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Perceptual learning in the identification of
lung cancer in chest radiographs
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Abstract

Extensive research has shown that practice yields highly specific perceptual learning of simple visual properties
such as orientation and contrast. Does this same learning characterize more complex perceptual skills? Here we
investigated perceptual learning of complex medical images. Novices underwent training over four sessions to
discriminate which of two chest radiographs contained a tumor and to indicate the location of the tumor. In
training, one group received six repetitions of 30 normal/abnormal images, the other three repetitions of 60
normal/abnormal images. Groups were then tested on trained and novel images. To assess the nature of
perceptual learning, test items were presented in three formats – the full image, the cutout of the tumor, or the
background only. Performance improved across training sessions, and notably, the improvement transferred to the
classification of novel images. Training with more repetitions on fewer images yielded comparable transfer to
training with fewer repetitions on more images. Little transfer to novel images occurred when tested with just the
cutout of the cancer region or just the background, but a larger cutout that included both the cancer region and
some surrounding regions yielded good transfer. Perceptual learning contributes to the acquisition of expertise in
cancer image perception.

Significance
We explored how people learned to detect tumors on can-
cer images. Novices classified chest radiographs over four
sessions. Unlike perceptual learning of simple visual fea-
tures, learning of complex features in chest radiographs
supported classification of novel images. Transfer to novel
images depended on the presentation of both the tumor
and some of its surrounding regions; little transfer was ob-
served when tested with just the cutout of the tumor or
just the background. These results clarify the nature of
perceptual learning of complex radiological images and
may provide conceptual underpinning for future innova-
tive technologies that enhance cancer image perception.

Introduction
The human brain retains remarkable plasticity well into
adulthood. Aptly illustrating this plasticity are extensive
psychophysical and neuroscience studies on perceptual
learning (Fahle, 2005; Gilbert, Sigman, & Crist, 2001; Li,
Piëch, & Gilbert, 2004). These studies show that practice

on simple stimuli such as Gabor patches or moving dots
lead to improved orientation, contrast, or motion sensi-
tivity. Such improvement is often specific to the orienta-
tion or location of the stimuli, suggesting that early
visual areas such as V1 maintain neural plasticity in
adults (Fahle, 2005; but see Xiao et al., 2008). Perceptual
learning is not limited to simple stimuli or early visual
areas. People can acquire expertise in complex domains,
such as in chess and medicine (Charness, Tuffiash,
Krampe, Reingold, & Vasyukova, 2005; Cimino, 1999;
Ericsson, 2015; Gobet & Simon, 1996). Extensive experi-
ence, often over many years, produces domain-specific
expertise (Campitelli & Gobet, 2008). Less understood is
the nature of perceptual learning of complex stimuli that
occurs after several hours of training. This duration is
typical of perceptual learning of simple visual features
but much too brief to produce expertise in more com-
plex domains. Here we examine whether moderate train-
ing on complex images yields specific improvements for
just the trained images, or whether training can produce
generalizable effects that extend to novel images. Under-
standing the nature of perceptual learning of complex im-
ages may bridge the gap between perceptual learning of
simple features and the development of complex expertise.
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It may also yield practical insights into the training of pro-
fessionals, such as medical students as they acquire initial
perceptual skills in reading radiological images.
The experiments reported here focus on perceptual

learning of chest radiographs typical of those used in
diagnosing cancerous lung tumors. These images are not
only an important class of complex stimuli on which
experts have spent long periods of training, but they are
also inherently difficult to process. The diversity of
medical images (e.g., 2D versus volumetric images;
Williams & Drew, 2019) also makes it difficult to estab-
lish a uniform training procedure. Some fields, such as
the identification of skin cancer, emphasize a checklist
of properties based on known signs of disease (Meyer
et al., 1996). Other fields emphasize the development of
perceptual pattern templates that support the recogni-
tion of normal and abnormal images (van der Gijp et al.,
2014). Perceptual learning can also complement concep-
tual knowledge, such as in the identification of melan-
oma (Xu, Rourke, Robinson, & Tanaka, 2016).
Perceptual learning may be particularly important for

accurate reading of radiological images. On radiographic
images, lung cancer or breast cancer often presents as a
slight change from the appearance of normal tissues and
is embedded in a much larger image of the lung or the
breast. Recognition of cancer on chest radiographs or
mammograms entails visual search and perceptual seg-
mentation (Drew, Evans, Võ, Jacobson, & Wolfe, 2013;
Krupinski, 2010). Search consists of two interactive pro-
cesses (Drew et al., 2013; Kundel, Nodine, Conant, &
Weinstein, 2007). The first is global image analysis,
which extracts overall characteristics of the image, much
as the analysis of the gist of a natural scene. This is
followed by detailed image scanning involving a se-
quence of fixations and attentional shifts (Wolfe, Võ,
Evans, & Greene, 2011). Evidence suggests that global
image analysis can support above-chance classification
of mammograms. Expert mammographers were shown
to be able to classify an image as normal or abnormal
after viewing it for just 250ms, even though the experts
could not reliably localize the tumor (Drew et al., 2013;
Evans, Haygood, Cooper, Culpan, & Wolfe, 2016; Nodine
et al., 1999). Experts can also classify a breast image as ab-
normal even when the lesion region is removed, or when
viewing a normal breast contralateral to the cancerous
one (Evans et al., 2016). These findings suggest that sur-
rounding regions contain signals that are correlated with
the presence of tumors. Apparently, both initial global
analysis and subsequent search and segmentation
phases of visual search contribute to the detection of
cancerous tumors.
Two studies demonstrate that perceptual training en-

hances cancer detection on radiological images. Sowden,
Davies, and Roling (2000) trained participants three

times a day, over 4 days, using 60 mammograms. Half of
the participants viewed the images in positive contrast
and the other half viewed the images in negative con-
trast. They clicked on the region that contained a micro-
calcification cluster and received feedback on their
localization accuracy. Performance improved over the
four training days. On the 5th day, participants viewed
the same 60 mammograms, but this time in the opposite
contrast to that used in training. Performance on the 5th
day was better than on the 1st day, but worse than on
the 4th day, suggesting that learning was partially
retained when the images reversed polarity. It is unclear
whether perceptual learning was specific to the trained
images, because this study did not test novel images.
Transfer to novel images was demonstrated in a sec-

ond study of pelvic radiographs. This study trained nov-
ices to identify bone fractures on pelvis radiographs
(Chen, HolcDorf, McCusker, Gaillard, & Howe, 2017).
Participants viewed one image at a time and made a
fracture “present/absent” response. Following an incor-
rect response, the computer marked out the location of
the fracture. A series of six experiments varied the num-
ber of training images and difficulty. Increasing the
number of images used in training yielded greater trans-
fer to novel images, suggesting that high variability in
the training set facilitates learning (Mettler & Kellman,
2014). Two factors, however, limit the generalizability of
this conclusion to perceptual learning of other radio-
logical images. First, in Chen et al. (2017), novices per-
formed at above-chance levels before receiving training.
This suggests that bone fractures may be relatively easy
to discern. Second, after just several hundred training
trials, the top five novices achieved ~ 90% accuracy, a
level comparable to that of board-certified radiologists.
In contrast, other radiological tasks require several years
of training to achieve the level of an expert (Krupinski,
2010; Myles-Worsley, Johnston, & Simons, 1988; Nodine
et al., 1999). Thus, it is unclear whether the effectiveness
of perceptual learning observed with bone fracture im-
ages also generalizes to other, more difficult diagnostic
images.
The current study elucidates the nature of perceptual

learning using chest radiographs that may contain evi-
dence of lung cancer. The target signal - a cancerous
tumor in the lung - is characterized as a mass rather
than calcification. We chose radiographs of the lung be-
cause of their clinical significance and because the stim-
uli are difficult for untrained observers to discern. In
fact, before training, participants in our study were at
the level of chance in classifying an image as normal or
abnormal. Even after 4 days of training, their perform-
ance was far below the ceiling level. The use of complex
radiological images allowed us to examine the specificity
of perceptual learning in a difficult task. This study
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bridges the gap between perceptual learning of simple
features that arises after a few sessions, and complex
expertise that requires several years of training.
The three aims of this study support the science of per-

ceptual learning by examining the scope of learning with
respect to complexity, as well as the underlying nature
and constraints of the learning. First, we tested whether
perceptual learning of chest radiographs could induce
transferrable effects to novel images. Because exposure to
both normal and abnormal images is important for devel-
oping pattern recognition (van der Gijp et al., 2014), we
trained participants with pairs of images (see also Sunday,
Donnelly, & Gauthier, 2017), a normal and an abnormal
image, and asked participants to select the abnormal
image and localize the tumor. To direct participants’ at-
tention to the tumor properties, we provided feedback on
which image was abnormal and where the tumor was.
Training participants by forcing them to choose which of
two images contains cancer is not representative of how
radiologists diagnose images in the clinic. However, the
task facilitated perceptual comparison (Krupinski, 2010)
and its use was restricted to the training phase.
To examine whether training produced transferrable

effects, we administered testing sessions that included
both trained and untrained images. Images were pre-
sented one at a time in the testing sessions, requiring
the participants to report whether the image was normal
or abnormal. This task was more similar to actual radio-
logical tasks and served to assess training effectiveness.
Relative to the pre-training baseline, improvements on
untrained images following training would suggest that
training has yielded transferrable effects.
The second goal of this study was to examine the roles of

image repetition and image diversity. More repetitions of
the same images in training could bootstrap learning by re-
peating critical image statistics that characterize cancer
(Werker & Yeung, 2005). If these statistics are shared with
untrained images, bootstrapping based on repeatedly learn-
ing the same images will facilitate cancer detection on un-
trained images. On the other hand, increasing the number
of different training images may enhance learning by fine-
tuning discrimination to features corresponding to the vari-
ability in normal and abnormal tissues. Consistent with this
possibility, Chen et al.’s (2017) study on bone fractures
found that performance improved with an increasing num-
ber of different training images. To evaluate if this pattern
also applies to the learning of chest radiographs, we admin-
istered two training schedules in separate groups of partici-
pants. The 30-image group was trained with 30 normal and
30 cancerous images, whereas the 60-image group was
trained with 60 normal and 60 cancerous images. The total
number of training trials was the same for the two groups,
allowing us to test how image repetition and image variabil-
ity influence perceptual learning.

The third goal of this study was to investigate whether
learning was part-based or holistic. To this end, partici-
pants were tested with the full image, a cutout contain-
ing only the tumor, or the background after the tumor
region has been cut out. Part-based tests are often used
to probe whether perception is holistic (Tanaka & Simo-
nyi, 2016). In face perception, for example, participants
are worse at judging whether two noses are identical if
the noses are displayed in isolation rather than in the
context of a face. In contrast, house recognition is part-
based (Tanaka & Farah, 1993). Several studies on medical
image perception suggest that cancer detection depends,
in part, on the global image statistics. As noted earlier, ra-
diologists can rapidly extract the global image statistics to
render an initial decision on whether a mammogram may
be cancerous (Evans et al., 2016; Evans, Georgian-Smith,
Tambouret, Birdwell, & Wolfe, 2013; Nodine et al., 1999).
Additionally, presenting mammograms in an inverted
orientation impairs radiologists’ performance, suggesting
that breast cancer detection is holistic (Chin, Evans,
Wolfe, Bowen, & Tanaka, 2018). If perceptual learning of
chest radiographs also involves the learning of global
image statistics, then performance should decline when
just the tumor cutout or just the background is presented.
Alternatively, lung cancer detection may rely on identi-

fying local tumor properties. Local properties may take
two forms. First, the tumor itself may contain characteris-
tic properties that distinguish it from normal tissue. If this
is the case, then participants should be able to discrimin-
ate tumor cutouts from normal cutouts. Second, the local
contrast between the tumor and its immediately sur-
rounding region may be a key signal for lung cancer de-
tection. Radiologists rely on a comparison between the
tumor and other regions to detect changes that may signal
the presence of a tumor (Carmody, Nodine, & Kundel,
1981). If the local contrast is important, then a larger cut-
out that encompasses both the tumor and some surround-
ing tissue will be needed for cancer detection.
We conducted three experiments to address these goals.

In experiment 1, we trained participants across four con-
secutive days using either 30 or 60 normal/cancerous im-
ages. Testing occurred after each training day and included
both trained and untrained images, in one of three formats
(full image, tumor only, or background only). This experi-
ment aimed to establish an effective training procedure,
clarify the roles of image repetition/variability, and provide
initial findings on the local/global nature of learning. Ex-
periment 2 further elucidated the nature of learning by
including a larger cutout that encompassed the tumor and
immediately surrounding region. Experiment 3 was a repli-
cation of the key findings with a larger sample. Together,
these experiments provide valuable information on how
perceptual learning could be incorporated into efficient
training schedules.
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Method
Participants
A total of 60 healthy adults participated in three experi-
ments. There were 14 men and 46 women with a mean age
of 20.6 years (range 18–32 years). All participants had nor-
mal or corrected-to-normal visual acuity and were naïve to
the purpose of the study. Participants signed an informed
consent form and were compensated for their time.
Sample sizes were predetermined (12 participants in

each of experiments 1A, 1B, and 2, and 24 participants in
experiment 3) to be comparable to typical sample sizes in
previous perceptual learning studies.1 To further increase
statistical power, where justifiable, data from different ex-
periments involving the same conditions were pooled.
Combining data across experiments is warranted because
participants were tested in the same conditions, and there
were no direct comparisons across experiments. Table 1
lists the sample size and the training and testing schedules
and formats for each experiment.

Materials and stimuli
Participants were tested individually in a room with nor-
mal interior lighting. The stimuli were presented on a 21″
iMac monitor (1920 × 1080 pixels) using MATLAB and
Psychtoolbox (Kleiner, Brainard, & Pelli, 2007). The un-
constrained viewing distance was approximately 40 cm.
Chest radiographs were obtained from the Japanese Soci-

ety of Radiological Technology Database (Shiraishi et al.,
2000), accessible at http://db.jsrt.or.jp/eng.php. The entire
database contains 154 cancerous images and 93 normal im-
ages. The database provides the following information about
each cancerous image: the location of the tumor, tumor size,
and tumor subtlety on a scale from 1 (most subtle) to 5
(most obvious). Each image is originally 2048 × 2048 pixels
in size. In the original images, tumors range from 6 to 60
pixels (1.05–10.5mm) in diameter, with a mean of 18.4
pixels (3.2mm). Some images contained a patient label in
the upper left or upper right region that we edited out.
In our study, we included 80 cancerous images with a

single tumor and 80 normal images without any tumors.
The images were adapted to 614 × 614 pixels (training
sessions) and 768 × 768 pixels (testing sessions) in size.2

All images underwent the same editing process to elim-
inate patient labels.
To create tumor cutouts used in the testing sessions, we

cut out a square region based on the location and size of
the tumor provided by the database. The small cutout was
a square region with a side length equal to the diameter of
the tumor on that image. Because the tumors varied in size,
the cutout also varied in size. The remaining image consti-
tuted the “background.” The larger cutout that included
both the tumor and the immediately surrounding region
was a square region with a side length of twice the diameter
of tumor on the image. To ensure that the cancerous and
normal images had comparable cutouts in terms of location
and size, for each cancerous cutout, a square region of the
same size and in the same location was cut out from a
normal image. The cutouts were only used in the testing
sessions, in which one image was presented at a time.

Experiment 1: training sessions
Participants were trained on four sessions across four con-
secutive days. Participants were randomly assigned to re-
ceive one of the two training schedules. In the 30-image
training group (experiment 1A), stimuli for training con-
tained 30 cancerous and 30 normal images randomly se-
lected from the database. In the 60-image training group
(experiment 1B), training was done with 60 cancerous and
60 normal images randomly selected from the database.
Attempts were made to counterbalance images used in
training and testing across participants. For example, if
images 1–30 were in the training and images 31–60 were
in the testing sessions for one participant, then a second
participant would undergo training with images 31–60
and testing with images 1–30. The images were selected
such that the distribution of tumor subtlety among images
used in the training and testing sessions were representa-
tive of the tumor subtlety distribution of the entire image
set.
At the beginning of each training session, we randomly

paired a cancerous and a normal image for use in a spe-
cific trial. On each trial, cancerous and normal images
were presented side by side, with the left-right position

1Sample sizes were in the range of 4–8 in the studies of Censor and
Sagi (2009), Dosher, Han and Lu (2010), and Yu, Klein, and Levi
(2004) on perceptual learning of texture, orientation, or contrast
discrimination. The sample size in a study that trained participants on
more complex stimuli (“greebles”) was 12 (Gauthier, Williams, Tarr, &
Tanaka, 1998).

Table 1 An overview of conditions administered in experiments
1–3

Experiment Number Training
(4 sessions)

Testing format Testing
sessions

1A 12 30-image ×
6 reps/sess.

Intact, small cutout,
background

Pretest, 4
post-tests

1B 12 60-image ×
3 reps/sess.

Intact, small cutout,
background

Pretest, 4
post-tests

2 12 60-image ×
3 reps/sess.

Intact, small cutout,
large cutout

Pretest, 4
post-tests

3 24 30-image ×
6 reps/sess.

Intact, small cutout,
background

Pretest, 1
final post-test

reps/sess. repetitions per session

2The image size differed between training and testing because the tasks
involved a different number of images per display. The training task
presented two images side by side, limiting the size of each image that
could be displayed. The classification task used in testing presented a
single image in the center, allowing for a larger presentation. Images
also differed in location - lateralized in training and at the center in
testing.
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counterbalanced across trials. Participants first classified
the images by clicking on the one that they thought
contained a tumor. Upon their response, a red frame
highlighted the actual tumor image to provide feedback.
Participants then localized the tumor by clicking on where
they thought the tumor was on the cancerous image.
Once they responded, a small red outline frame of the
same size as the tumor highlighted the actual tumor loca-
tion. Each pair of images was presented three times in the
60-image training group, and six times in the 30-image
training group, giving a total of 180 trials per training ses-
sion. The pairing was consistent within a training session.
The images were re-paired at the beginning of each ses-
sion, meaning that the pairing changed on subsequent
days. Figure 1 (Top) illustrates the training procedure.

Experiment 1: testing sessions
A pre-test and four post-test sessions were administered
(Fig. 2). In each testing session, participants viewed one
image at a time and pressed a button to indicate whether
it came from a patient with cancer (“y” key) or not (“n”
key). They did not receive any feedback about the accur-
acy of the response.
Each testing session comprised a factorial design of

three factors, namely training history (trained versus un-
trained images), disease status (normal versus abnormal
images), and image format (intact, cutout, or back-
ground). The inclusion of three formats allowed us to
examine whether cancer detection depended on local

tumor properties or signals that extend beyond the tumor
region. The test image could be displayed in its entirety
(intact), or it may include just the region containing the
tumor (cutout), or the remaining region (background).
There was a total of five testing sessions: a pre-test be-

fore the day-1 training, and four post-tests, one after each
day of training (Fig. 2). Each testing session contained 180
trials, and was based on 15 normal and 15 abnormal im-
ages randomly drawn from the trained set and 15 normal
and 15 abnormal images randomly drawn from the un-
trained set. Because the image database contained a total
of 80 normal and 80 abnormal images, some untrained
images were presented more than once across the five
testing sessions. On average, participants in experiment
1A (30-image training schedule) saw a specific untrained
image 1.5 times in testing, and participants in experiment

Fig. 1 Sample stimuli used in this study. Images were reproduced from the Japanese Society of Radiological Technology Database (Shiraishi et al.,
2000). Top: in the training sessions, a pair of normal and abnormal images were presented. Participants clicked on the image that was abnormal.
Following their response, a red frame indicated which image was abnormal. Participants then clicked on where they thought the tumor was. This
was followed by a feedback screen that indicated the location of the tumor. Bottom: three formats used in the testing sessions

Fig. 2 The training and testing schedule used in experiments 1A, 1B,
and 2. Participants in experiment 3 completed only two of the five
testing sessions - a pre-test on day 1 and a final post-test on day 4
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1B (60-image training schedule) saw a specific untrained
image 3.75 times in testing.

Experiment 2
This experiment was a partial replication of experiment 1B
using the same 60-image training schedule. In the testing
phase, we replaced the background-only format with a larger
cutout. Specifically, to retain more of the contrast between
the tumor and the background, the test image could be pre-
sented in full, or it may be a small cutout of the region con-
taining the tumor, or a large cutout of the tumor including a
region four times as large as the tumor (i.e., the side length
of the cutout was twice the diameter of the tumor).

Experiment 3
This experiment was a partial replication of experiment
1A using the same 30-image training schedule. We made
two changes. First, the sample size in experiment 3 was
twice as large as in experiment 1A. Second, to eliminate
the repetition of untrained images in the testing sessions,
in experiment 3 the number of testing sessions was re-
duced to two - a pre-test immediately before day-1 train-
ing and a final post-test immediately after day-4 training.
Each testing session included 25 normal and 25 abnormal
images from the trained set and 25 normal and 25 abnor-
mal images from the untrained set. Each image was
displayed in one of three formats (full, small cutout, or
background), giving a total of 300 trials per testing session.
Pre-test and post-test were based on entirely different un-
trained images. Table 1 summarizes the training schedule
and testing conditions across experiments.

Results
Training
We first examined how performance changed across
the four training sessions. Of the 60 participants, 36

(experiments 1A and 3) followed the 30-image training
schedule, and 24 (experiments 1B and 2) followed the 60-
image training schedule. As shown in Fig. 3, both the 30-
image and 60-image training groups improved with train-
ing. In the image classification task (which image is abnor-
mal?), analysis of variance (ANOVA) of the training
condition (30-image versus 60-image) and training session
(1–4) revealed a significant main effect of session, showing
improvement across training sessions, F(3, 174) = 108.89,
p < .001, ηp

2 = .65. There was no effect of training sched-
ule, F < 1, and the interaction between training schedule
and session was not significant, F(3, 174) = 2.26, p = .084,
ηp

2 = .037. In the tumor localization task, performance
also improved across training sessions, F(3, 174) = 269.34,
p < .001, ηp

2 = .82 for the main effect of session. The main
effect of training schedule was not significant, F < 1, quali-
fied by an interaction between session and training condi-
tion, F(3, 174) = 5.30, p < .002, ηp

2 = .084. Thus, both
groups improved with training, with evidence of greater
improvement in the 30-image group. Although this latter
finding was intuitive, results could have differed if the im-
ages were not learnable, or if learning had saturated after
a small number of repetitions.
Although all chest radiographs had similar anatomic

structures, the images contained idiosyncratic properties,
such as a slightly darker rib cage on one image or an
obvious asymmetry between the left and the right sides
on another. Did participants simply remember incidental
properties of specific images, or did they learn to
recognize tumors on the trained images? To address this
question, we examined training performance for tumor
images of different subtlety levels. The database gave a
rating of 1 to images with the most subtle tumor, up to
a rating of 5 to images with the most obvious tumor. If
participants simply remembered incidental properties
associated with a specific normal or abnormal image,

Fig. 3 Accuracy across four sessions of training. Left: image classification (which image is abnormal?). Right: tumor localization. Data from the 30-
image training schedule came from 36 participants (12 from experiment 1A and 24 from experiment 3). Data from the 60-image training
schedule came from 24 participants (12 each in experiments 1B and 2). Error bars show +/− 1 S.E. of the mean
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performance should be insensitive to the subtlety of the
tumor. But if they learned to recognize a tumor on the
trained images, then performance should be higher for
images containing a more obvious tumor. On average,
the proportion of images having subtlety ratings of 1
through 5 was 7.50%, 13.75%, 37.50%, 32.50%, and
8.75%, respectively. Given the small number of stimuli
per subtlety level, this analysis combined data from all
60 participants.
As shown in Fig. 4, training performance was a

monotonic function of tumor subtlety. Image classifi-
cation was better in later training sessions, F(3, 177) =
69.38, p < .001, ηp

2 = .54, and for images containing
more obvious tumors, F(4, 236) = 151.66, p < .001,
ηp

2 = .72. The two factors did not interact, F(12,
708) = 1.32, p = .20. Similarly, tumor localization was
better in later sessions, F(3, 177) = 223.06, p < .001,
ηp

2 = .79, and for images containing more obvious
tumors, F(4, 236) = 407.92, p < .001, ηp

2 = .87. The two
factors interacted, F(12, 708) = 13.82, p < .001, ηp

2 = .19,
with greater training effects for images with intermedi-
ate subtlety levels than for images at the extreme ends.
This could be due to a ceiling or floor effect. That per-
formance systematically varied across tumor subtlety
levels indicates that participants learned to detect
tumors on the trained images.

Testing
The inclusion of untrained images and parts of an image
in the testing sessions allowed us to investigate the
transfer of learning. The experiments tested several
image formats, including a small cutout, a larger cutout,
or the background regions without the tumor (Table 1).
In the following report, we first examined the transfer to
untrained images presented in an intact format. A sec-
ond analysis focused on transfer to parts of an image.

Because the testing sessions used a yes/no tumor classifi-
cation task, we calculated d’ as an index of sensitivity
(Macmillan & Creelman, 2005). The Appendix contains
information about response criterion.

Testing with images in an intact format
All participants were tested with trained and un-
trained images in an intact format (Table 2). Across
all participants, d’ did not differ significantly from 0
in the pre-test session, t(59) = 0.24, p = .82. Thus, un-
like bone fracture (Chen et al., 2017), lung cancer
could not be identified reliably before training.
Table 2 shows the mean d’ in each testing session

of each experiment and p values comparing the pre-
test with the final post-test. Owing to the relatively
small number of trials per condition, there was con-
siderable variability in the d’ data. Nonetheless, in all
cases, d’ improved from the pre-test to post-test for
both trained and untrained images. Notably, this find-
ing was observed even when the untrained images oc-
curred only once, as in experiment 3. These data
provide compelling evidence that perceptual learning
of chest radiographs depicting lung cancer transfers
to untrained images.
How did training schedule - 30-image versus 60-image -

influence the degree of image-specific versus generalizable
learning? Figure 5 (left) shows that when tested with in-
tact trained images, participants in the 30-image group
(N = 36) improved more than participants in the 60-
image group (N = 24). The main effect of testing session
was significant, F(1, 58) = 69.03, p < .001, ηp

2 = .54,
qualified by a significant interaction between group and
testing session, F(1, 58) = 13.23, p < .001, ηp

2 = .19. In
contrast, when tested with intact untrained images
(Fig. 5, right), the two groups had comparable gains.
Performance improved from pre-test to the final post-
test, F(1, 58) = 58.11, p < .001, ηp

2 = .50, and this effect

Fig. 4 Training performance for displays containing tumors of different subtlety levels. Level 1 is the most subtle, and level 5 is the most obvious.
Data were the average of all 60 participants
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did not interact with group, F < 1. Thus, training with
fewer images but greater repetition yielded better learn-
ing of the trained images, but the degree of transfer to
untrained images was comparable between the 30-
image and 60-image groups.
Although participants showed clear evidence of trans-

fer to untrained images as a whole, we found no evi-
dence of generalized learning for the most subtle tumor.
At the final post-test, the hit rate for untrained tumor
images across all 60 participants was 41%, 49%, 54%,
60%, and 66%, for tumors ranging from the most subtle
to the most obvious. The false alarm rate on normal im-
ages was 41%. Pairwise comparisons showed significantly
more hits than false alarms for tumors at levels 2–5
(p < .005 for all), but the hit rate for the most subtle
tumor was no higher than the false alarm rate (p = .92).
Four days of training was insufficient to yield significant
learning of the most subtle tumors, revealing a potential
limitation of the current training approach.

Testing with tumor cutouts
Did participants learn local properties associated with tu-
mors, or did they rely on global image information? Here

we examined classification accuracy for tumor cutouts
and the background. All 60 participants were tested with a
small cutout that was a square region encompassing the
tumor. As was the case with intact images, pre-test per-
formance on small cutouts did not differ from chance,
t(59) = 0.87, p = .39.
As shown in Table 3, improvements from pre-test to

the final post-test were inconsistent across experiments,
with few statistically significant effects. When data were
pooled across all 60 participants, we did observe a signifi-
cant improvement (Fig. 6, left). ANOVA of image novelty
(trained or untrained) and testing session (pre-test or the
final post-test) revealed just a significant main effect of
session, F(1, 59) = 10.93, p < .002, ηp

2 = .16, and no effect
of image novelty, F < 1, or their interaction, F < 1.
What about the larger tumor cutout encompassing a

region four times as large as the tumor itself? This
stimulus, tested in experiment 2, contains contrast
information between the tumor and the surrounding
regions but does not contain additional background in-
formation. The 12 participants tested with a large tumor
cutout evidenced improvements for both trained and
untrained images. As seen in Fig. 6 (middle), d’

Table 2 Mean d’ for intact images used in the testing sessions

Experiment and training schedule Testing image Pre-test Post-test 1 Post-test 2 Post-test 3 Final test Pre-test vs. final test

1A (N = 12)
30-image

Trained −0.04 0.67 0.64 0.95 1.58 P < .001

Untrained −0.10 0.40 0.22 0.68 0.88 P < .002

1B (N = 12)
60-image

Trained 0.30 0.76 0.96 0.86 0.88 P < .001

Untrained −0.03 0.47 0.88 0.48 1.01 P < .007

2 (N = 12)
60-image

Trained 0.18 0.94 0.49 1.01 0.68 P = .16a

Untrained −0.15 0.80 0.54 0.70 0.66 P < .005

3 (N = 24)
30-image

Trained −0.11 Not applicable 1.14 P < .001

Untrained 0.08 Not applicable 0.74 P < .001

P values show results from t tests comparing pre-test with the final post-test
aIn experiment 2, although the pre-test did not differ significantly from the final post-test, it was significantly worse than the average of all four post-tests, p < .05

Fig. 5 Value of d’ across pre-test and the final post-test, when tested with intact trained images (left) and intact untrained images (right). Error
bars show +/− 1 S.E. of the mean
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improved from pre-test to the final post-test, F(1, 11) =
7.45, p = .02, ηp

2 = .40 for the main effect of session. The
main effect of image novelty was not significant, F(1,
11) = 1.82, p = .20, neither did image novelty interact
with session, F < 1. These data suggest that the small
cutout weakly supported tumor detection, whereas the
larger cutout enabled tumor detection for both trained
and untrained images.

Testing with the background only
Some of the images used in the testing sessions were the
background that had the tumor removed. Here we tested
whether an image with the tumor area cutout (“back-
ground”) can still support tumor detection.
As shown in Table 4 and Fig. 6 (right), performance

improved on trained images but not on untrained im-
ages. When data were aggregated across all 48 partici-
pants, ANOVA of image novelty (trained or untrained)
and testing session (pre-test or final post-test) showed
main effects of image novelty, F(1, 47) = 5.92, p = .02,
ηp

2 = .11, and session, F(1, 47) = 17.69, p < .001, ηp
2 = .27,

qualified by a clear interaction, F(1, 47) = 19.64, p < .001,
ηp

2 = .30. Follow-up tests showed that performance im-
proved for trained images, t(47) = 6.13, p < .001, but not
for untrained images, t(47) = 0.33, p = .75. Thus, learning
of the background was specific to the trained images.

Discussion
This study investigated the specificity of perceptual
learning of chest radiographs. The novices tested in this
study performed at chance level before training. This dif-
fered from previous studies in which participants were
trained to identify bone fracture or skin melanoma
(Chen et al., 2017; Xu et al., 2016). The pre-training per-
formance in those studies was above chance, suggesting
that the abnormalities were discernible even without
training. In our study, novices were unable to identify
cancerous images before training, but their performance
improved with training. The improvement over four
days differed from a previous study in which participants
were trained to identify radiographic images (Sowden
et al., 2000). In that study, most improvements occurred
in the first 2 days of training, with no additional change
on days 3 and 4. Three main findings were observed in
the present study.
First, our study showed that training yielded generalizable

effects. When tested with untrained images presented in an
intact format, participants showed clear improvements
from the pre-test to the final post-test. As shown in experi-
ment 3, these improvements occurred even when untrained
images were not repeated, ruling out any learning of un-
trained images through repetition in testing. These data
provide compelling evidence that perceptual learning of
chest radiographic images generalized to untrained images.

Table 3 Mean d’ for the small tumor cutout used in the testing sessions

Experiment and training schedule Testing image Pre-test Post-test 1 Post-test 2 Post-test 3 Final test Pre-test vs. final test

1A (N = 12)
30-image

Trained −0.21 0.34 0.07 0.38 0.27 P = .11

Untrained 0.00 0.40 0.36 0.15 0.07 P = .83

1B (N = 12)
60-image

Trained 0.10 0.53 0.47 0.66 0.44 P = .13

Untrained 0.36 0.34 0.33 0.52 0.65 P = .38

2 (N = 12)
60-image

Trained 0.37 0.39 −0.02 0.43 −0.06 P = .04

Untrained 0.10 0.14 0.53 0.17 0.45 P = .17

3 (N = 24)
30-image

Trained −0.04 Not applicable 0.48 P < .001

Untrained −0.05 Not applicable 0.08 P = .30

P values show results from t tests that compared pre-test with the final post-test

Fig. 6 Value of d’ from the testing sessions involving parts of an image. Left: the small cutout with a side length equal to the tumor diameter.
Middle: the large cutout with a side length twice the tumor diameter. Right: the background region after the tumor was cut out. Error bars show
+/− 1 S.E. of the mean
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Second, our study provided evidence that perceptual
learning has both image-specific and general compo-
nents. Participants trained with 30 images over 24 repe-
titions were exposed to a more limited set of images.
They learned these images better than did participants
trained with 60 images over 12 repetitions. This finding
showed that training yielded image-specific learning.
Nonetheless, when tested with untrained images dis-
played in an intact format, the two groups of partici-
pants performed at comparable levels. Thus, when it
comes to the generalizable component, a two-fold in-
crease in repetition traded off with a two-fold decrease
in the number of different trained images.
Both expert interviews (van der Gijp et al., 2014) and

previous empirical research (Chen et al., 2017) found that
greater image variability was more conducive to acquiring
transferable skills. In the real world with limited time and
resources, an increase in the number of times an image is
repeated would necessarily come at the cost of not being
able to train on a larger number of different images. Other
studies suggest that both mastery of a small set of stimuli
and exposure to a diverse number of stimuli contribute to
high-level expertise. For example, both the number of
games played and the number of study hours in chess cor-
relate with chess rating. However, it is not uncommon for
masters to reach similar levels following different amounts
of training (Campitelli & Gobet, 2008; Grabner, Stern, &
Neubauer, 2007; Howard, 2012). Instead of studying a
large number of topics, deliberate practice on specific
topics to complete mastery is important for skill acquisi-
tion (Campitelli & Gobet, 2008; Charness et al., 2005; Er-
icsson, 2015). Thus, both stimulus variability and
repetition of a limited set of stimuli are likely important.
In perceptual learning of medical images, a previous

study found greater improvement with a larger num-
ber of different training images (Chen et al., 2017). In
contrast, the current study showed that a two-fold in-
crease in repetition largely offset the cost of a two-
fold decrease in image variability. Because of the use
of just two groups, our study does not answer the
question of which combination is optimal. The opti-
mal point of the tradeoff may differ for different types
of stimuli.

The third contribution of our study was to clarify the
roles of global image processing and local properties in
perceptual learning of chest radiographs. Following train-
ing, participants were able to classify a trained image as
normal or abnormal even when the tumor region was cut
out. However, there was no transfer to untrained images.
Thus, participants learned incidental properties in the
background of a specific image, such as a slightly darker
rib cage. These properties did not support generalization,
suggesting that in our task, the background regions do not
contain signals correlated with tumors.
The small cutout of the tumor region was also a weak

signal for the task. Participants improved from pre-test
to final post-test. However, the improvement was mod-
erate for both trained and untrained images and was in-
consistent across experiments. This finding shows that
although local tumor properties were learned from the
small region of the tumor, it was not the main signal
driving performance.
When the cutout was enlarged to four times the area

of the tumor, participants were able to detect tumors in
both trained and untrained images. This finding is con-
sistent with Carmody et al. (1981) that radiologists rely
on a comparison between tumors and other regions to
detect cancer. It further shows that the regions immedi-
ately surrounding the tumor were important.
Even though the larger cutout was four times the area

of the tumor, it was small compared with the entire
image. On average, the area of the larger cutout was only
0.03% of the total image size. Most of the global image
properties, such as where the tumor was and what other
parts of the image look like, are absent. Yet participants
could still detect tumors on the larger cutout, suggesting
that they did not rely on image statistics coming from
the entire lung. It is likely that by including some of the
surrounding areas along with the tumor, the larger cut-
out provided the key signal for tumor detection - local
image contrast between the tumor and its immediate
surround. Because we do not have a precise measure-
ment of the size of the tumor relative to the cutout, even
the small cutout may have included some surrounding
tissues, accounting for why performance was moderate
but above chance. Although local contrast but not the

Table 4 Mean d’ for classifying images with the tumor region removed (“background”)

Experiment and train schedule Testing image Pre-test Post-test 1 Post-test 2 Post-test 3 Final test Pre-test vs. final test

1A (N = 12)
30-image

Trained 0.12 0.79 0.70 0.83 0.87 P < .002

Untrained 0.32 0.37 0.35 0.48 0.33 P = .98

1B (N = 12)
60-image

Trained 0.18 0.24 0.26 0.73 0.73 P < .03

Untrained 0.26 0.36 0.58 0.30 0.16 P = .63

3 (N = 24)
30-image

Trained −0.10 Not applicable 0.44 P < .001

Untrained 0.03 Not applicable 0.14 P = .29

P values show results from t tests that compared pre-test with the final post-test. The overall d’ during pre-test was not different from chance, p = .10
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larger background was important in our study, it re-
mains possible that more extensive training may lead to
greater reliance on the entire image (Chin et al., 2018).
The forced-choice training procedure, with normal

and abnormal images presented side by side, does not
resemble radiological diagnosis. Nonetheless, our data
showed that the training procedure was effective, as
demonstrated in the testing sessions that used a more
realistic task. The training procedure directed partici-
pants’ attention to tumor-specific properties of the im-
ages. This is an important component of perceptual
learning of complex images. As Kellman (2013) noted,
“With practice on a given task, learners come to pick up
the relevant information for relevant classifications while
ignoring irrelevant variation.” Our use of the two-step
procedure with feedback, in which participants first
choose the cancerous image and then localize the tu-
mors, guides participants to attend to the relevant region
of the images.3

Our study provides initial evidence that participants
are able to learn perceptual properties associated with
tumor signals. Learning may also have a spatial compo-
nent, given that the spatial distribution of tumors is con-
strained by anatomy and etiology. Some cancers tend to
cluster in specific locations. For instance, metastases in
the brain from primary pelvic or gastrointestinal tumors
have a high concentration in the posterior fossa (Delat-
tre, Krol, Thaler, & Posner, 1988). We have previously
shown that people are highly sensitive to the location
distribution of targets in simulated radiographic images
(Sha, Remington, & Jiang, 2018). To examine whether
the images used in our study contained such location re-
gularities, we displayed the tumor locations against an
“average” chest radiographic image (the average of all
the images used in our study). As seen in Fig. 7, the lo-
cations span a wide region of the lungs, though the lat-
eral locations appear to contain a greater concentration
of tumors. Learning the spatial regularities of the image
set may have tuned participants’ spatial attention to the
more probable regions. Future studies are needed to fur-
ther elucidate the role of spatial learning in medical
image perception.

Summary and conclusion
Our study joined a small number of recent findings in
demonstrating that perceptual training on complex med-
ical images could yield transferrable perceptual learning.

Learning has both a specific component restricted to the
trained images and a generalizable component. The
background was learned in a largely stimulus-specific
manner and evidenced little transfer to novel images.
The transfer was observed if the entire image was pre-
sented, or if a small region about four times the size of
the tumor was displayed. The contrast between the
tumor region and surrounding areas may contain the
key properties learned in our study. Whether the same
conclusions hold with other types of radiological images,
such as mammography or ultrasound images, remains to
be tested in the future.
This study constituted a proof of concept that even the

assessment of complex radiological images could benefit
from perceptual learning. The finding may have practical
implications, such as in the training of medical students.
Such training would benefit from additional techniques,
such as the adaptive response-time-based sequencing
(ARTS) system introduced by Kellman and colleagues. In
an earlier study, they successfully implemented ARTS in
training first-year and second-year medical students in
identifying skin lesions (Kellman, 2013; Kellman & Garri-
gan, 2009). Our study also raised the question of how to
induce perceptual learning of the most subtle tumor im-
ages, as participants remained unable to detect tumors on
untrained images with a subtlety level of 1. Computerized
perceptual learning, like the type used here, may facilitate
the initial acquisition of perceptual skills. Nonetheless,
prolonged training, along with conceptual knowledge of
pathology and imaging techniques, will be necessary to
achieve high levels of expertise.

3In pilot data we found that providing accurate feedback about tumor
location was essential for learning. In 17 participants tested in a pilot
experiment similar to the training in our experiment 3, the computer
provided correct feedback on which image contained tumor, but
marked a wrong tumor location on the cancerous image. These
participants failed to improve - their classification of which image was
normal and which cancerous remained flat across 360 training trials.

Fig. 7 Tumor locations against an average chest radiographic image
from the stimuli used in the current study. Each blue dot represents
the center location of a tumor from one image
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Appendix

As seen in Table 5 in Appendix, changes in response
criterion across pre-test to the final post-test varied by
the format of the testing image. Intact images were asso-
ciated with a slight bias toward responding “abnormal”,
and this did not change over time. Small cutouts were
associated with an initial bias toward responding “nor-
mal”, and this bias was attenuated after training. Large
cutouts were associated with a slight bias toward report-
ing “normal”, and this did not change over time. Back-
ground regions were associated with a small bias toward
reporting “normal” before training. After training, this
bias remained when classifying untrained images, but
changed to a slight bias toward reporting “abnormal”
when classifying trained images.
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