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Abstract 

Background  Staphylococcus aureus is a leading cause of human bacterial infections worldwide. It is the most com-
mon causative agent of skin and soft tissue infections, and can also cause various other infections, including pneumo-
nia, osteomyelitis, as well as life-threatening infections, such as sepsis and infective endocarditis. The pathogen can 
also asymptomatically colonize human skin, nasal cavity, and the intestine. S. aureus colonizes approximately 20–30% 
of human nostrils, being an opportunistic pathogen for subsequent infection. Its strong ability to silently spread 
via human contact makes it difficult to eradicate S. aureus. A major concern with S. aureus is its capacity to develop 
antibiotic resistance and adapt to diverse environmental conditions. The variability in the accessory gene regula-
tor (Agr) region of the genome contributes to a spectrum of phenotypes within the bacterial population, enhanc-
ing the likelihood of survival in different environments. Agr functions as a central quorum sensing (QS) system in S. 
aureus, allowing bacteria to adjust gene expression in response to population density. Depending on Agr expression, 
S. aureus secretes various toxins, contributing to virulence in infectious diseases. Paradoxically, expressing Agr may 
be disadvantageous in certain situations, such as in hospitals, causing S. aureus to generate Agr mutants responsible 
for infections in healthcare settings.

Main body  This review aims to demonstrate the molecular mechanisms governing the diverse phenotypes of S. 
aureus, ranging from a harmless colonizer to an organism capable of infecting various human organs. Emphasis will 
be placed on QS and its role in orchestrating S. aureus behavior across different contexts.

Short conclusion  The pathophysiology of S. aureus infection is substantially influenced by phenotypic changes 
resulting from factors beyond Agr. Future studies are expected to give the comprehensive understanding of S. aureus 
overall profile in various settings.

Keywords  Staphylococcus aureus, Accessory gene regulator, Quorum sensing, Infectious diseases, Skin infection, 
Atopic dermatitis, Systemic infection

Background
S. aureus resistance and adaptation to the ecological niche
Throughout human history, we have consistently battled 
bacteria. However, bacteria have persistently sought out 
vulnerabilities in our attempt and adapted to their ever-
changing environment. The mortality rate from systemic 
S. aureus infections was approximately 80% before the 
discovery of antibiotics [1]. The discovery of penicil-
lin in 1928 [2] and its clinical use temporarily decreased 
the death toll due to bacterial pneumonia and meningi-
tis during World War II. However, only 2 years after the 
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clinical introduction of penicillin, the penicillin-resistant 
S. aureus strains developed [1] and became predominant 
worldwide: 80% of clinical isolates were resistant to peni-
cillin by 1945 and penicillin-resistant S. aureus became a 
pandemic throughout the late 1950s and early 1960s [1]. 
These strains encode β-lactamase, which is capable of 
hydrolyzing the β-lactam ring of penicillin [1]. To over-
come this, methicillin, the semisynthetic β-lactamase-
resistant antibiotic, was developed in 1959, although it 
led to the emergence of methicillin-resistant S. aureus 
(MRSA) soon after in 1961 [3]. MRSA arises due to the 
presence of the mecA gene. This gene encodes a modi-
fied penicillin-binding protein with reduced affinity for 
methicillin and other β-lactam antibiotics [3]. Impor-
tantly, mecA is situated within the Staphylococcal cassette 
chromosome mec (SCCmec), a mobile genetic element 
(MGE) that has the capability to transfer between bacte-
rial strains [3]. This transferability of SCCmec contributes 
to the spread of methicillin resistance among S. aureus 
strains. MRSA spread worldwide over the next several 
decades and started to cause an endemic in hospitals 
and healthcare facilities, affecting immune-compromised 
hosts and causing life-threatening infections. Starting 
from the 1980s, MRSA spread globally to such an extent 
that many countries now report MRSA rates of 50% or 
higher among infective S. aureus isolates in hospitals [4]. 
For a while, MRSA was confined to only hospitals and 
healthcare settings. However, since early 1990s, MRSA 
started to cause outbreaks among otherwise healthy indi-
vidual outside of the hospital settings, such as in sports 
teams, army recruits, or prisoners [5]. These novel MRSA 
strains, capable of infecting healthy individuals within 
the community, have been designated as community-
associated (CA)-MRSA strains. In contrast, the tradi-
tional strains prevalent in hospital settings are referred 
to as hospital-acquired (HA)-MRSA strains. CA-MRSA 
infections are now prevalent and widespread worldwide 
[4]. Notably, CA-MRSA strains are more virulent and 
transmissible than are traditional HA-MRSA strains [6]. 
CA-MRSA gains methicillin resistance via small size 
SCCmec, type IV and V, which is attributed to less met-
abolic burdens of protein synthesis during replication, 
whereas HA-MRSA carries other large SCCmec types [7, 
8]. It became clear that HA-MRSA and CA-MRSA differ 
in host selectivity and virulence. As the history proves, a 
formidable ability to adapt to a specific ecological niche, 
with the host immune system and environment, seems to 
be the core characteristics of S. aureus survival strategy. 
Currently, S. aureus is gaining new resistance to differ-
ent antibiotics [9]. Multi-resistant S. aureus in hospitals 
not only leads to death and disability of immunocompro-
mised hosts, but also prolongs illness of those who sur-
vive and requires more expensive medication, posing a 

financial challenge [10]. Understanding the fundamental 
bacterial property that enables MRSA to adapt to various 
environments and eventually gain resistance is an urgent 
need to fight against this bacterium. Recent advances in 
genome sequencing enabled us to understand bacterial 
genomic transition in detail [11]. In particular, the vari-
ation in the accessory gene regulator (Agr) region on the 
genome seems to generate a kaleidoscopic of phenotypes 
within the bacterial population and increases the likeli-
hood of bacterial survival in versatile environments [12–
14]. In this review, we will discuss how Agr regulates the 
bacterial phenotype in various infectious diseases.

Agr quorum sensing in S. aureus
The quorum sensing (QS) system is the ability of bacteria 
to adjust gene expressions in response to their popula-
tion density [15]. Many bacteria secrete chemical signal-
ing molecules, called autoinducers, which vary between 
species [15]. When a bacterial population increases and 
the corresponding autoinducers reaches a threshold 
concentration, the signal activates a regulator that can 
induce or repress target genes [15]. Among the many 
traits controlled by QS is the expression of virulence fac-
tors, conjugation, biofilm formation [15]. S. aureus pos-
sesses an auto-regulatory operon, Agr system, as a QS 
function (Fig.  1) [16]. S. aureus consistently releases an 
exocrine auto-inducing peptide (AIP). AgrD is the 45–47 
residue peptide precursor of AIP [16], which is proteo-
lytically processed by AgrB, a trans-membrane peptidase. 
AgrB-mediated cleavage of AgrD results in the formation 
of AIP [17–19], which is transported to the extracellular 
space [20]. This peptide is typically seven to nine amino 
acids in length and features a distinctive five-residue thi-
olactone ring formed between the C-terminal end and a 
conserved cysteine residue [16]. When AIP reaches the 
threshold, the transmembrane receptor on the cell sur-
face, AgrC, is activated via autophosphorylation of its 
histidine protein kinase (HPK) domain [16]. The phos-
phate of HPK is transferred to AgrA, which in turn binds 
and activates two bidirectional promoters, P2 and P3 in 
agr operon [16]. The P2 promoter drives the autoregu-
lation circuit of Agr, by inducing the expression of the 
agrBDCA operon, that encodes the machinery of the QS 
system. In contrast, the P3 promoter regulates various 
toxins via RNAIII, a large regulatory RNA which has a 
complex secondary structure with several C-rich hairpin 
loops to interact with its target mRNAs [16, 21]. RNAIII 
also encodes the delta-hemolysin gene (hld), known as 
δ-toxin [16]. In the following section, we will discuss 
various toxins regulated by the Agr system. Their patho-
logical role in infections will be discussed in subsequent 
sections.
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SarA, the upstream regulator of Agr
In addition to AgrA, other regulators are known to con-
trol agr expression [22]. Among these are SarA and SarR, 
both winged-helix DNA-binding proteins. SarA binds to 
the conserved regions, Sar boxes, within the promoter 
region of targeted genes [23, 24]. In association with Agr, 
SarA binds to the P2-P3 intergenic region in agr operon, 
induces DNA bending, and thus allow interaction of two 
AgrA dimers to result in the efficient recruitment of RNA 
polymerase and augmentation of RNAII transcription 
[25]. Without effective SarA enhancement, Agr operon 
can be only weakly activated [25]. Additionally, SarA 
binds to promoter regions of α-toxin and fibronectin-
binding protein A to enhance their expressions [23, 24]. 
Therefore, SarA controls regulation of certain Agr-regu-
lated virulence factors both directly and indirectly [26]. 
Contrary to SarA, SarR functions as a brake to attenu-
ate Agr expression during the stationary phase, when 
cell growth reaches a confluence. During the post-expo-
nential phase, SarR accumulates and binds to the agr 
promoter at a site that overlaps with SarA. This binding 
results in the displacement of SarA and the reversal of 
DNA bending [25]. Although not directly affected, agr 
P3 promoter is indirectly affected by the SarA/R system 

via its regulation on the P2 promoter and resulting agr 
operon machinery [25].

The SarA protein family is a collection of DNA-binding 
proteins homologous to SarA (SarR, SarS, SarT, SarU, 
SarV, SarX, SarZ, MgrA, and Rot) [22]. While each pro-
tein acts on various gene expressions independently, the 
SarA family also interact each other in a complexed man-
ner and create a hierarchical regulatory cascade, affecting 
Agr expression in a complicated way. The interplay of the 
SarA family and its effect on Agr is only partially under-
stood [20, 22].

Phenol‑soluble modulin
Phenol-soluble modulins (PSMs) are a family of small 
(2–5  kDa), amphipathic, α-helical peptides, including 
PSMα, PSMβ, and PSMγ (also called δ-toxin and delta-
hemolysin) [27, 28] (Table  1). In addition to activating 
P2 and P3 promoter in the agr region, AgrA is capable 
of directly binding to the promoters of the PSMα (encod-
ing PSMα1-α4) and PSMβ (encoding PSMβ1 and β2) 
[29]. The gene locus of δ-toxin (hld) is located in RNAIII 
region of agr operon thus transcribed by P3 promoter 
[30]. The essential virulence of PSM peptides rely on its 
cytolytic property, although not all PSMs from S. aureus 

Fig. 1  Agr quorum sensing in Staphylococcus aureus. S. aureus consistently releases AIP. When the population density and corresponding 
AIP reaches the threshold, the receptor on the cell surface, AgrC, is activated via autophosphorylation of the histidine kinase. The phosphate 
is transferred to AgrA, which in turn binds and activates two bidirectional promoters, P2 and P3 in agr operon. The P2 promoter drives 
the autoregulation circuit of Agr, by inducing the expression of agrBDCA operon, that encodes the machinery of the QS system. AgrD is cleaved 
by AgrB, a trans-membrane peptidase, to form of AIP. The P3 promoter regulates various toxins via RNAIII, which is a large regulatory RNA. RNAIII 
exhibits a complex secondary structure with several C-rich hairpin loops, many of which align with the Shine-Dalgarno sequence of targeted genes. 
These interactions can manifest as either inhibitory or stimulatory. RNAIII also encodes hld, a gene responsible for δ-toxin. Agr accessory gene 
receptor, AIP auto-inducing peptide, QS quorum-sensing, SD Shine-Dalgarno sequence
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are cytolytic. PSMα, especially PSMα3, has a pronounced 
ability to lyse human leukocytes, erythrocytes, and epi-
thelial cells; δ-toxin has moderate cytolytic activity; and 
PSMβ peptides are non-cytolytic [31]. Although the 
exact mechanism of PSM toxicity against host cells is still 
unclear, the characteristic amyloid protofilaments assem-
bled by stacking of amphipathic helices, which gives them 
surfactant-like characteristics, are proposed to result in 
the pathogenic activity in PSMα and PSMβ [32, 33].

PSMα plays a major role in the bacterial interac-
tion with neutrophils. Neutrophils can directly respond 
to specific bacterial molecules, ‘‘pathogen-associated 
molecular patterns,’’ via Toll-like receptors (TLRs) [44] 
or certain G protein-coupled receptors (GPCRs), such as 
the formyl peptide receptor (FPR) family [45]. FPR rec-
ognize the formylated bacterial peptides and can activate 
host cells as well as elicit chemotactic migration. A for-
mylated methionine is a hallmark of bacteria since only 
bacterial cells start protein biosynthesis with formylated 
methionine, whereas the human cells use an unmodified 
methionine for the initiation of translation [45]. At sub-
cytolytic concentration, PSMα stimulate leukocytes via 
FPR2 and initiate pro-inflammatory responses, including 
neutrophil chemoattraction activation, and the release of 
interleukin (IL)-8 [34]. Once S. aureus is recognized by 
TLRs or GPCRs of immune cells, neutrophils migrate 
from vessels into tissues, phagocyte bacteria, and kill the 
bacteria. PSMα at high concentrations is able to lyse neu-
trophils after phagocytosis and induce a marked proin-
flammatory response while promoting bacterial survival 
[46, 47].

In contrast to the pro-inflammatory response in neu-
trophils, PSMα3 modulates monocyte-derived den-
dritic cells (moDC) to a tolerogenic phenotype in vitro. 
PSMα3 incubation with moDC led to impaired TLR2/4-
induced maturation, decreased pro- and anti-inflam-
matory cytokine secretion, as well as reduced antigen 
uptake, and thus possibly increased the immune-toler-
ance toward the bacteria [48, 49].

Although very little is known about the role of 
PSMβ, it seems like PSMβ partly reverses the effect of 
PSMα  on neutrophils and alleviate inflammation. This 
anti-inflammatory effect was seen in some reports, as 
measured by serum IL-6, neutrophil apoptosis in vitro, 
resulting in decreased host mortality in a mouse sep-
sis model [50] and a smaller dermonecrotic area in a 
subcutaneous injection model [31]. Meanwhile, δ-toxin 
is known to directly activate mast cells to degranulate 
[36].

In addition to the psm locus found in the core 
genome, some strains, particularly HA-MRSA, possess 
psm-mec. This is a mobile genetic element that contains 
both the psm and mecA genes. PSM-mec is responsi-
ble for antibiotic resistance and cytolytic capacity at 
the protein level. Interestingly, the psm-mec locus also 
encodes a regulatory RNA that inhibits the translation 
of the agrA gene [51]. The impact of this gene cassette 
on enhancing or inhibiting PSM expression is highly 
dependent on the specific strain, possibly due to the 
counteracting effects of the PSM-mec peptide and the 
RNA-controlled inhibitory effects of psm-mec [52, 53].

Table 1  Major virulent mechanisms of Agr-related toxins

Toxin (gene) Contribution of Agr expression on 
genes

Molecular character Major virulent mechanism References

PSMα (PSMα) Activation (AgrA enhances PSMα 
promoter)

Amyloid protofilaments assembled 
by stacking of amphipathic helices

-Low concentration: stimulate leuko-
cytes FPR2, leading to inflammatory 
response

[34]

-High concentration:Cytolytic 
against leuckocytes, keratinocytes, 
and erythrocytes

[31, 35]

PSMβ (PSMβ) Activation (AgrA enhances PSMβ 
promoter)

Unknown

δ-toxin (hld) Activation (hld encoded in RNAIII) Mast cell degranulation [36]

α-toxin (hla) Activation (RNAIII initiate hla transla-
tion)

Pore-forming -Pore forming cytotoxicity via ADAM10 
binding in epithelial, endothelial, 
and immune cells

[37, 38]

-Platelets aggregation [39]

-Inflammasome response in mac-
rophages

[40]

protein A (spa) Downregulation (RNAIII inhibit spa 
mRNA, RNAIII-spa mRNA degraded 
by RNAse III)

Five homologous Ig-binding domains -Resist opsonization by Fc binding [41, 42]

-Activate TNFR1 [43]
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Alpha‑toxin
α-Toxin or α-hemolysin (hla) is a pore-forming toxin 
secreted as a soluble monomer [38]. α-Toxin assembles 
upon contact with the host disintegrin and metallopro-
tease 10 (ADAM10) to heptameric, β-barrel structure 
creating a cytolytic pore [37, 38]. Caveolin-1, the main 
component of the cell membranes, interacts with α-toxin 
and stabilizes the pore [54]. The hla mRNA normally 
forms a hairpin loop that prevents the ribosome from 
accessing its ribosome-binding site. RNAIII in the agr 
operon can bind to the hla mRNA, relieving the hairpin 
loop structure and allowing the ribosome to recognize 
the binding site for hla translation initiation [55]. Addi-
tional to Agr, hla expression levels can also be enhanced 
by the SarA regulatory systems as described above [24, 
25, 56]. Although Agr appears to be the main regulator of 
hla expression, how other regulatory circuits contribute 
to hla expression in vivo remains unclear [57].

α-Toxin was initially named as α-hemolysin based on 
its property to lyse rabbit red blood cell, although later 
works revealed that human erythrocytes are devoid of 
ADAM10 and thus are insensitive to α-toxin [38, 58]. 
Rather, α-toxin intoxicates a wide range of human cell 
types via ADAM10 binding, including epithelial [38], 
endothelial [59], and immune cells, including T cells, 
monocytes, macrophages, and neutrophils [38, 60]. Addi-
tionally, recent works emphasize on α-toxin ability to 
cause the human platelets aggregation through ADAM10 
interaction [39]. In vivo, α-toxin is an important virulence 
determinant contributing to skin necrosis in a subdermal 
injection model [61, 62], lethality in pneumonia [63, 64], 
and high bacterial burden in a brain abscess model [65]. 
α-Toxin contributes to the host lethal outcome in blood-
stream infections [59] through disseminated thrombo-
sis caused by platelets and neutrophil intoxication [39, 
66]. The strong virulence of α-toxin depends on direct 
cell lysis as well as its ability to elicit host inflammatory 
responses. Intoxication with α-toxin induces inflamma-
some activation and result in IL-1β secretion and cell 
death in macrophages and monocytes [67]. The follow-
ing inflammatory response leads to recruitment of vari-
ous immune cells and reaction, leading to necrotic tissue 
injury [68].

Consistent with murine experiments, α-toxin-
ADAM10 interaction poses a deteriorating effect on 
human. In patients with OTULIN (a linear deubiquit-
inase) haploinsufficiency, increased levels of linear ubiq-
uitin caused the accumulation of caveolin-1 complexes 
in dermal fibroblasts, not in leukocytes [69]. Caveolin-1 
accumulation enhanced the cytotoxicity of α-toxin and 
resulted in a life-threatening Staphylococcal disease 
of the skin and lungs [69]. The good news is, α-toxin-
neutralizing antibodies could rescue the impaired 

cell-intrinsic immunity to α-toxin in these patients 
[69]. Meanwhile, human possesses an innate immune 
mechanism utilizing autophagy machinery to counter-
act α-toxin-induced toxicity. Upon recognition of bacte-
rial and CpG DNA, host cells transfer ADAM10-bearing 
exosomes to the cell surface and expose decoy ADAM10 
to trap α-toxin [70]. These studies suggest that genetic 
differences in α-toxin-ADAM10 signaling may produce 
phenotypic variation in human S. aureus infections.

Notably, although α-toxin contribution to host organ 
damage and lethality is evident, some studies report 
α-toxin as not being responsible for high bacterial load 
in the infection model. In a peritoneal infection model, 
α-toxin contributed to high mice lethality, but did not 
affect the remaining bacterial load in peritoneal cavity 
[71]. Additionally, in a corneal infection model, α-toxin 
contributed to high corneal damage, but did not affect 
bacterial load on the cornea [72]. α-Toxin deletion led 
to a small abscess formation in a subcutaneous injec-
tion model, but did not change the bacterial load [73]. 
Moreover, conditional knockout of ADAM10 in lung 
alveolar epithelium led to increased survival, but did not 
alter bacterial load in S. aureus pneumonia [64]. Thus, 
α-toxin-ADAM10 interaction is essential for progressive 
lethal disease, although it may not affect toxin-mediated 
control of the tissue bacterial load, depending on the 
conditions and model for in vivo assay (Table 1).

Other Agr‑regulated toxins
Transcriptome analysis revealed other toxins and 
enzymes positively regulated by the Agr system, such 
as serine proteases (SplA-F, SspA), cysteine proteases 
(ScpA, SspB), gamma-hemolysin (Hlg), and lipase (Geh) 
[26]. Among them, some proteases are known to con-
tribute to virulence through proteolytic activity against 
specific targets. For instance, SspA targets the Fc region 
of immunoglobulins, degrading it and disrupting the 
effector function of antibodies [3]. This action leads to 
a partial loss of antigenic determinants of the antibody. 
Moreover, SspA damages tight junctions on keratino-
cytes, contributing to the development of atopic derma-
titis. Another set of proteases, the six serine protease-like 
proteins (SplA-SplF), encoded in a single operon, trigger 
Th2 cytokines and induce the production of IgE antibod-
ies in response to allergens [3]. This immune response is 
implicated in the development of various chronic airway 
diseases, including asthma and pneumonia.

Toxins downregulated by Agr system
In contrast, RNAIII downregulates some surface pro-
teins, including protein A (Spa) [26]. Protein A interferes 
with immune cells by (1) non-specifically binding to the 
Fc portion of IgG and escape phagocytes opsonization 
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and (2) binding to the Fab region of IgM to serve as a 
B cell superantigen and cause B cell apoptosis [41, 42]. 
Protein A also activates tumor necrosis factor receptor 
(TNFR)1, a receptor for TNF-α on airway epithelium 
even without IgG, and elicits inflammatory response [43] 
(Table 1).

Spa gene expression is negatively controlled by Agr 
expression through two distinct mechanisms. First, 
RNAIII directly inhibits spa mRNA by RNA-RNA inter-
actions, inhibiting access to the ribosome binding site 
[74]. Second, the complex formed between RNAIII and 
spa mRNA is also a substrate for RNAse III, thus RNAIII 
can also inhibit Protein A production by enhancing the 
degradation of spa mRNA [74]. Additionally, spa is 
repressed by SarA by binding and altering the mRNA 
turnover [75] (Table  1). Thus, Agr expression may sac-
rifice some virulence factors associated with surface 
proteins.

Other than Protein A, Agr has been described to gener-
ally downregulate adhesion factors, collectively referred 
to as microbial surface components recognizing adhe-
sive matrix molecules (MSCRAMMs). However, more 
recent studies revealed that Agr does not regulate most 
MSCRAMMs in clinical strains [76].

Interspecies quorum sensing between bacteria
In addition to S. aureus, other staphylococcal species 
also employ AIPs for Agr Quorum Sensing. Despite 
these species sharing a common AIP structure, there are 

variations in the amino acid sequences of several AIPs. 
Consequently, staphylococci with different AIP types 
engage in competitive interactions. They upregulate the 
expression of Agr in bacteria with the same AIP type, 
while concurrently downregulating the expression of Agr 
in other staphylococci with different AIP types [77].

S. aureus necessitates functional Agr to colonize skin 
and cause Th2‑driven skin inflammation in atopic 
dermatitis
In addition to its role as an opportunistic pathogen, 
Staphylococcus aureus can establish colonization on vari-
ous human sites such as the skin, nares, and intestine. 
Notably, S. aureus skin colonization is strongly associ-
ated with atopic dermatitis (AD), a condition influenced 
by environmental factors, Th2 cell-skewed immunity, 
and deficiencies in the skin barrier [78]. The pathogenesis 
of AD is further complicated by alterations in the skin 
microbiome, known as dysbiosis. In fact, a significant 
percentage (30–100%) of AD patients are found to be col-
onized with S. aureus, in contrast to an approximate 20% 
prevalence in healthy control subjects [79, 80]. Moreo-
ver, the bacterial loads of S. aureus on the skin have been 
observed to correlate with the severity of AD [81, 82]. 
Despite these associations, the specific contribution of S. 
aureus to the pathogenesis of AD remained unclear until 
recent developments in research (Fig. 2).

The human skin microbiome is composed of bacteria, 
archaea, viruses, and fungi, and differ in communities 

Fig. 2  Retention of Agr in infant skin is related to atopic dermatitis. In a Japanese cohort study, S. aureus colonization at 1 month old did not affect 
the development of AD at 1 year old. However, possessing S. aureus on skin at 6 months old substantially increases the risk of developing AD 
at 1 year old. The whole-genome sequencing revealed that S. aureus on skin of the infants who did not develop AD by the age of one year acquired 
loss-of-function mutations in the agr locus between one and six months of age, whereas retention of a functional Agr is crucial for S. aureus 
to colonize the infants’ skin and cause AD. AD atopic dermatitis



Page 7 of 17Yamazaki et al. Inflammation and Regeneration            (2024) 44:9 	

at different body sites [83]. The infant skin microbiome 
is affected by various factors including delivery mode 
and neonatal skin barrier [84, 85], although the long-
term consequences of these initial perturbations are 
not known. The early life microbiome undergoes fre-
quent strain replacements over time [86]. During 
puberty, the sebaceous glands increase sebum produc-
tion, and postpubescent skin favors lipophilic organ-
isms [80, 87, 88]. The skin microbial communities in 
healthy adults remains stable, regardless of environ-
mental perturbations [89]. However, dysbiosis associ-
ated with AD is characterized by decreased microbial 
diversity and an increase in Staphylococcus in gen-
eral, especially S. aureus [79, 90–94]. Why and when 
S. aureus particularly colonizes AD-infected skin, 
especially on the lesional skin, remains unclear. One 
cohort study analyzed infants skin microbiome sequen-
tially during 1 to 6  months after birth and found that 
approximately 45% of the infants were colonized with S. 
aureus in the cheek at 1 month, whether or not infants 
developed AD later in their life [13]. However, pos-
sessing S. aureus on skin at 6 months old substantially 
increases the risk of developing AD later in life [13]. 
Whole-genome sequencing of the bacterial genome 
showed that having a properly functioning Agr is cru-
cial for S. aureus to colonize the infants’ skin and cause 
AD [13]. Additionally, a murine model of epicutane-
ous S. aureus colonization demonstrated that the Agr 

system plays a critical role in the epidermal coloniza-
tion [13] (Fig.  3). Moreover, only Agr-positive strains 
could induce AD-like eczematous skin, as measured by 
skin disease score and histological analysis. Another 
study utilizing Staphylococcus caprae to inhibit the S. 
aureus Agr QS via AIP competition also exhibited that 
Agr-expressing S. aureus colonized on the skin of mice 
more efficiently than the Agr-suppressed strain [95]. 
Thus, functional agr seems to be necessary for S. aureus 
to colonize skin. This may explain why S. aureus on 
AD-infected skin can be a silent colonizer in a steady 
state, but also transform into a pathogenic phase with 
increase in number during an AD flare. Certain toxins 
reportedly playing key roles in the AD development are 
actually regulated by Agr, thus are only expressed when 
the bacteria reach high population densities. Specifi-
cally, δ-toxin and PSMα, which are regulated under the 
Agr system, are proven to elicit skin inflammation in 
AD. δ-toxin is a potent inducer of mast cell degranula-
tion, contributing to the T helper 2 (Th2)-driven skin 
inflammation represented by IgE and IL-4 production 
in mice epicutaneous S. aureus infection models (Fig. 3, 
Table  1) [36]. Concomitant with mice data, S. aureus 
isolates recovered from patients with AD produced 
high levels of δ-toxin [36]. On the other hand, another 
study utilized AIPs derived from coagulase-negative 
staphylococci (CoNS), specifically S. epidermidis, 
to inhibit the Agr system of S. aureus and alleviated 

Fig. 3  Agr-regulated toxins in atopic dermatitis. A Upon contact with S. aureus, keratinocytes detect PSMα, triggering the release of alarming 
signals, such as IL-1α and IL-36α. The receptors IL-1R and IL-36R become amplified during the inflammatory response in immunocompetent cells, 
leading to the induction of IL-17-producing γδ T cells and ILC3. IL-17 plays a crucial role in protective immunity against bacteria by promoting 
neutrophil recruitment. δ-toxin is a potent inducer of mast cell degranulation, contributing to the Th2-driven skin inflammation represented by IgE 
and IL-4 production. B Once bacteria reach the dermis, S. aureus utilizes PSMα to escape from phagosomes into the cytosol and limit both oxidative 
and non-oxidative pathogen killing after neutrophil engulfment. This leads to bacterial growth and consecutive inflammation in dermis. PSM: 
phenol-soluble modulin
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skin symptoms (M. R. [96]. This competitive interfer-
ence highlights the intricate dynamics among different 
staphylococcal species and their impact on skin health.

Keratinocytes serve as the frontline defense against 
bacteria, actively sensing microbial presence beyond 
their role as a physical barrier. Upon contact with S. 
aureus, keratinocytes detect PSMα, triggering the release 
of alarming signals, such as IL-1α and IL-36α, with skin 
barrier disruption [35]. The receptors, IL-1R and IL-36R, 
become amplified during the inflammatory response, 
leading to the induction of IL-17-producing γδ T cells 
and Type 3 innate lymphoid cells [35] (Fig.  3, Table  1). 
IL-17 plays a crucial role in protective immunity against 
bacteria by promoting neutrophil recruitment, antimi-
crobial peptide production, and enhancing barrier func-
tion [97], among which neutrophils are essential for 
preventing S. aureus from invading the dermis [98]. Thus, 
PSMα-induced keratinocytes inflammatory response 
contributes to the protective immunity against S. aureus. 
Meanwhile, epicutaneous S. aureus colonization/infec-
tion enhances Th2-driven skin inflammation and skin 
barrier disruption, two important hallmarks of AD, via 
Agr-regulated toxins (Fig. 3).

Surprisingly, in neutrophil-deficient mice, S. aureus 
penetrates the epidermis with only mild Th2-driven skin 
inflammation and then grows in the dermis [98]. This 
epidermal penetration was dependent Agr and PSMα 
[98]. Once S. aureus reaches into subdermis, pathogen 
grow and expand more severely than neutrophil-suf-
ficient mice, depending on saeR/S but no on Agr [98]. 
This discrepancy may at least partially explain why S. 
aureus requires Agr to cause SSTI in immunocompe-
tent patients, but can infect immunocompromised hosts 
without the need for Agr.

Agr system in skin and soft tissue infections
Clinical features of CA‑MRSA
The most frequent disease manifestation associated with 
CA-MRSA is the skin and soft tissue infections (SSTI), 
accounting for at least 90% of CA-MRSA infections [99]. 
CA-MRSA SSTI are usually severe and often very pain-
ful. Up to 4% cases of CA-MRSA infection manifest as 
very potentially life-threatening skin infections, such as 
necrotizing fasciitis, whereas HA-MRSA rarely leads 
to such an invasive SSTI [100]. CA-MRSA strains also 
cause various infections such as osteomyelitis, pneumo-
nia, sepsis, and urinary tract infections. The observation 
that CA-MRSA strains have the capacity to infect other-
wise healthy people had indicated enhanced virulence. 
Many genetic and phenotypical analyses were attempted 
to establish the key differences of CA-MRSA and HA-
MRSA, revealing Agr system as a significant key player 
in virulence.

Molecular background of strong virulence in CA‑MRSA
The predominant factors of enhanced virulence in CA-
MRSA was initially believed to rely on the bacterial ability 
to evade phagocytes killing by Panton–Valentine leukoci-
din (PVL), a pore-forming toxin to kill immune cells [6, 
101]. However, more recent research have questioned the 
importance of PVL as a major contributor to CA-MRSA 
virulence [63, 102–105]  since an increasing number of 
CA-MRSA clones do not contain lukSF genes responsible 
for PVL [106] and lukSF-deficient clones are not less vir-
ulent than lukSF-containing CA-MRSA clones in animal 
experiments [107]. Rather, recent papers emphasize that 
the Agr system has a crucial role in CA-MRSA infection 
[62, 108, 109]. Many epidemiological studies report that 
dysfunctional Agr is higher among HA-MRSA (25–30%) 
versus CA-MRSA (up to 5%) [110–112]. Therefore, Agr 
plays a key role in CA-MRSA SSTI in vivo.

Agr system in mice subcutaneous injection models
S. aureus can invade the host skin from minor scratches 
or wounds and may cause skin infections to become 
invasive [113]. However, most mouse experiments for 
S. aureus SSTI rely on subcutaneous bacterial injection 
to resemble cellulitis in human clinical settings [114]. 
SSTI in humans also occur without apparent skin bar-
rier impairment, for example at hair follicles (folliculi-
tis), deep (furuncles), or confluent abscesses (carbuncles) 
[115]. With subcutaneous bacterial injection model using 
Agr whole-knock out S. aureus, numerous studies estab-
lished that Agr positive strains cause dramatically strong 
skin inflammatory responses, leading to abscess forma-
tion, skin necrosis, and ulcers with high bacterial load in 
the skin [108, 116, 117]. Hence, functional Agr seems to 
have an essential contribution on CA-MRSA virulence, 
in contrast to HA-MRSA. Among many toxins regulated 
by Agr, PSMα is proven to have a strong impact on bac-
terial burden and abscess formation in mice intradermal 
injection experiments [31, 62]. S. aureus relies on PSMα 
to escape from phagosomes into the cytosol and limit 
both oxidative and non-oxidative pathogen killing after 
neutrophil engulfment, to promote bacterial growth 
within the dermal layer (Fig.  3) [98]. Another study 
showed that agr whole-knock out strains show consid-
erably less abscess formation and bacterial survival than 
PSM knockout strains, suggesting other Agr-regulated 
toxins than PSMα are responsible for S. aureus virulence 
in mice subdermal injection models [118].

In addition to invading host skin from minor scratches 
[113], S. aureus may be capable of actively disrupting the 
epithelial barrier function. α-Toxin activates ADAM10 on 
epithelial cells, thereby cleaving E-cadherin, which is one 
of the most important molecules in cell–cell adhesion 
[119]. Many studies report that α-toxin is an important 
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virulence determinant in mice subcutaneous injection 
models, especially in eliciting skin necrosis [61, 119]. 
However, whether α-toxin is critical in disrupting intact 
skin barrier to invade and cause subcutaneous infection 
remains to be elucidated. A recent study has emphasized 
PSMα function in S. aureus penetrating epidermis to the 
dermis in neutrophil-deficient mice [98].

S. aureus Agr system in bacteremia
S. aureus is one of the most common causes of blood-
stream infections worldwide [120]. The all-cause mortal-
ity rate from S. aureus sepsis in high-income countries 
has been reported to be up to 20–50% [120–123] and the 
recurrence rate reported to be 5–10% [124]. Entry of S. 
aureus into the bloodstream occurs mostly via coloniza-
tion of intravenous catheters or dissemination from skin 
and soft tissue infections [125, 126]. S. aureus bacteremia 
can lead to secondary infectious foci in almost any tissue, 
resulting in a diverse range of infections, including infec-
tive endocarditis, tissue abscesses, meningitis, osteo-
myelitis, and septic arthritis. The bacterial capacity to 
infiltrate and disseminate to a broad range of second host 
tissue infections is the distinct characteristics of S. aureus 
infection. The extensive array of toxins supporting bacte-
rial virulence are collectively termed by their function as, 
adhesins (attachment to host cells), invasins (penetration 
into host cells), and evasin (evasion of the host’s immune 
response), of which some of these effector molecules are 
at least partially regulated by the Agr system [127, 128]. 
Additionally, S. aureus bacteremia can lead to endothe-
lial damage, platelet aggregation, and overt inflamma-
tory responses, resulting in life-threatening disseminated 
intravascular coagulation (DIC). The DIC microthrombi 
further damage the endothelium and block blood flow, 
resulting in oxygen depletion in organs, as well as deplet-
ing available clotting factors and paradoxically causing 
hemorrhages [129]. In this pathophysiology, endothe-
lial damage and platelet activation are related to α-toxin 
under Agr regulation.

It is therefore easy to understand that the Agr system 
is required for systemic infection, as numerous stud-
ies have shown in different animal models of infection. 
However, in the real-world settings, 3–82% of cases of S. 
aureus bacteremia are caused by strains lacking detect-
able Agr activity [130–132]. Moreover, dysfunctional Agr 
is reported to be an independent risk factor for MRSA 
bacteremia-attributed mortality [8]. Notably, S. aureus 
sepsis and systemic infections mostly happen in patients 
in the hospital settings, not in healthy individuals. Some 
epidemiological studies revealed that the healthcare envi-
ronment selects for loss of Agr function and carriage of 
agr-defective strains is strongly associated with a hospi-
tal stay or prior use of antibiotics [111, 133–135]. Some 

studies using clinical isolates revealed that agr mutants 
do not transfer between patients [111] and the dysfunc-
tional mutation of Agr occurs newly in every individual 
infection rather than in a population-wide process [135]. 
However, we still do not know why the lack of Agr can 
be beneficial for S. aureus to cause bacteremia and other 
diseases in immunocompromised patients. There seems 
to be limitations with animal models analyzing each vir-
ulence factor independently to approach the dramatic 
pathogenesis of infections in the host. Nevertheless, 
taking various data into consideration, it appears that S. 
aureus benefits from both expressing and not expressing 
Agr, depending on the specific phase of the infection and 
the location of the pathogen within the host [136]. In the 
bloodstream, apolipoprotein B in serum sequesters AIP, 
blocking Agr activity, and any produced toxins will be 
quickly diluted. Therefore, Agr-regulated toxins do not 
contribute to sepsis severity [137]. Meanwhile in organs, 
maintaining a functional Agr system is useful for sur-
viving inside phagocytes and establishing a niche in the 
host [136]. When S. aureus clumps or reside inside host 
cells, high bacterial density allow them to activate Agr 
and produce toxins. At the later stage of local infection, 
bacteria benefit from not expressing Agr to have strong 
adhesion to organs and avoid eliciting immune responses 
[136]. We will separately review the benefit of expressing 
and not expressing Agr in systemic infections in the fol-
lowing section.

α‑Toxin and PSMα enable S. aureus to survive 
intracellularly in phagocytes
Recent research revealed the role of liver Kupffer cells 
and peritoneal macrophages as infectious reservoirs in 
S. aureus bacteremia [138, 139]. In mice S. aureus sep-
sis experiments, bacteria are trapped in Kupffer cells, 
but survive and multiply within cells, escape to the 
peritoneum and become trapped in peritoneal mac-
rophage, and eventually disseminate to other organs 
(Fig. 4) [138, 139]. This intracellular survival is a critical 
mechanism that determines the development of sub-
sequent S. aureus bacteremia and the establishment of 
infection in other organs [140]. In the initial phase of 
Kupffer cells engulfing S. aureus, platelets rapidly bind 
to the Kupffer cells, preventing escape of the pathogen 
[141]. At the later phase of Kupffer cell-S. aureus inter-
action, platelet aggregation caused by α-toxin induces 
microthrombi and subsequent liver damage [66]. Also 
in human macrophages, α-toxin is a key effector mol-
ecule essential for S. aureus intracellular survival [40]. 
Besides, S. aureus PSMα can lyse neutrophils within 2 
to 4  h after phagocytosis, resulting in re-entry of the 
pathogen into the bloodstream (Fig. 4) [46, 47]. Bacte-
ria may repeat this cycle by being taken up by nearby 
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healthy neutrophils or, alternatively, disseminate to 
other sites causing secondary infection foci [142]. Thus, 
Agr plays a critical role in S. aureus sepsis by facilitat-
ing bacterial survival inside phagocytes and even using 
phagocytes as carriers for dissemination. Additionally, 
α-toxin also activates platelets and endothelial cells in 
sepsis, ultimately leading to DIC (Fig. 4).

Benefit of not expressing Agr in bacteremia
Agr defective clinical isolates seem to arise in a low-
cell-density state particularly in cases with endocardi-
tis, osteomyelitis, and bacteremia [143–145]. Despite 
the loss of toxin production, there is evidence that 
agr-defective strains are considerably more likely to 
cause persistent infection than agr-competent strains, 
resulting in an increased rate of secondary infections 
and mortality [130, 131, 146–149]. The deregulation of 
Agr seems to somehow confer an advantage in certain 
host niches and many studies attempt to reveal how 
these mutations enable S. aureus to infect the host. 
Some plausible explanations for the prevalence of agr-
defective S. aureus strains causing bacteremia are (1) 
Agr-regulated toxins may not be necessary for infect-
ing immune-compromised hosts, (2) agr-defective S. 
aureus have enhanced ability to form a biofilm, and (3) 
S. aureus benefit from other toxins than Agr-regulated 
toxins.

Agr‑defective S. aureus escape host neutrophil attack
Notably, Agr expression enables bacteria to success-
fully escape from phagocytes killing; however, it sup-
posedly leads to a strong immune response, which 
eventually reduces bacterial survival (Fig.  4). In  vitro 
studies reported that Agr-positive strains trigger a strong 
pro-inflammatory response in neutrophils, including 
IL-8 and TNF-α expression, compared with that of Agr 
negative strains [46]. However, in mice sepsis models, S. 
aureus lineage with an attenuated form of PSMα elicited 
increased bacterial burden on bloodstream, with dimin-
ished cytolytic and chemotactic activity toward human 
neutrophils [27, 28]. Thus, Agr defective strains may 
evade recognition and subsequent elimination by host 
neutrophils, thereby successfully disseminating during 
blood infection [27, 28].

Biofilm formation in agr mutants
The contamination of indwelling medical devices is 
another route of infection that occurs frequently in the 
hospital setting [150]. S. aureus can form biofilms, which 
is a multicellular bacteria embedded in an extracellu-
lar matrix to protect them from phagocyte attacks and 
killing. S. aureus can form biofilms on various types of 
abiotic surfaces, such as indwelling medical devices, as 
well as tissue surfaces, such as heart valves in the case 
of endocarditis [150]. Biofilm formation starts from 
bacterial attachment to a surface, production of the 

Fig. 4  Agr system in systemic infection. A In the bloodstream infection, S. aureus PSMα can lyse neutrophils after phagocytosis, resulting 
in re-entry of the pathogen into the bloodstream. Additionally, S. aureus α-toxin can lead to endothelial damage, platelet aggregation, and overt 
inflammatory responses, resulting in life-threatening disseminated intravascular coagulation (DIC). In mice S. aureus sepsis experiments, bacteria 
are trapped in Kupffer cells, but survive and multiply within cells, escape to the peritoneum and become trapped in peritoneal macrophage, 
and eventually disseminate to other organs. α-toxin is involved in the liver damage and intracellular survival in this pathogenesis. B Agr defective S. 
aureus reportedly produces dense biofilm and escapes from immune attack by not eliciting strong inflammatory response. C S. aureus population 
is not always homogeneous in Agr activity but can produce an agr mutant or revertant within them to coordinately survive in various conditions 
in hospitals. PSM phenol-soluble modulin
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extracellular matrix, and the disassembly of the biofilm to 
disseminate to other sites [150]. Many studies attempted 
to reveal molecular mechanisms of biofilm formation, 
although this dynamic process seems to be orchestrated 
by a complex network and the whole process remains 
unclear [150]. Among many regulatory systems involved 
in biofilm formation, Agr reportedly affects biofilm for-
mation either negatively or positively depending on the 
formation step [150].

Many studies showed that the Agr system is necessary 
for efficient S. aureus dissemination from a biofilm infec-
tion and subsequent spreading into neighboring tissues, 
mainly depending on PSMs [151–153]. Another study 
reported S. aureus Agr activation, particularly the PSM 
production, is also a key component in biofilm structur-
ing [152]. An in  vivo study using a murine orthopedic 
implant biofilm infection model showed that macrophage 
phagocytosis and cytotoxicity decrease with the biofilm, 
which is partially dependent on Agr [154]. However, Agr-
dysfunctional strains formed dense and enlarged biofilms 
[155]. Moreover, clinically isolated S. aureus gained agr 
mutation during infection to cause device-associated 
infection and increased biofilm formation [135]. Some 
possible explanations of contraindications in reports are 
(1) Agr may function differently on biofilm production 
and dispersal [156]; (2) the S. aureus population in a bio-
film is not always homogeneous in Agr activity, but can 
produce an agr mutant or revertant within them to coor-
dinately form biofilm [118, 135]; and (3) many environ-
mental conditions such as pH, glucose level, and attached 
surface affect biofilm formation, thus making culture-
based experiments difficult to reproduce the same envi-
ronment as in vivo [150].

To overcome this, recent work used the subcutaneous 
catheter infection model in which catheter pieces were 
coated with bacteria and inserted under the dorsal skin of 
mice for 6 days before bacterial loads in the biofilm were 
analyzed (Fig. 4) [118]. In this model, Agr-dysfunctional 
cells formed larger biofilms than that of Agr-positive cells 
and had increased resistance toward neutrophil attacks 
in immunocompetent mice [118]. Additionally, in a sub-
cutaneous catheter-associated and prosthetic joint-asso-
ciated infection model, sub-inhibitory concentrations 
of antibiotics increased the incidence of agr mutation, 
leading to a considerable increase in bacteria and the 
bacterial load [157]. In these animal models relevant to 
clinical situations in hospitals, Agr-defective strains seem 
to succeed in creating dense biofilm and eventually cause 
bacteria compared to Agr-positive strains. However, this 
thesis remains to be further assessed with other infection 
models, since human serum affects the S. aureus tran-
scriptome and behavior [158], thus biofilm production 
may differ in the subcutaneous space from blood vessels. 

A suitable model of catheter-associated biofilm infection, 
such as a study inserting an indwelling device in blood 
vessels [159], can be used for further study.

Uninhibited protein A production in Agr‑defective S. 
aureus
As mentioned in the previous section, Agr activation 
suppresses some toxin expression. Among them, protein 
A functions as an essential virulence factor in S. aureus 
platelet aggregation, forming an abscess, and elicit-
ing inflammation. Protein A activates platelet aggrega-
tion via its binding to von Willebrand factor [160] and 
is a virulence determinant in endovascular infection in a 
rabbit model of endocarditis [161]. Additionally, protein 
A mutants are unable to form abscesses,  although the 
mechanism remain unknown [162]. As abscess formation 
shield bacteria from host immune cells by a surrounding 
pseudo-capsule and enable bacteria to replicate inside, 
lack of abscess formation leads to quick bacterial elimi-
nation [163]. Moreover, in airway epithelium, protein A 
stimulates TNFR1, and contributes to pathogenesis of 
Staphylococcus-related pneumonia [43]. Thus, expressing 
protein A instead of Agr-regulated toxins may contribute 
to virulence in various settings. The prophylactic or ther-
apeutic use of anti-protein A succeeded in improving the 
survival rate and diminishing bacterial load in mice sep-
sis and peritoneal infection model, suggesting that pro-
tein A is critical in these infection models [164].

In another study analyzing a clinically isolated agr 
defective strain, there were multiple genetic changes in 
virulence factors (such as the S. aureus ESAT6-like secre-
tion system) other than the agr system, which resulted in 
increased virulence in a murine model of bloodstream 
infection. Thus, there was a partial compensation for the 
absence of conventional agr-mediated virulence with 
another virulence factor [133]. Although the functional 
Agr is likely crucial in infection, its importance may be 
substantially diminished in some situations, and Agr-
defective strains may cause mortality through other viru-
lence factors [123, 165–167].

Conclusions
Despite extensive research on S. aureus, there is still a 
notable absence of effective treatments or preventive 
measures for bacterial infections caused by this organ-
ism, apart from antibiotic therapy. The challenge stems 
from the complex expression or suppression of numerous 
virulence factors by this bacterium, influenced by diverse 
environmental conditions such as host immunity, organ 
specificity, and antibiotic utilization, resulting in the 
wide array of intricate phenotypes. Another challenge in 
understanding the pathogenicity of S. aureus lies in the 
reliance on mouse infection models for many research 
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efforts, despite mice not being the natural host for S. 
aureus. Additionally, certain secreted factors exhibit tox-
icity in a strain-specific manner [e.g., CHIPS (a chemo-
taxis inhibitory protein of staphylococci) and PVL], 
further complicating the understanding of the pathogenic 
mechanisms [168, 169].

This review aimed to enhance our understanding of 
S. aureus pathogenesis by focusing on Agr, as a critical 
gene regulation system impacting the bacterial pheno-
type. Altogether, Agr-regulated toxins are essential in 
causing SSTI in immune-competent patients. However, 
agr-defective strains seem to cause sepsis and second-
ary infections in immunocompromised hosts, of which 
bacteria utilize multiple toxins to move between organs 
and live in a specific niche. Notably, while some infection 
types may select for entirely agr-functional or agr-defec-
tive populations, other infections yield mixed populations 
(Fig. 4) [170]. Moreover, agr mutations occur while bacte-
ria are infecting patients, to cope with selective pressures 
[135]. In vitro, the agr revertant rise within a population 
possibly because bacteria cannot acquire essential nutri-
ents in a population completely devoid of Agr-controlled 
secreted degradative enzymes [118]. Thus, instead of 
conducting experiments that directly compare Agr-
expressing and non-expressing strains, a more realistic 
approach may involve a model where a fixed percentage 
of both Agr-expressing and non-expressing strains are 
mixed in a population. This dynamic system, where the 
percentage changes over time, could provide insights into 
more realistic phenomena and the dynamic interactions 
between these strains and hosts. The pathophysiology of 
S. aureus infection is substantially influenced by pheno-
typic changes resulting from factors beyond Agr. Future 
studies are expected to give the comprehensive under-
standing of S. aureus overall profile in various settings.
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