications for research efforts, emphasizing the need 

to carefully and intentionally determine the instructions 
for each experiment as a seemingly subtle change could 
produce wildly different outcomes. Importantly, such 
meaningful differences from a single wording change in 
instructions also highlights the complex nature of repli-
cations from one lab to another (Open Science Collabo-
ration, 2015).

Beyond the lab, the current results have implications 
for professional search scenarios that cannot provide 
immediate case-by-case accuracy feedback. In such 
environments, It is important to consider professional 
searchers’ incoming expectations when they are not pro-
vided with real-time feedback, as their expectations can 
guide their self-chosen quitting threshold and decision 
criterion. Moreover, care must be taken when requiring 
a professional searcher to move from one search scenario 
to another, because it may not be trivial to instantane-
ously update internal expectations and to set appropri-
ate search parameters. For example, radiologists may be 
provided with patient history, which can create different 
expectations that result in changes in detection accu-
racy (e.g., Carney et al., 2012). In routine mammography 
exams, only 0.5% of the cases will have cancer present 
(Breast Cancer Surveillance Consortium, 2009), however 
if the patient has the BRCA1 or BRCA2 genetic muta-
tion (colloquially referred to as the “breast cancer gene”), 
there is a 82% chance of developing cancer during their 
lifetime (King et al., 2003). These are dramatically differ-
ent expected prevalence situations, which can impact the 
radiologist’s expectations going into the read.

Another implication of the current work for profes-
sional searches stems from the fact that while the two 
participant groups differed in their expectation based 
on the initial instructions, one was actually accurate as 
there was in fact a target on every trial. This highlights 
the point that with appropriate information about the 
nature of the environment, searchers’ expectations can 
potentially have a beneficial effect. That is, if search-
ers have accurately set their expectations, they can per-
form well in their particular environment even in the 
absence of case-by-case feedback. However, to provide 
the searchers with accurate information, each profes-
sional search industry needs to have “ground truth” infor-
mation about their particular setting. The more that is 
known about the rate and nature of potential targets, the 
better that training efforts can be designed to empower 
the workforce to be efficient and effective. Industries may 
be well-served to do a self-study to determine the ground 
truth for their particular environment and then use this 
knowledge to make the best attempt at setting appropri-
ate expectations.
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