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Abstract

Visualizing data through graphs can be an effective way to communicate one’s results. A ubiquitous graph and
common technique to communicate behavioral data is the bar graph. The bar graph was first invented in 1786 and
little has changed in its format. Here, a replacement for the bar graph is proposed. The new format, called a hat
graph, maintains some of the critical features of the bar graph such as its discrete elements, but eliminates
redundancies that are problematic when the baseline is not at zero. Hat graphs also include design elements based
on Gestalt principles of grouping and graph design principles. The effectiveness of the hat graph was tested in

five empirical studies. Participants were nearly 40% faster to find and identify the condition that led to the biggest
difference from baseline to final test when the data were plotted with hat graphs than with bar graphs. Participants
were also more sensitive to the magnitude of an effect plotted with a hat graph compared with a bar graph that

discrete categories.
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was restricted to having its baseline at zero. The recommendation is to use hat graphs when plotting data from

Significance

Visualizations are an important way to communicate
results from data. As “big data” has increased impact
on daily life, communication of data is of critical im-
portance. The bar graph is ubiquitous and yet has not
been fundamentally updated since its inception in the
eighteenth century. The hat graph is offered as a
modernized version that more effectively communi-
cates differences across conditions. Hat graphs in-
creased the speed to find the condition associated
with the biggest difference by nearly 40% relative to
bar graphs. Hat graphs also increased sensitivity to
the size of an effect by 30% and eliminated bias in es-
timating effect size. Hat graphs can significantly im-
prove how scientists communicate their data.

Introducing hat graphs

The bar graph is commonly used to visualize data in
psychology. In a recent issue of Psychological Science
(2018, v 29, issue 12), 50% of the articles included a bar
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graph. The bar graph dates back to 1786 (Playfair, 1786),
and the first bar graph bears great resemblance to typical
bar graphs used today. Bar graphs are problematic in
presenting results from behavioral research. Bar graphs
depict values in two ways: one is by the relative position
of the end of the bar and the other is by length of the
bar (and, perhaps a third, is by area of the bar). These
various sources of information will be inconsistent with
each other if the baseline of the graph is not set to zero.
When comparing conditions represented by separate
bars, the relative position of the ends of the bars will ac-
curately reflect the differences between the conditions,
but the relative difference in length will exaggerate the
differences (Healy, 2019; Pandey, Rall, Satterthwaite,
Nov, & Bertini, 2015; Pennington & Tuttle, 2009). Thus,
the rule for bar graphs is to always set the baseline to
zero. Of the articles that used bar graphs referenced
above, all but one used zero as the baseline. However,
even a baseline at zero creates large biases in readers’
perceptions of the size of effects depicted in bar graphs:
big effects can appear small with a baseline at zero (Witt,
in press). One way to improve readers’ perceptions is to
maximize compatibility between the visual size of the ef-
fect and the effect size being depicted. Given that effect
size in psychology is often measured in terms of SDs,
and an effect size of 0.8 is considered “big” (Cohen,
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1988), it is sensible to set the range of the y-axis to 1.5
SDs. With this range, big effects look big and small ef-
fects look small (Witt, in press). This range is problem-
atic when using bar graphs, however, given the mixed
meanings across the different features when the baseline
is not set to zero.

Alternatives to bar graphs include point graphs and
line graphs. Point graphs have the advantage that only
one feature specifies the data, namely relative position.
Thus, inconsistencies are not created by non-zero base-
lines. But with point graphs the Gestalt grouping princi-
ples to help facilitate perceptual grouping of pairs of
data points are not as strong. This grouping problem
can be solved by connecting the points with a line, thus
making the graph a line graph. Line graphs are a natural
choice when communicating trends, such as differences
in a dependent variable across a continuous independent
variable, because a feature of the line (the slope) repre-
sents the trend, without having to integrate across mul-
tiple features (Carswell & Wickens, 1996). Line graphs
are not, however, a natural choice when communicating
discrete values. They can even lead to misinterpretations
of discrete variables as continuous. For example, when
comparing across distinct groups like construction
workers versus librarians, people were more likely to
make continuous comparisons like “the more librarian a
person is, the shorter he is” rather than discrete compar-
isons like “librarians tend to be shorter than construc-
tion workers” when presented with line graphs than
when presented with bar graphs (Zacks & Tversky,
1999). Lines are also an excellent choice for communi-
cating interactions because the interactions are repre-
sented by the intersection in the lines, so the interaction
can be perceived by comparison across the slopes of the
lines, rather than integrating across four or more bars.
Some have recommended that line graphs be used to
display interactions even across discrete categories (Kos-
slyn, 2006).

Rather than have to select between these various
trade-offs between bar and line graphs, another option is
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to design a new kind of graph that has the desirable
properties of the bar graphs (proper interpretation of
discrete categories) and desirable properties of the line
graphs (configurable properties that signal the effect of
interest, unrestricted settings for the y-axis). Often the
purpose of a graph is to report findings of a difference
between two conditions (a main effect) or a difference
between differences in conditions (an interaction). Bar
graphs are not the most effective or efficient way to
communicate differences because they require additional
processing. According to Pinker’s theory of graph com-
prehension, objects give rise to “message flags” that
make the objects’ values “easily extractable” from the
graph (Pinker, 1990, p. 108). For bar graphs, each bar
has an associated message flag to signal its height but
extracting the difference across two bars (or the differ-
ences across two pairs of bars in the case of an inter-
action) requires additional processes of what Pinker
refers to as interrogation. In the case of bar graphs, this
will require top-down visual search processes to locate
the relevant bars and then mentally compare their rela-
tive heights. A better way to communicate differences is
to represent the difference as a single object. Thus, the
difference would have its own message flag automatically
associated with it, rather than require these additional
interrogation processes.

To achieve these objectives, the traditional bar graph
was transformed. First, the tops of the bars were retained
while the bars themselves were removed. This removes
the redundancy between specifying the values by the
tops of the bars and by the length of the bars. Removing
redundancy is one of the recommendations made by
Tufte (2001), and by removing bar length as a signifier
of value, the y-axis does not have to start at zero because
now the tops are the only indicator of value and not also
bar length. Second, the difference between two sets of
bars was highlighted by enclosing this difference as its
own object by keeping the portion of the second bar that
differed from the first bar (see Fig. 1). Third, the compo-
nents directly abutted each other in order to evoke
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strong Gestalt principles of grouping, namely connected-
ness and proximity. The new format is called a hat
graph because the graphs ended up bearing a resem-
blance to hats. The “brim” of the hat represents the
value for condition 1, and the top of the “crown” of the
hat represents the value for condition 2. The height of
the crown represents the difference. A single object
(the crown) represents the difference, so it should be
easier and faster to see the differences represented in
the graph. This prediction was tested in experiments
1 and 2.

A second prediction was that hat graphs would lead to
better sensitivity and less bias in estimating the magni-
tude of the effect. This prediction was based on the idea
that hat graphs allow for more flexibility in setting the
range of the y-axis, and that setting the y-axis range to
1.5 SDs, as recommended by Witt (in press), improves
sensitivity and decreases bias relative to showing the full
range. This prediction was tested in experiment 3.

Experiment 1

Participants were shown images depicting attitude scores
on baseline and final tests for three or six advertise-
ments. Their task was to indicate which advertisement
produced the largest improvement in attitude at final
score over baseline.

Method

Participants

Twenty-two participants volunteered in exchange for
course credit. A large effect was assumed, given the the-
oretical reasons to think that hat graphs would have an
advantage over bar graphs. A power analysis for a
paired-samples ¢ test with an effect size of d=0.80 and
alpha = 0.05 (two-tailed) showed that 14 pairs are needed
to achieve 80% power. Data collection was scheduled to
stop on a day on which this number was likely to be
achieved, although more participants were collected than
needed, resulting in 95% power to find an effect size of
d =0.80.

Stimuli and apparatus

Stimuli were displayed on computer monitors. The stim-
uli were created using data simulated and plotted in R
(R Core Team, 2017). Four factors were manipulated.
One factor was graph type (hat graph versus bar graph).
Each set of simulated data were plotted with a hat graph
and with a bar graph. Another factor was number of ad-
vertisements (three or six). A third factor was the pos-
ition of the target (best) advertisement. These were
evenly distributed across the locations, and target pos-
ition was repeated for the graphs with only three adver-
tisements. The fourth factor was the alignment across
advertisements. One third of the graphs were aligned to
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have similar baselines, so the target advertisement also
had the highest final score. One third were aligned to
have similar final scores, so the target advertisement had
the lowest baseline score. And one third were aligned at
the mean value between baseline and final scores (see
Fig. 2). Each graph style was repeated four times to have
several variants to show to the participants. This resulted
in 288 unique graphs (288 =2 x 2 x 6 x 3 x 4).

Data for the graphs were created from simulations. As
noted below, the task for participants was to indicate
which advertisement produced the largest change in atti-
tude, so the critical data are the differences between
conditions. For the non-target advertisements, the differ-
ences between baseline and final scores were the mean
value of 100 samples from a normal distribution with a
mean of 1 and a SD of 2. For the target advertisements,
the differences between baseline and final scores were
the mean value of 100 samples from a normal distribu-
tion with a mean of 2.5 and a SD of 1. Thus, the target
advertisement produced a bump in attitude scores 2.5
times more than the non-target advertisements. These
difference scores were added to the baseline scores for
the baseline aligned and mean aligned graphs. For these
graphs, the baseline scores were the mean value of 100
samples from a normal distribution with a mean of 3
and a SD of 1. For the final-align graphs, the final scores
were the mean value of 100 samples from a normal dis-
tribution with a mean of 5.5 and a SD of 1, and the dif-
ference scores were subtracted from the final scores to
compute baseline scores. The process was the same for
the target conditions with the exception that 0.5 was
subtracted from the baseline condition so that it would
not align with the other baseline conditions.

Two graphs were created for each set of data. One
was a bar graph and one was a hat graph. Thus, the
data contained in the graphs were identical across
graph types. The baseline condition was white and
the final condition was black for the bar graph. The
lines were black and the crown was white for the hat
graphs. The y-axis ranged from 1 to 8 on every
graph. Advertisements were labeled A-F and were al-
ways in alphabetical order.

Procedure

Participants completed two blocks of trials, one with bar
graphs and one with hat graphs. Start order was coun-
terbalanced across participants. For the hat graphs, they
were shown these initial instructions: “An advertising
company is interested in which ads lead to the biggest
changes in attitude. They ran a study testing several dif-
ferent ads. In each study, they measured attitude at
BASELINE (before seeing any ads) and again at the
FINAL test (after seeing the ads). All of the ads in-
creased attitude. Your task is to determine which ad
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produced the BIGGEST increase in attitude. The base-
line attitude will be shown as a horizontal line. The final
attitude is shown as the top of the box. The height of
the box shows the change in attitude from baseline to
final test. Which ad produces the biggest change? Enter
your response for each graph on the keyboard. Respond
as fast and accurately as possible. Press ENTER to
begin”. For the bar graphs, the instructions were the
same except instead of describing the hat graph, they
were told the following: “The baseline attitude will be
shown in white boxes. The final attitude will be shown
in black boxes. The difference between the white and
black boxes shows change in attitude from baseline to
final test.”

On each trial, a graph was shown after a fixation
screen of 500 ms, and participants entered a response
A-C (for graphs with three advertisements) or A—F (for
graphs with six advertisements). The graph remained
visible until participants made their response, at which
point a blank screen was shown for 500 ms before the
next trial began. Participants completed 144 trials with
one type of graph before switching to the block of trials
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with the other graph type. Order within block was
randomized.

Results and discussion

Reaction times (RTs) are positively skewed, so they were
log-transformed. The data were initially explored for
outliers. RTs beyond 1.5 times the interquartile range
(IQR) for each subject for each condition were excluded
(3% of the data). Next, mean RTs and mean accuracy
scores were calculated for each subject and each condi-
tion and plotted in separate boxplots. One participant
was beyond the IQR for both, and three participants
were beyond 1.5 times the IQR for accuracy scores.
These participants were excluded. For remaining partici-
pants, accuracy was nearly perfect (mean (M) =98.9%,
SD =1.3%), so the analysis focused on RTs.

Data were analyzed with linear mixed models using
the Ime4 and ImerTest packages in R (Bates, Machler,
Bolker, & Walker, 2015; Kuznetsova, Brockhoff, & Chris-
tensen, 2017). A linear mixed model was run with the
log RTs as the dependent factor. The independent fac-
tors were graph type (bar or hat), number of advertisers
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Fig. 2 Sample stimuli from experiment 1. Panels a and b show the hat graph version and the bar graph version of the same data. Panels a, ¢,
and d show the three types of alignment (baseline, final, mean, respectively)
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(three or six), graph alignment (baseline, final, mean),
and initial graph type (bar or hat). All independent fac-
tors were entered as a factor with the reference factor
being the first as listed above. Two-way interactions be-
tween graph type and each factor were also included.
The random effects for participant included intercepts
and slopes associated with graph type. Estimation was
done using restricted maximum likelihood and Sat-
terthwaite’s method for degrees of freedom. Effect sizes
were calculated based on the formula from Westfall,
Kenny, and Judd (2014). The emmeans R package was
used to extract marginal means on the original scale
(non-transformed RTs) from the model for the plots
(Lenth, 2019).

Graph type had a large effect on RTs, d=1.20, ¢=
11.76, p <.001. Relative to bar graphs, responses to hat
graphs were 37% faster (see Fig. 3). Using the random ef-
fect coefficients to estimate the impact of graph type on
each participant, it can be seen that the model estimated
that all 18 participants showed faster responses to hat
graphs than to bar graphs (see Fig. 4).

The number of items had a small-to-medium effect on
RTs, d =0.39, ¢t =15.05, p <.001. Going from three to six
items was associated with a 16% increase in RT (see Fig.
3). The interaction between number of items and graph
type was negligible, d=0, £=0.09, p>.92. Thus, al-
though hat graphs increased speed to find the largest
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Fig. 3 Reaction time (RT) is plotted as a function of number of items
and graph type for experiment 1. The brim of the hat corresponds
to the RTs for the hat graph condition, and the top of the crown of
the hat corresponds to RTs for the bar graph condition. The size of
the crown indicates the difference in RTs between the two
conditions. Error bars are +1 SEM, estimated from the model
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Fig. 4 Estimated reaction time (RT) is plotted as a function of graph
type and participant for experiment 1. Estimates are based on the
random intercepts and slopes. The brim of the hat corresponds to
the RTs for the hat graph condition, and the top of the crown of the
hat corresponds to RTs for the bar graph condition. The size of the
crown indicates the difference in RTs between the two conditions

difference, they did not make the search more efficient,
as would have been shown by a shallower slope for the
hat graphs.

The medium effect of initial graph type on RTs (d =
0.50, t=2.07, p=.054) is better explained by the big
interaction with graph type, d=0.87, t=6.47, p <.001.
The increased speed to respond to hat graphs was
greater in people who had completed a block of trials
with the bar graphs than in those who started with the
hat graphs (see Fig. 5). This interaction could also be
interpreted as two main effects: faster responses for hat
graphs and faster responses in the second block.

Graph alignment had a very small influence on RTs
(Fig. 6). The RT was slightly slower when the baseline
scores were aligned than when the final scores were
aligned, d = 0.15, t = 4.62, p <.001, and slightly slower for
baseline scores than when the mean scores were aligned,
d=0.13, t=4.26, p<.001. There was no difference be-
tween RTs for graphs with aligned final scores and
aligned mean scores, d = 0.01, t =0.36, p =.72. The inter-
action between graph alignment and graph type was
similarly quite small (graph type and baseline versus
final, d=0.17, t =3.82, p <.001; graph type and baseline
versus mean. d =0.08, £=1.84, p =.066; graph type and
final versus mean, d =0.09, t=1.98, p =.048). More im-
portantly, responses were faster to hat graphs than to
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Fig. 5 Reaction time (RT) is plotted as a function of graph type and
start condition for experiment 1. The brim of the hat corresponds to
the RTs for the hat graph condition, and the top of the crown of the
hat corresponds to RTs for the bar graph condition. The size of the
crown indicates the difference in RTs between the two conditions.
Error bars are +£1 SEM based on estimates from the linear mixed model
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Fig. 6 Reaction time (RT) is plotted as a function of graph alignment
style and graph type for experiment 1. The brim of the hat
corresponds to the RTs for the hat graph condition, and the top of
the crown of the hat corresponds to RTs for the bar graph
condition. The size of the crown indicates the difference in RTs
between the two conditions. Error bars are +1 SEM estimated from
the mixed linear models
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bar graphs in all alignment conditions, ds=0.99, ps <
.001. This shows some robustness to the advantage of
hat graphs over bar graphs because it shows the advan-
tage for hat graphs does not depend on one particular
alignment between its parts.

Hat graphs improved speed to find the advertisement
that produced the biggest boost in attitude relative to
bar graphs. The results are consistent with principles of
graph design that by making the difference an object
that will give rise to a message flag, graph comprehen-
sion will be easier and thus faster.

Experiment 2

Experiment 2 serves as a replication of experiment 1.
The effect size depicted in the graphs was slightly
smaller than in experiment 1.

Method

Seventeen students volunteered in exchange for course
credit. Everything was the same as in experiment 1 ex-
cept the target difference was simulated as a magnitude
of 2 (rather than 2.5).

Results and discussion

Data were analyzed as before and 3% of trials were ex-
cluded because the (log) RT was beyond 1.5 times the
IQR for that participant for that condition. Mean RTs
and proportion of correct scores were summarized for
each participant for each condition. Nine participants
were identified as outliers based on these summary
scores, which seems like a large portion of the data. Stat-
istical models were conducted with all participants, with-
out RT outliers (n = 4), without accuracy outliers (n = 5),
without either RT or accuracy outliers (n =9), and with-
out participants with accuracy scores less than 0.9 (n =
3). The outcomes from the various statistical models
were the same regardless of which outliers were ex-
cluded with the exceptions of the main effect of graph
alignment style and the interaction between graph align-
ment style and graph type for baseline versus final align-
ments. That the findings are generally the same speaks
to the robustness of the effect of graph style, given that
outlier removal did not have much influence. The final
model reported was one for which the three participants
with accuracy scores <0.9 were eliminated because it
seems reasonable that participants who had accuracy
scores of 0.7 were different from the participants who
had accuracy scores > 0.9 (M =0.98, SD = 0.03).

The data were analyzed in a linear mixed model with
the log of the RTs as the dependent factor and graph
type, number of items, graph alignment style, and start-
ing graph type as independent factors. Two-way interac-
tions with graph type and each of the other factors were
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Fig. 7 Reaction time (RT) is plotted as a function of number of items
and graph type for experiment 2. The brim of the hat corresponds to
the RTs for the hat graph condition, and the top of the crown of the
hat corresponds to RTs for the bar graph condition. The size of the
crown indicates the difference in RTs between the two conditions.
Error bars are +1 SEM estimated from the linear mixed model
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Fig. 8 Reaction time (RT) is plotted as a function of graph type and
participant for experiment 2. Estimates are based on the random
intercepts and slopes from the linear mixed model. The brim of the
hat corresponds to the RTs for the hat graph condition, and the top
of the crown of the hat corresponds to RTs for the bar graph
condition. The size of the crown indicates the difference in RTs
between the two conditions
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included. Random effects for participants included the
intercepts and slopes for graph type.

Graph type had a large effect on reaction time, d =
0.90, t=6.82, p <.001 (see Fig. 7). Participants were 37%
faster to respond to hat graphs than to bar graphs. All
participants’ responses showed a benefit for hat graphs
over bar graphs (see Fig. 8). The number of items had a
small effect on reaction time, d = 0.34, ¢t = 14.77, p < .001.
Participants were 21% slower to respond to six items
than to three items. The interaction between graph type
and number of items was negligible, d=0.03, £=0.84,
p =40. Thus, although hat graphs increased speed to
find the largest difference, it did not make the search
more efficient, as would have been shown by a shallower
slope for the hat graphs relative to the bar graphs.

Reaction times were similar regardless of the align-
ment in the graph. For the comparison between aligned
baseline scores and aligned final scores, the difference in
RTs was very small, d=0.12, ¢t =3.83, p <.001. This dif-
ference was similarly small for the comparison between
aligned baseline scores and aligned mean scores, d =
0.15, t=4.81, p<.001, and there was no difference be-
tween aligned final scores and aligned mean scores, d =
0.03, t=0.98, p=.33. The interaction between graph
type and aligned baseline versus final scores was also
very small, d = 0.14, t = 3.72, p < .001. The interaction be-
tween graph type and aligned baseline versus mean
scores was negligible, d=0.05, t=1.12, p=.26, as was
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Fig. 9 Reaction time (RT) is plotted as a function of graph alignment
style and graph type for experiment 2. The brim of the hat
corresponds to the RTs for the hat graph condition, and the top of
the crown of the hat corresponds to RTs for the bar graph
condition. The size of the crown indicates the difference in RTs
between the two conditions. Error bars are +1 SEM calculated from
the linear mixed model
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the interaction between graph type and aligned final
scores versus mean scores, d=0.10, t=2.16, p=.031.
More importantly, the advantage of hat graphs was
shown across all alignment styles, replicating some ro-
bustness to the advantage of hat graphs over bar graphs,
ds 2 0.80, ps < .001 (see Fig. 9).

Participants who started with bar graphs were some-
what faster with hat graphs relative to bar graphs com-
pared with participants who started with hat graphs. The
interaction between graph type and initial graph type
showed a small-to-medium effect, d=0.41, £=2.25,
p =.044 (see Fig. 10).

The results from experiment 2 replicate those from ex-
periment 1 and show an advantage for the hat graphs
over the bar graphs with respect to ease of processing
differences across conditions, as shown by faster re-
sponse times.

Experiment 3
Experiments 1 and 2 show an advantage for hat graphs
over bar graphs in that people were faster to identify the
advertisement that produced the biggest increase in per-
formance. Speed can be indicative of the ease with which
a graph can be processed. However, there are other rele-
vant components of graph comprehension including ac-
curacy and biases.

One of the motivators for hat graphs as a replacement
for bar graphs is that the hat graphs are not restricted to
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Fig. 10 Reaction time (RT) is plotted as a function of graph type
and start condition for experiment 2. The brim of the hat
corresponds to the RTs for the hat graph condition, and the top of
the crown of the hat corresponds to RTs for the bar graph
condition. The size of the crown indicates the difference in RTs
between the two conditions. Error bars are £1 SEM based on
estimates from the linear mixed model
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having the y-axis range start at zero. For bar graphs, the
top of the bar and the length of the bar both signify the
value for that condition. Consequently, bar graphs must
start at zero to avoid having a conflict between the two
indicators that could produce misleading impressions
(Pandey et al., 2015; Pennington & Tuttle, 2009). This
restriction does not apply to hat graphs because there is
only the one indicator for the condition’s value. Thus,
one of the benefits of hat graphs is to be able to control
the range of the y-axis to better convey the magnitude
of the effect. Small effects should look small and big ef-
fects should look big. One way to achieve this is to set
the range of the y-axis to 1.5 SDs (Witt, in press). In ex-
periment 3, hat graphs were plotted with this 1.5 SD
range, whereas bar graphs were plotted such that the y-
axis started at zero to empirically test whether this the-
oretical advantage of hat graphs leads to empirical
benefits.

Method

Participants

Twenty-three participants completed the experiment in
exchange for course credit. The first 13 completed the
experiment with the two graph types presented in separ-
ate blocks, and the last 10 completed the experiment
with the two graph types intermixed having decided the
latter is more akin to what people are likely to
experience.

Stimuli and apparatus

The experimental set-up was the same as in experi-
ments 1 and 2. The stimuli were 80 unique graphs,
40 of which were hat graphs and 40 were bar graphs.
Each graph depicted two means based on simulated
data. The data were simulated to mimic scores on a
memory test from 0 to 100 after engaging in one of
two study styles. Massed refers to studying everything
at once, as in cramming just before the exam. Spaced
refers to dispersing studying across time. The simu-
lated mean for the massed study style was 60. The
simulated mean for the spaced study style was set to
one of four values (60, 63, 65, or 68). The simulated
SD was 10 for both groups so the differences between
the two groups correspond to four different effect
sizes as measured with Cohen’s 4 (0, 0.3, 0.5, 0.8).
These four values coincide with the naming conven-
tions of a null, small, medium, and big effect. For
each effect size, means for both groups were simu-
lated based on a sample size of 100 per group, and
for each effect size, simulations were conducted 10
times for a total of 40 unique data sets. The final ef-
fect size for each data set was compared to the
intended effect size, and discarded and replaced if not
within 0.05 SDs of each other. One bar graph and



Witt Cognitive Research: Principles and Implications (2019) 4:31

Page 9 of 17

o
Q| N~
(o]
03 o
g g |
N2 N Q3
-— < -—— ©
3 o 3
= o™ — |
®© ©
£ <o \
ic o L ©
=3
—
o : :
Massed Spaced Massed Spaced
Study Style Study Style
o
o
1% N~
= o \
gw 9] |
(?) o Ccl)) o)
- < -—
g 3"
& -
®© ®©
123 = |
L L © ‘
o
A
o
Massed Spaced Massed Spaced
Study Style Study Style
Fig. 11 Sample stimuli for experiment 3. The top row shows the bar graph and the hat graph for the same set of data, which depicts a medium
effect, and the bottom row shows each graph depicting the same big effect
J

one hat graph was created for each data set, with
error bars that corresponded to 95% confidence inter-
vals (see Fig. 11). For the bar graph, the y-axis started
at 0 and went to 4% beyond the top of the range ne-
cessary to see both error bars (as is the default in R).
For the hat graph, the same restriction of having a
baseline of zero does not apply. Therefore, the range
of the y-axis was set to 1.5 SDs based on the recom-
mendations of Witt (in press). The y-axis range was
the grand mean of both groups minus 7.5 to the
grand mean plus 7.5 for a total range of 15, which is
1.5 times the simulated SD of 10.

Procedure

Initial instructions explained the two study styles and
that participants would make a judgment about whether
study style affected final test performance. They were to
judge whether study style had no effect, a small effect, a
medium effect, or a big effect, and press the correspond-
ing number (14, respectively). They were then given an
overview of each type of graph showing what

corresponded to the mean for each group and what the
error bars signified. The two graph types were presented
in different blocks for the first group of participants (n =
14), so instructions for each type of graph preceded that
block. For the second group, the graph types were inter-
mixed within block, so instructions for both graph types
were presented at the beginning.

Each trial began with a blank screen with a fixation
cross at the middle for 500 ms. Then the graph appeared
and remained until participants estimated the magnitude
of the effect depicted in the graph. There was no time
limit and no feedback given. Responses were followed by
a blank screen presented for 500 ms. For participants in
the blocked condition, each block consisted of all 40
unique graphs for one type. Order within block was ran-
domized. Participants completed two blocks with one
graph type, then two blocks with the other graph type
for a total of 160 trials. For participants in the inter-
mixed condition, each block consisted of all 80 unique
images (40 with each graph type, order was randomized),
and participants completed three blocks for a total of
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240 trials once it was determined that there would be
enough time to complete all of these trials within the
30-min session.

Results and discussion

The data were analyzed using a linear mixed model with
Satterthwaite’s estimation for degrees of freedom. The
dependent variable was estimated effect size, centered
from the original scale of 1-4 by subtracting 3. One in-
dependent factor was depicted effect size. Although four
effect sizes were used in the experiment, following Witt
(in press), only the non-null effects were included in the
analysis because there are differences in sensitivity when
estimating between a null and a non-null effect com-
pared with estimating across non-null effects, and it is
the latter that is typically of greater interest. The three
depicted effect sizes were converted to the same scale as
the response and centered by subtracting 3 (-1, 0, 1 for
0.3, 0.5, and 0.8, respectively). The other independent
factors were graph type (bar graph and hat graph) and
block type (blocked or intermixed). Depicted effect size
and graph type were within-subject factors, and block
type was a between-subject factor. Random effects for
participant, including intercepts and main effects for
each within-subject factors and their interaction, were
included. These random coefficients were initially exam-
ined for outliers. One participant showed no sensitivity
to effect size in either condition, and was excluded. The
model was re-run but did not converge so the
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Fig. 12 Mean response is plotted as a function of depicted effect
size in the stimuli and graph type for experiment 3. Solid lines
represent the mixed linear model coefficients. Steeper lines are
indicative of better sensitivity. The dashed lines connect the mean
estimated magnitude of null effects and small effects. The data from
the depicted null effects were not included in the analysis
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Fig. 13 Sensitivity is plotted for each participant for each graph
type. The brim of the hat corresponds to sensitivity with the bar
graphs, and the crown corresponds to sensitivity with the hat
graphs. Sensitivity was measured as the slope in linear regressions,
and higher values correspond to better sensitivity. A slope of 1
corresponds to perfect sensitivity whereas a slope of 0 indicates no
sensitivity. The brims correspond to the bar graph condition
whereas the crowns correspond to the hat graph condition.
Participants are grouped by design (blocked versus intermixed) then
ranked with respect to how much more sensitive they were with
the hat graphs compared with the bar graphs

interaction term for the random effects was excluded to
achieve convergence.

With this experimental design, sensitivity is measured
as the slope, and a slope of 1 indicates perfect sensitivity
while a slope of 0 indicates no sensitivity. Sensitivity was
0.52 for the bar graphs (SE =0.06) and was 0.70 (SE =
0.04) for the hat graphs. This shows a difference in sen-
sitivity of 0.18, which corresponds to a 35% improve-
ment in sensitivity for hat graphs with the standardized
axes compared with bar graphs with the baseline at zero,
d=0.28, t=6.28, p <.001, estimate = 0.18, SE =0.03 (see
Fig. 12). Separate linear models were run for each par-
ticipant for each graph type. From these the slopes were
extracted as the measure of sensitivity. Out of the 22
participants, 21 showed higher sensitivity with the hat
graph than with the bar graph (see Fig. 13).

There was a difference in sensitivity of 0.22 when the
graphs were blocked than when they were intermixed,
d=0.33, t =246, p =.022, estimate = 0.22, SE = 0.09. This
makes sense given that participants did not have to rap-
idly switch between graph types to interpret graph size.
The effect of block type on differences in sensitivity
across graph types was negligible, d=0, t=0.01, p=.99
(see Fig. 14). In both cases, sensitivity was greater
with the hat graphs than with the bar graphs
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Fig. 14 Sensitivity is potted as a function of block type and graph
type. Sensitivity is measured as the slope. Higher scores indicate
better sensitivity. Scores of 1 indicate perfect sensitivity and scores
of 0 indicate no sensitivity. The brims correspond to the bar graph
condition whereas the crowns correspond to the hat graph
condition. Error bars are £1 SEM calculated from the linear

mixed models

(blocked, d=0.30, t=6.20, p<.001, estimate=0.18,
SE =0.03; intermixed, d =0.26, ¢t =6.49, p <.001, esti-
mate = 0.19, SE =0.03).

In addition to sensitivity, the data also reveal biases as-
sociated with the various graph types. Bias is measured
by the intercepts. Graph type had a medium effect on
bias, d = 0.61, t = 4.33, p < .001, estimate = 0.40, SE = 0.09.
Separate linear mixed models were run for each graph
type to assess bias for each, and the intercepts were
transformed into percent overestimation scores. When
reading bar graphs, participants underestimated depicted
effect size by 16%, d = 0.68, ¢ = — 4.73, p <.001, estimate =
- 0. 74, SE=0.10. When reading hat graphs, the bias
was 2% underestimation and was negligible, 4 =0.11, t =
-0.79, p=.44, estimate=-0.07, SE=0.09. Thus, not
only do hat graphs improve sensitivity to effect size, they
also reduce bias in estimating effect size relative to bar
graphs because of their flexibility to allow the y-axis to
start at a value other than zero. This leads to a bias to
make effects appear smaller because bar graphs must
start at zero. Figure 15 shows differences in bias for each
participant.

It is also worth noting that error bars were included in
both the hat graph and bar graph stimuli in this experi-
ment. That the hat graphs still improved sensitivity and
decreased bias despite the presence of the error bars fur-
ther supports the claim of their advantage, at least when
bar graphs are forced to a have a baseline at zero. One
of the advantages of hat graphs is that they do not
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Fig. 15 Bias in estimated effect size was calculated as a percent
overestimation score. Positive values indicate a bias toward
overestimation, and negative values indicate a bias toward
underestimation. A score of 0 indicates no bias. Data are plotted for
each participant, and participant is ordered based on design
(blocked or intermixed) and then from largest to smallest bias with
the bar graph. The brim corresponds to the hat graphs, and the

edge of the crown corresponds to the bar graphs

require the baseline to start at zero, whereas the rule for
bar graphs is a baseline starting at zero. When following
their respective rules, the hat graphs lead to increased
sensitivity to the size of the effect depicted in the graph
and reduced bias.

Experiment 4

The rule is that bar graphs should have a baseline at zero.
But rules are made to be broken, right? Currently, there is
moderate agreement that bar charts should have the base-
line at zero (Healy, 2019). Much of the debate takes place
in blogs and on Twitter. For example, while Nathan Yau
admits that most graphing rules have exceptions, he has
not come across a worthwhile reason to break the
baseline-at-zero rule for bar graphs (Yau, 2015). Stephen
Few agrees (Few, 2019). In contrast, Kosslyn argues for
maximizing compatibility between the visual impression
of the display and the actual difference, and his specific
example includes using a non-zero baseline with the bar
graph (Kosslyn, 1994, p. 79). Others do not see the rule as
specific to bar graphs given that non-zero baselines can
lead to distortions in other kinds of graphs such as line
graphs (Kosara, 2013; Skelton, 2018). Previously, I offered
a way to avoid these distortions, at least in psychology and
other behavioral sciences, by setting the range of the y-
axis to equal 1.5 SDs (Witt, in press). This range increases
sensitivity and minimizes bias relative to showing the
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minimal range or the full range. However, it means break-
ing the baseline-at-zero rule for bar graphs. Experiment 3
showed that sticking to the rule for bar graphs means that
hat graphs have the advantage over bar graphs. Experi-
ment 4 explored whether abandoning this rule would give
bar graphs the advantage. Two other graph types were
also included for comparison - boxplots and scatterplots.

Method

Participants

Fifteen students participated in exchange for course
credit.

Stimuli and apparatus

The stimuli were graphs based on data that were simu-
lated from normal distributions. Data were simulated for
two hypothetical groups with different study styles as in
experiment 3. The mean for the spaced study group was
50, and the mean for the massed study group was 50, 47,
45, or 42, which corresponds to an effect size of d =0,
0.3, 0.5, or 0.8. The SD was 10 for all simulations in both
groups. The other factor was the number of samples
drawn from each distribution. This number was deter-
mined based on achieving power of 0.80 or 0.95 to
achieve the intended effect size. There were 10 repeti-
tions for each effect size and for each power level. When
the effect size was 0, power was based on intending to
obtain one of the other effect sizes, and this varied
across the 10 repetitions. Simulated data were checked
to ensure that they were within 0.05 SDs of the
intended effect size, otherwise the simulation was re-
peated until this condition was met. Altogether, there
were 80 unique datasets.

Each simulated dataset was plotted four different ways
for a total of 320 graphs. The massed style was the brim
for the hat graphs and the spaced style was the crown.
The first bar was white for bar graphs and represented
the massed style, and the second bar was black and rep-
resented the spaced style. The y-axis was centered on
the grand mean for both the bar and the hat graphs and
extended 0.75 SDs in either direction. In addition, error
bars representing +1 SEM were also displayed. For the
scatterplot, each data point was plotted as a separate
open circle, and each was aligned along the x-axis based
on study style (i.e., there was no jitter). The default pa-
rameters in R were used for the boxplot, so data points
> 1.5 times the IQR were shown as open circles. The y-
axis range was the default in R for both the scatterplot
and the boxplot, which represented +4% of the data
range.

Procedure
Participants were given initial instructions that they
would see data from two groups with different study
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styles and would have to indicate the size of the effect of
study style on final test score. They were then given spe-
cific instructions on how to read each graph. The first
two instructions pointed out the x-axis (study style) and
the y-axis (final test score), which were the same for all
graphs. Three images explained boxplot (the center line
is the median score; the box represents 50% of all the
scores in each group; the tails represent minimum and
maximum values and the circles represent outliers that
are likely not representative of the population). One
image explained the scatterplot by stating that each
point represents data from one participant. Three im-
ages explained bar graphs (the top of the box is the
mean for each condition; the difference in heights is the
difference between conditions; the error bars represent
the precision of the estimate with longer lines meaning
we are less certain of the accuracy of the mean). Three
images explained the hat graphs in the same way as the
bar graphs.

A fixation was present for 500 ms on each test trial,
followed by a graph. The graph was visible until partici-
pants indicated their response by pressing 1, 2, 3, or 4
on the keyboard. A blank screen was presented for 500
ms. Each graph was presented once, and order was ran-
domized for a total of 320 trials.

Results and discussion

The data were analyzed as in experiment 3. As shown in
Fig. 16, there were differences in sensitivity to effect size
across graph types. However, these differences were
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Fig. 16 Mean response is plotted as a function of depicted effect
size in the stimuli and graph type for experiment 4. Solid lines
represent the mixed linear model coefficients. Steeper lines indicate
better sensitivity. The dashed lines connect the mean estimated
magnitude of null effects and small effects. The data from the
depicted null effects were not included in the analysis
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primarily between graphs that showed means and SEMs
(hat graphs and bar graphs) and graphs that showed
more of the distribution (scatterplots and boxplots). Sen-
sitivity for the hat graphs (estimate = 0.49, SE = 0.06) and
sensitivity for the bar graphs (0.48, SE=0.06) were
equivalent, d = 0.01, t = 0.30, p =.76. When the bar graph
had the same axes as the hat graph, there were similar
levels of sensitivity. However, with respect to bias, the
hat graph had a small advantage over the bar graph, d =
0.23, £ =4.33, p<.001. There was a small bias with the
bar graph toward overestimating the size of the effect by
7% (d=0.35, t=2.15, p=.050). The bias was only 2%
overestimation with the hat graph (d=0.11, £=0.65,
p =.53). Even when playing by “hat graph rules” rather
than “bar graph rules”, the bar graph was still not as
good as the hat graph because it produced more bias in
how the effects were interpreted.

Sensitivity was worse for the scatterplots and boxplots.
These graphs depict the distributions beyond just the
mean and SE, and both led to approximately 36% re-
duced sensitivity compared with the hat and bar graphs,
ds=0.23, ps<.001 (scatterplot, estimate=0.29, SE=
0.05; boxplot, estimate = 0.33, SE = 0.04). The difference
in sensitivity between the scatterplots and bar graphs
was negligible, d =0.06, t=1.25, p=.212. Both scatter-
plots and boxplots produced a large bias toward under-
estimating the size of the effect depicted in the graph
(scatterplot, 27% underestimation, d=1.09, =846,
p <.001; boxplot, 25% underestimation, d=1.26, =
10.56, p <.001). There was also a negligible difference in
bias between the two plots, d=0.06, t=0.61, p=.55.
Scatterplots and boxplots provide more information than
hat graphs and bar graphs, but this additional informa-
tion had two negative impacts on graph comprehension
- decreased sensitivity and increased bias. The current
data support the idea that less can be more. A poten-
tially relevant factor is that boxplots may not have been
familiar to our participants, but scatterplots are fairly
common, and performance was similar for the two graph

types.

Experiment 5

Although the hat graphs and bar graphs lead to better
sensitivity and worse bias than the boxplots and scat-
terplots, sensitivity was still far from ideal. Further-
more, all graphs except the hat graph led to bias in
how the effects were interpreted. In this experiment,
feedback was provided after each trial to determine
whether people could quickly learn how to accurately
read each type of graph.

Method
The experiment was the same as in experiment 4 except
that feedback was given on every trial. Specifically, the
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Fig. 17 Mean response is plotted as a function of depicted effect
size in the stimuli and graph type for experiment 5 for which
feedback was provided. Solid lines represent the mixed linear model
coefficients. Steeper lines indicate better sensitivity. The dashed lines
connect the mean estimated magnitude of null effects and small
effects. The data from the depicted null effects were not included in
the analysis

correct response was provided after participants made
each response, regardless of the accuracy of their re-
sponse. Eleven students participated in exchange for
course credit.

Results and discussion

The data were analyzed as in experiment 4. There were
negative slopes for one participant for two of the graph
types and the participant was excluded. The results are
shown in Fig. 17. All graphs showed good but attenuated
sensitivity (hat graph, estimate=0.69, SE=0.07; bar
graph, estimate =0.73, SE=0.07; boxplot, estimate =
0.63, SE=0.06; scatterplot, estimate=0.56, SE =0.06).
Compared with experiment 4, feedback improved per-
formance for all the conditions, estimate =0.20—0.30,
SE =0.07-0.09, ps<.05 (see Fig. 18). Feedback nearly
equated performance across the graph types. The hat
graphs and bar graphs were equivalent to each other,
d =0.06, p =.34. The difference between the hat graphs
and bar graphs from the scatterplots and boxplots was
either very small or negligible, ds=0.08-0.19, ps-=
0.006-0.27. However, the scatterplots and boxplots still
led to a bias toward underestimatng the size of the
depicted effect by 13%, ds=0.43-0.49, ps<.001. This
was reduced compared with experiment 4 but was
nevertheless a small-to-medium effect (see Fig. 19). The
bias was very small for the bar graphs and hat graphs,
2% and 4%, ds=0.12 and 0.2, ps=.25 and .013,
respectively.
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Fig. 18 Sensitivity is potted as a function of graph type and
whether there was no feedback (experiment 4) or there was
feedback (experiment 5). Sensitivity is measured as the slope. Higher
scores indicate better sensitivity. Scores of 1 indicate perfect
sensitivity and scores of 0 indicate no sensitivity. The brims
correspond to the no-feedback conditions and the crowns
correspond to the feedback conditions. Error bars are +1 SEM
calculated from separate linear mixed models

« Feedback
No Feedback — —D

Bias (%)
0 10
} 1

=i
o

& A
o

3

T T T
Bar Graphs Boxplots
Graph Type

Fig. 19 Bias (calculated as percent overestimation) is potted as a
function of graph type and whether there was no feedback
(experiment 4) or there was feedback (experiment 5). Positive scores
indicate a bias toward overestimating the depicted effect, and
negative scores indicate a bias toward underestimating the depicted
effect. The brims correspond to the no-feedback conditions and the
crowns correspond to the feedback conditions. Error bars are +1
SEM calculated from separate linear mixed models
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The study shows similar performance across bar
graphs and hat graphs when feedback was provided
and when the rule of the zero baseline is ignored for
the bar graphs. To the extent that the data follow a
normal distribution that is well-described by the
mean and SEM, graphs that show only these values
better succeeded at communicating the magnitude of
the difference between two groups. However, viola-
tions to the assumptions of a normal distribution
such as skewness or outliers are not well-captured by
hat graphs and bar graphs. Had the task for partici-
pants focused on these aspects of the data instead, we
would expect better performance with the scatterplots
and boxplots than with hat graphs or bar graphs.

General discussion

Hat graphs were designed based on principles of graph
design and Gestalt grouping to be a better alternative to
bar graphs. Bar graphs have essentially remained un-
changed since their inception in the late eighteenth cen-
tury (Playfair, 1786). Hat graphs were designed as a
simple but important modernization of the classic bar
graph in an attempt to improve ease of graph compre-
hension. Two aspects of the benefits of hat graphs were
explored here. One related to ease to ascertain differ-
ences represented in the graph. The other related to re-
strictions on the range of the y-axis and how eliminating
these restrictions could improve sensitivity to and re-
duce bias of estimates of the magnitude of the effect
depicted in the graph. Each will be discussed in turn.

Often the purpose of a graph is to invite comparison
between two or more conditions. These comparisons are
better served by maximizing proximity between the ob-
jects that represent each condition, but bar graphs have
no inherent restrictions on the spacing between the bars,
thereby allowing the bars to be spaced far apart and
making the comparison more difficult. Hat graphs rem-
edy this by using two of the strongest Gestalt principles
of grouping - connectedness and proximity (Han, Hum-
phreys, & Chen, 1999; Palmer & Rock, 1994; Wagemans
et al.,, 2012; Wertheimer, 1912). For the hat graph, two
conditions to be compared are placed adjacent to each
other in a way that their components are connected.
The visual system should therefore group the elements
into a single perceptual object. Hat graphs necessitate
this visual grouping, whereas bar graphs can have prox-
imity and connectedness to help visually group objects,
but it is optional and left to the designer’s choices.

Hat graphs also improve comparison across conditions
because they make the difference between conditions an
object itself, rather than the space between two objects
as is the case with the bar graph. With bar graphs, each
bar has an associated message flag signaling its height,
and additional processes of interrogation are necessary
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to visually compare across heights (Pinker, 1990). With
the hat graph, the difference is represented as an object.
The height of this object, which represents the magni-
tude of the difference, has its own message flag signaling
this value. Thus, the difference can be automatically ex-
tracted from the graph, thereby reducing the number of
processing steps and improving ease of comprehension
of the graph. The current experiments empirically tested
this prediction by assessing the speed by which people
could identify the biggest difference across conditions.
Participants viewed graphs depicting attitude scores at a
baseline test and at a final test across three or six adver-
tisements. Their task was to indicate the advertisement
that led to the biggest boost in attitude. Participants
were almost 40% faster when the data were presented in
hat graphs than when presented in bar graphs. Nearly all
participants showed faster response times with the hat
graphs than with the bar graphs. This result provides a
good test of Pinker’'s model of graph comprehension,
and the outcomes are consistent with the model’s
predictions.

Prior evidence showed that discrete elements (like in
bar graphs) are more likely to be interpreted as a
discrete effect (e.g. “males are taller than females”)
whereas continuous lines (like in line plots) are more
likely to be interpreted as a continuous effect even when
such an interpretation is inappropriate (e.g. “the more
male a person is, the taller he is”, Zacks & Tversky,
1999). Although not directly tested here, the hat graphs
bear more of a resemblance to the discrete elements of
the bar graph than to the continuous elements of the
line graph. It is recommended that hat graphs be used
instead of bar graphs for plotting discrete data, whereas
line graphs continue to be used for continuous data.

Another graph design principle concerns the data-to-
ink ratio (Tufte, 2001). According to this principle, re-
dundant ink should be minimized within reason. For the
bar graph, both the length of the two side lines and the
position of the top of the bar are all redundant, so to
minimize redundant ink, one could remove two of the
three indicators (Tufte, 2001, p. 101). The hat graph has
a higher data-to-ink ratio than the bar graph, which
could be one of the factors contributing to its advantage.
The hat graph still contains redundant elements (such as
retaining the brim of the hat rather than just the crown).
However, sometimes redundancy can be advantageous
for reading graphs, so it is important to not take the
data-to-ink ratio too far (Carswell, 1992; Gillan & Rich-
man, 1994). Future studies could determine whether
adding or deleting ink from hat graphs improves
performance.

Perhaps more important than improving the data-to-
ink ratio is that removing the redundancy in the bar
graphs between the bar heights and the bar lengths
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eliminated the restriction of having the baseline of the y-
axis at zero. Bar graphs should always have a zero base-
line so that the impression given by the length of the
bars is consistent with the values for each condition
(e.g., Pandey et al, 2015; Pennington & Tuttle, 2009).
Hat graphs do not have the same restriction because
they do not contain the misleading element within bar
graphs, namely bar length. The benefit of an unrestricted
baseline is that the y-axis range can be set so that the
visual impression of the size of the effect depicted in the
graph aligns with the actual size of the effect. This set-
ting improves sensitivity to and reduces bias to the mag-
nitude of the effect (Witt, in press). Effect size in
psychology is measured in terms of SDs and an effect of
0.8 SDs is considered big. Therefore, the range of the y-
axis should be approximately 1.5 SDs (and never <1
SD). Setting the y-axis in this way helps to maximize
compatibility between the visual impression of the effect
and the size of the effect. Small effects will look small
and big effects will look big.

That this control over setting the range of the y-axis
would be an advantage for hat graphs compared to bar
graphs was tested in experiment 3. Participants viewed
two means presented in a hat graph or in a bar graph,
and had to judge whether the difference between the
means showed a null, small, medium, or big effect. For
the hat graph, the range of the y-axis was set at 1.5 SDs.
For the bar graph, the baseline of the y-axis was zero
and the maximum value was 4% higher than the 95%
confidence interval of the largest mean. This coincides
with the default for R. The measures of sensitivity and
bias were the slopes and intercepts from linear regres-
sions, respectively. The slopes were steeper, indicating
heightened sensitivity, for the hat graphs relative to the
bar graphs. Participants were better able to detect the
magnitude of the effect depicted in the graphs when the
data were plotted using hats rather than bars. The inter-
cepts also showed a bias toward underestimating effect
size with bar graphs but no bias with the hat graphs. Set-
ting the baseline of the y-axis to zero can make effects
appear smaller than they are, leading to misimpressions
of effect size. With a y-axis range of 1.5 SDs, this bias
is eliminated and participants can accurately discern
effect size.

If the baseline-at-zero rule is ignored, bar graphs pro-
duced similar sensitivity to hat graphs, as shown in ex-
periments 4 and 5. However, without feedback, the bar
graph produced more bias toward overestimating the
size of the effect compared with the hat graph, showing
an advantage for the hat graph even when both had the
same axis range. Thus, to produce the same sensitivity
as the hat graph, the bar graph must be designed to vio-
late the baseline-at-zero rule, which means that there
are conflicting indicators (edge of the bar and length of
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the bar) that could produce misleading impressions, and
the bar graph will lead to more bias.

Hat graphs were designed to clearly show the mean
values for each condition and the difference between
them. Another design alternative is to show only the dif-
ference scores as bars. This has the advantage of
highlighting these differences but at the expense of elim-
inating data about the means for each condition. The
use of hat graphs can solve this dilemma as both are
plotted at the same time. One disadvantage of the hat
graphs compared with plotting the difference scores is
that the hats are unlikely to be perfectly aligned. The
relative lengths of aligned bars are easier to discriminate
than the relative lengths of misaligned bars (Cleveland &
McGill, 1985). Thus, researchers will have to decide if
the added benefit of more precise estimation of length
outweighs the benefit of showing both the differences
(as misaligned bars in the crown of the hat) and the con-
dition means. Alternatively, numbers could be placed
near the corresponding components of the hat.

Hat graphs have a number of limitations and raise fu-
ture research questions. One question concerns the best
way to add error bars. The graph stimuli used in experi-
ment 3 and the graphs presented throughout this paper
show one way to do so, but this format was not empiric-
ally tested. Another limitation is how best to signal when
the direction of the hat is reversed from one condition
to another (such as would be found in a crossed inter-
action). The figures throughout this paper were prepared
by drawing the brim considerably thicker than the rest
of the hat. Another option is to use a fill color for hats
that are “upside-down,” although this would likely draw
attention to these particular hats in ways that may not
be best for the purpose of the graph. For example, if the
goal is to find the advertisement that leads to the best
boost in performance, highlighting advertisements that
lead to decrements in performance by filling in those
hats will distract readers to those hats instead of the
ones showing the best improvement. A hat graph func-
tion in R has been provided at the osfio link, and
researchers can determine which options best suit
their needs.

A critical limitation is that hat graphs are limited to 2
x N designs for which comparisons across pairs are the
critical comparisons. It is unclear how to expand hat
graphs to allow comparison across three or more condi-
tions. Many reported studies involve designs with factors
that have two levels, so the use of hat graphs can cer-
tainly be advantageous even if they are not generalizable
to all research scenarios.

An unknown factor and potential limitation is that the
current studies focused on a task in which participants
had to identify differences between baseline and final
scores. Other tasks could be to compare across baseline
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scores or across final scores. The nature of the task dic-
tates which graph will be most appropriate (e.g., Gillan,
Wickens, Hollands, & Carswell, 1998). Hat graphs
proved to be more effective than bar graphs, boxplots, or
scatterplots in finding differences and identifying their
magnitude. Given the prevalence of research that reveals
significant differences, hat graphs can better communi-
cate these differences than bar graphs.

Hat graphs show that design principles based on the
nature of cognitive processes (e.g., Gestalt grouping
principles, message flags) can improve how researchers
visualize and communicate their data. Relative to bar
graphs, hat graphs improved ease of comprehension of a
graph, as revealed by increased speed to compare differ-
ences across conditions, and as revealed by increased
sensitivity and reduced bias to comprehend the magni-
tude of an effect depicted in the graph, particularly when
bar graphs were forced to adhere to the rule that the
baseline should always be set to zero.

Authors’ contributions
JW is solely responsible for this manuscript. The author read and approved
the final manuscript.

Funding
This work was supported by a grant from the National Science Foundation
(BCS-1632222).

Availability of data and materials
Data, scripts, and supplementary materials available at https://osf.io/khjb9/.

Ethics approval and consent to participate

All participants provided informed consent, and the protocol was approved
by Colorado State University Institutional Review Board (IRB) (protocol
number 12-3709H).

Consent for publication
No individual person’s data are presented outside of group aggregates.

Competing interests
The author declares that she has no competing interests.

Received: 26 December 2018 Accepted: 6 July 2019
Published online: 14 August 2019

References

Bates, D., Machler, M, Bolker, B, & Walker, S. (2015). Fitting linear mixed-effects
models using Ime4. Journal of Statistical Software, 67(1), 1-48. https;//doi.
0rg/10.18637/jss.v067.i01.

Carswell, C. M. (1992). Choosing specifiers: an evaluation of the basic tasks model
of graphical perception. Human Factors, 34(5), 535-554. https;//doi.org/10.11
77/001872089203400503.

Carswell, C. M,, & Wickens, C. D. (1996). Mixing and matching lower-level codes
for object displays: evidence for two sources of proximity compatibility.
Human Factors, 38(1), 1-22.

Cleveland, W. S, & McGill, R. (1985). Graphical perception and graphical methods
for analyzing scientific data. Science, 229(4716), 828-833. https://doi.org/1
0.1126/science.229.4716.828.

Cohen, J. (1988). Statistical power analyses for the behavioral sciences. New York:
Routledge Academic.

Few, S. (2019). A design problem. Retrieved from https.//www.perceptualedge.
com/example14.php

Gillan, D. J, & Richman, E. H. (1994). Minimalism and the syntax of graphs. Human
Factors, 36(4), 619-644.


https://osf.io/khjb9/
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1177/001872089203400503
https://doi.org/10.1177/001872089203400503
https://doi.org/10.1126/science.229.4716.828
https://doi.org/10.1126/science.229.4716.828
https://www.perceptualedge.com/example14.php
https://www.perceptualedge.com/example14.php

Witt Cognitive Research: Principles and Implications (2019) 4:31

Gillan, D. J., Wickens, C. D., Hollands, J. G, & Carswell, C. M. (1998).
Guidelines for presenting quantitative data in HFES publications.
Human Factors, 40(1), 28-41.

Han, S, Humphreys, G. W., & Chen, L. (1999). Uniform connectedness and classical
Gestalt principles of perceptual grouping. Perception & Psychophysics, 61(4),
661-674.

Healy, K. (2019). Data visualization: a practical introduction. Princeton, NJ:
Princeton University Press.

Kosara, R. (2013). "Continuous values and baselines." Eager Eyes https.//eagereyes.
org/basics/baselines.

Kosslyn, S. M. (1994). Elements of graph design. New York: W. H. Freeman and
Company.

Kosslyn, S. M. (2006). Graph design for the eye and mind. New York: Oxford
University Press.

Kuznetsova, A, Brockhoff, P. B, & Christensen, R. H. B. (2017). Imertest package: tests
in linear mixed effects models. Journal of Statistical Software, 82(13), 1-26.
https://doi.org/10.18637/jss.v082.13.

Lenth, R. (2019). emmeans: estimated marginal means, aka least-squares means
(Version 1.3.3). Retrieved from https://CRAN.R-project.org/package=emmeans

Palmer, S., & Rock, I. (1994). Rethinking perceptual organization: the
role of uniform connectedness. Psychonomic Bulletin & Review,

1(1), 29-55.

Pandey, A. V., Rall, K, Satterthwaite, M. L, Nov, O., & Bertini, E. (2015). How
deceptive are deceptive visualizations?: an empirical analysis of
common distortion techniques. In Paper presented at the Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing
Systems, Seoul, Republic of Korea.

Pennington, R, & Tuttle, B. (2009). Managing impressions using distorted graphs
of income and earnings per share: the role of memory. International Journal
of Accounting Information Systems, 10(1), 25-45. https.//doi.org/10.1016/j.
accinf.2008.10.001.

Pinker, S. (1990). A theory of graph comprehension. In R. Freedle (Ed.), Artificial
Intelligence and the Future of Testing, (pp. 73-125). Hillsdale: Lawrence
Erlbaum Associates.

Playfair, W. (1786). Commercial and political atlas: representing, by copper-
plate charts, the progress of the commerce, revenues, expenditure, and
debts of England, during the whole of the eighteenth century. London:
Corry.

R Core Team (2017). R: A language and environment for statistical computing.
Retrieved from https.//www.r-project.org

Skelton, C. (2018). Bar charts should always start at zero. But what about line
charts? Retrieved from http://www.chadskelton.com/2018/06/bar-charts-
should-always-start-at-zero.html

Tufte, E. R. (2001). The visual display of quantitative information, (2nd ed., ).
Cheshire: Graphics Press.

Wagemans, J,, Elder, J. H, Kubovy, M, Palmer, S. E, Peterson, M. A, Singh, M., &
von der Heydt, R. J. (2012). A century of Gestalt psychology in visual
perception: |. Perceptual grouping and figure-ground organization.
Psychological Bulletin, 138(6), 1172-1217.

Wertheimer, M. (1912). Experimentelle studien uber das sehen von
bewegung. Zeitschrift fur Psychologie, 61, 161-265. (Translated extract
reprinted as “Experimental studies on the seeing of motion”). In T.
Shipley (Ed.), Classics in psychology, (vol. 1961, pp. 1032-1089). New
York: Philosophical Library.

Westfall, J., Kenny, D. A, & Judd, C. M. (2014). Statistical power and
optimal design in experiments in which samples of participants
respond to samples of stimuli. Journal of Experimental Psychology:
General, 143(5), 2020-2045. https://doi.org/10.1037/xge0000014.

Witt, J. K (in press). Graph construction: an empirical investigation on setting the
range of the y-axis. Meta-Psychology. https.//www.google.com/search?q=
Graph-++construction%3A-+an-+empirical+investigation+on+setting+the+
range+of+the+y-axis&ie=utf-8&oe=utf-8

Page 17 of 17

Yau, N. (2015). Bar chart baselines start at zero. Retrieved from https://
flowingdata.com/2015/08/31/bar-chart-baselines-start-at-zero/

Zacks, J,, & Tversky, B. (1999). Bars and lines: a study of graphic communication.
Memory & Cognition, 27(6), 1073-1079.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



https://eagereyes.org/basics/baselines
https://eagereyes.org/basics/baselines
https://doi.org/10.18637/jss.v082.i13
https://cran.r-project.org/package=emmeans
https://doi.org/10.1016/j.accinf.2008.10.001
https://doi.org/10.1016/j.accinf.2008.10.001
https://www.r-project.org
http://www.chadskelton.com/2018/06/bar-charts-should-always-start-at-zero.html
http://www.chadskelton.com/2018/06/bar-charts-should-always-start-at-zero.html
https://doi.org/10.1037/xge0000014
https://www.google.com/search?q=Graph+construction%3A+an+empirical+investigation+on+setting+the+range+of+the+y-axis&ie=utf-8&oe=utf-8
https://www.google.com/search?q=Graph+construction%3A+an+empirical+investigation+on+setting+the+range+of+the+y-axis&ie=utf-8&oe=utf-8
https://www.google.com/search?q=Graph+construction%3A+an+empirical+investigation+on+setting+the+range+of+the+y-axis&ie=utf-8&oe=utf-8
https://flowingdata.com/2015/08/31/bar-chart-baselines-start-at-zero/
https://flowingdata.com/2015/08/31/bar-chart-baselines-start-at-zero/

	Abstract
	Significance
	Introducing hat graphs
	Experiment 1
	Method
	Participants
	Stimuli and apparatus
	Procedure

	Results and discussion

	Experiment 2
	Method
	Results and discussion

	Experiment 3
	Method
	Participants
	Stimuli and apparatus
	Procedure

	Results and discussion

	Experiment 4
	Method
	Participants
	Stimuli and apparatus
	Procedure

	Results and discussion

	Experiment 5
	Method
	Results and discussion

	General discussion
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

