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Abstract

The inflammasome, typically consisting of a Nod-like receptor, apoptosis-associated speck-like protein, and pro-caspase-1,
has recently been identified as a huge intracellular complex, which plays a crucial role in interleukin-1 maturation or
specific physiological functions. Two Nod-like receptors, such as nucleotide-binding oligomerization domains-containing
protein (Nod)1 and Nod2, interact with the receptor-interacting protein serine-threonine kinase (RIPK)2 accompanied by
Iκ-B kinase (IKK) complexes to construct the nodosome, leading to nuclear factor (NF)-κB activation. The aberrant
activation of inflammasomes or nodosomes causes autoinflammatory diseases. Therefore, inflammasomes may be
attractive targets to treat autoinflammatory diseases. Our aim is to develop reconstituted inflammasomes in a cell-free
system to discover specific molecular-target drugs and elucidate the molecular pathogenesis of autoinflammatory
diseases. In this review, we describe reconstituted inflammasomes in a cell-free system.
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Background
Inflammasomes have recently been identified as expand-
ing intracellular complexes that play important roles not
only in innate immunity but also in maintaining specific
physiological functions [1–3]. The aberrant activation of
inflammasomes is thought to be linked to various diseases,
including inflammatory diseases, degenerative diseases,
and tumors [4, 5]. Therefore, inflammasomes may be
attractive targets to treat these diseases. Autoinflammatory
diseases are known to be caused by genetic mutations of
inflammasome components [6–9]. Thus, we aim to
develop reconstituted inflammasomes in a cell-free system
in order to identify specific molecular-target drugs and
elucidate the molecular pathogenesis of autoinflammatory
diseases. In this review, we briefly describe the functions
of several inflammasomes and related diseases, and recon-
stituted inflammasomes in a cell-free system.
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General functions of inflammasomes and related
diseases
The inflammasomes have been known as interleukin
(IL)-1β processing platforms [10, 11]. There are several
well-characterized inflammasomes: NACHT, LRR (NLR),
and PYD domain-containing protein (NLRP)1 inflamma-
some [11], NLRP3 inflammasome [12], absent in melan-
oma (AIM)2 inflammasome [13–16], NLR and CARD
domain-containing protein (NLRC)4 inflammasome [17],
and pyrin inflammasome [18]. The inflammasome typically
consists of an intracellular pathogen pattern-recognition
receptor, an adaptor protein apoptosis-associated speck-
like protein containing a caspase recruitment domain
(ASC), and pro-caspase-1.
The NLRP1 inflammasome was the first described

inflammasome to be described [11]. It has been reported
to be activated by muramyl dipeptide (MDP), anthrax
lethal toxins, and related to neuronal diseases [19].
The NLRP3 inflammasome is a prototype inflamma-

some, activated by various pathogen-associated molecu-
lar pattern molecules (PAMPs) and damage-associated
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molecular pattern molecules (DAMPs) [20]. NLRP3-
activated PAMPs have been reported to include
bacterium-derived pore-forming toxins, lethal toxins, fla-
gellin/rod proteins, MDP, RNA, DNA, virus-derived
RNA, M2 protein, fungus-derived β-glucans, hypha
mannan, zymosan, and protozoon-derived hemozoin
[21]. NLRP3-activated DAMPs include self-derived ATP,
cholesterol crystals, monosodium urate (MSU) crystals,
calcium pyrophosphate dihydrate (CPPD) crystals,
glucose, β-amyloid, hyaluronic acid, and environment-
derived alum, asbestos, silica, alloy particles, UV radi-
ation, and skin irritants [21].
A single amino acid mutation in NLRP3 results in

enhanced inflammasome activation, termed cryopyrin-
associated periodic syndrome (CAPS), including familial
cold autoinflammatory syndrome (FCAS), Muckle–Wells
syndrome (MWS), and neonatal-onset multisystem in-
flammatory disease (NOMID)/chronic infantile neuro-
logic, cutaneous, and arthritis (CINCA) syndrome,
which leads to greater IL-1β secretion without DAMPs or
PAMPs [22–27].
The AIM2 inflammasome consists of AIM2, ASC, and

pro-caspase-1. AIM2 was originally identified as an
interferon-gamma inducible gene product consisting
of an N-terminal pyrin domain (PYD) and C-terminal
hematopoietic interferon-inducible nuclear proteins with
a 200-amino acid repeat (HIN-200) domain. AIM2 is
differentially expressed following the suppression of the
tumorigenic phenotype in a malignant melanoma cell
line [28], and it subsequently acts as a sensor for
cytoplasmic DNA, which forms an inflammasome with
the ligand and ASC to activate caspase-1 [13–16]. The
inappropriate recognition of cytoplasmic self-DNA by
AIM2 contributes to the development of psoriasis,
dermatitis, arthritis, and other autoimmune and inflam-
matory diseases [29].
The NLRC4 inflammasome consists of NLRC4, ASC,

and pro-caspase-1. Since the protein-binding motif of
NLRC4 is CARD instead of the PYD, NLRC4 interacts
with ASC as well as pro-caspase-1 through their CARD.
NLRC4 constitutes an inflammasome, which is required
for the recognition of bacterial flagellin [30, 31]. Several
mutations in the nucleotide-binding domain of NLRC4
cause autoinflammatory diseases, early-onset recurrent
fever flares, and macrophage activation syndrome
(MAS) [32–34].
Pyrin has been identified as a causative gene of theMEFV

product of familial Mediterranean fever (FMF), an auto-
somal recessive inherited autoinflammatory syndrome [35].
Pyrin not only regulates several inflammasomes [36–38]
but also constructs an inflammasome with ASC and pro-
caspase-1, upon recognizing some pathogens [18, 39, 40].
Thus, FMF patients with some pyrin mutations are thought
to show autosomal dominant inheritance [41–43].
General functions of the nodosomes and related
diseases
Nod1 and Nod2, both of which are involved in host recog-
nition of small molecules, activate NF-κB in response to
sensing the component of peptidoglycan [44–47]. NF-κB
activation in Nod1 and Nod2 depends on RIPK2 and IKK
machinery [48]. The core ligand structure of Nod2 is
N-Acetyl muramyl-L-alanyl-D-isoglutamine hydrate, also
known as MDP, of which the structure is common in
bacteria. The ligand for Nod1 is a dipeptide designated
as D-glutamyl-meso-diaminopimelic acid (iE-DAP),
with the structure being derived from a subgroup of
bacteria [44–47].
Functional activation by genetic mutations of Nod2 is

associated with autoinflammatory diseases, Blau syn-
drome (BS), and early-onset sarcoidosis (EOS), which
are characteristics of systemic granulomatous diseases
[49]. However, genetic and functional defects of Nod2
are associated with susceptibility to Crohn’s disease, an
inflammatory bowel disease. There is no known Nod1-
related autoinflammatory disease, but associations
between SNPs in NOD1 and several immune-related
diseases, such as inflammatory bowel disease, atopic
eczema, asthma, and rheumatoid arthritis have been
reported [50–53].

Wheat germ cell-free protein synthesis for
inflammasomes
To construct reconstituted inflammasomes in a cell-free
system, we employed the wheat germ cell-free protein
synthesis system rather than Escherichia coli expression
system [54]. When we identified ASC a central adaptor
protein of inflammasomes, ASC was discovered in the
Triton X-100-insoluble fraction of promyelocytic leu-
kemia cell line HL-60 cells [55], and it was difficult to
synthesize recombinant NLRP3 protein using E. coli
expression due to its solubility. On the other hand, the
wheat germ cell-free protein synthesis has numerous
advantages, such as low cost, ease of availability in large
amounts, low endogenous incorporation, and the cap-
acity to synthesize high-molecular-weight proteins [54].
In addition, it is suitable for the expression of eukaryotic
proteins because it is eukaryotic system [55].

Reconstituted AIM2 inflammasome in a cell-free
system
First, we describe an AIM2 inflammasome in a cell-free
system as a prototype [56] because the AIM2 inflamma-
some has been well-characterized, and its ligand was
reported to be present in poly-deoxyadenylic-deoxythymidylic
acid, poly(dA:dT). The direct interaction between AIM2 and
poly(dA:dT) was elucidated using the amplified luminescent
proximity homogeneous assay (Alpha) [14]. In addition,
activation of the AIM2 inflammasome has been
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reported to be related to various diseases [57–62],
and it is thought to be an attractive drug target for
diseases.
Our reconstituted AIM2 inflammasome basically con-

sists of AIM2 and ASC, and it is considered sufficient
for drug and ligand discovery as it assembles without
pro-caspase-1 or any other components [56].
To synthesize the AIM2 inflammasome, PCR products

for AIM2 and ASC were inserted into a Gateway™
pDONRTM221 Vector (pDONR221) (Life Technologies,
Carlsbad, CA, USA) using Gateway™ BP Clonase™ II
Enzyme mix (Life Technologies, Carlsbad, CA, USA) to
generate entry clones. The AIM2 entry clone pDONR221-
AIM2 was inserted into pEU-E01-GW-bls-STOP for
cell-free protein expression. The ASC entry clones
pDONR221-ASC and pDONR221-ASC-PYD were inserted
into pEU-E01-FLAG-GW-STOP using the Gateway™ LR
Clonase™ II Enzyme mix (Life Technologies, Carlsbad, CA,
USA). The constructed plasmids were used to synthesize
specific proteins with the WEPRO1240 Expression Kit
(Cell-Free, Inc., Matsuyama, Japan) [56].
In our AIM2 inflammasome, proximity between AIM2

and ASC is detected by the Alpha using the combination
of protein-A-conjugated Alpha acceptor beads for FLAG-
tagged proteins and streptavidin-conjugated Alpha donor
beads for biotinylated proteins (Fig. 1).
The AIM2 inflammasome in a cell-free system assem-

bles with its previously reported ligand poly(dA:dT), and
the interaction between AIM2 and ASC was disrupted
by anti-human ASC mAb, and previously reported in-
hibitors CRID3 and glycyrrhizin. Thus, our reconstituted
AIM2 inflammasome in a cell-free system is useful for
investigating novel ligands and drug discovery [56].

Reconstituted NLRP3 inflammasome in a cell-free
system
When AIM2 is replaced by NLRP3, we can easily
develop the NLRP3 inflammasome in a cell-free system.
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Fig. 1 Schematic representation of reconstituted inflammasomes. Once sp
Then, chemical energy of reactive oxygen from donor beads is transferred
There are so many mutations in NLRP3 that causes
of autoinflammatory diseases including CAPS, and
NLRP3 involve various inflammasomopathies. Thus, the
reconstituted NLRP3 inflammasome in a cell-free system
will be a useful tool for investigating inflammasomopa-
thies and drug discovery. In this context, we are going to
develop reconstituted NLRP3 inflammasome in a cell-free
system.

Reconstituted Nod2 nodosome in a cell-free
system
The autoinflammatory disease Blau syndrome (BS)/
early-onset sarcoidosis (EOS) is caused by a point
mutation of Nod2 [49]. Therefore, the Nod2 nodosome
may be an attractive drug target for the treatment of
BS/EOS. We aimed to develop a reconstituted protein–
protein interaction assay system between wild-type Nod2
and the BS/EOS-associated mutants of Nod2 and RIPK2
in a cell-free system, called the reconstituted Nod2 nodo-
some in a cell-free system [63].
The plasmids vector pDONR221-Nod2 and BS/EOS-

associated mutants, pDONR221-Nod2-R334W and
pDONR221-Nod2-N670K, were constructed. pDONR
221-RIPK2 and pDONR221-RIPK2-CARD were also
constructed. Then, the proteins Nod2-WT-Btn, Nod2-
R334W-Btn, Nod2-N670K-Btn, FLAG-RIPK2 and FLAG-
RIPK2-CARD were synthesized using the wheat germ
cell-free system in the same way as AIM2.
In our Nod2 nodosome, proximity between Nod2 and

RIPK2 is basically detected by Alpha using the combin-
ation of protein-A-conjugated Alpha acceptor beads
for FLAG-tagged proteins and streptavidin-conjugated
Alpha donor beads for biotinylated proteins. The Nod2
nodosome in a cell-free system assembles with its
previously reported ligand MDP. The Nod2 nodosomes
with BS/EOS-associated mutations Nod2-R334W and
Nod2-N670K were more sensitive to MDP than Nod2-WT.
Therefore, we think that our Nod2 nodosome in a cell-free
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Fig. 2 poly(dA:dT) reduces the amplified luminescent proximity signal between the PYD domain of AIM2 and the HIN-200 domain of AIM2. A
schematic representation of full-length AIM2 (AIM2-FL) and its truncated proteins, the HIN200 domain of AIM2 (AIM2-HIN200) and PYD domain of
AIM2 (AIM2-PYD). We synthesized two truncated forms of AIM2, AIM2-PYD-FLAG and AIM-HIN-200-Biotin, using a wheat germ cell-free synthesis
system (a). Synthetic protein–protein interactions were detected by the amplified luminescent proximity homogeneous assay (Alpha). A total of
100 ng of each protein indicated was incubated with 5 μg/mL anti-FLAG mAb M2, 16.67 μg/mL protein-A-conjugated Alpha acceptor beads
(PerkinElmer, Waltham, MA, USA), and 16.67 μg/mL streptavidin-conjugated Alpha donor beads (PerkinElmer, Waltham, MA, USA) for 24 h with
or without 5 mg/mL poly(dA:dT) (Invivogen, San Diego, CA, USA). Responses (counts) were measured using EnSpire™ Multimode Plate Reader (PerkinElmer,
Waltham, MA, USA). The results are given as means ± standard deviation from triplicate wells. Asterisk indicates significance (p < 0.01) (b)
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Fig. 3 A possible mechanism of AIM2 inflammasome in a cell-free system. The PYD domain of AIM2 interacts with the HIN-200 domain of AIM2
loosely upon being incubated with no materials. Once a specific ligand poly(dA:dT) stringently interacts with the HIN-200 domain of AIM2 and
streptavidin-conjugated donor beads, then the PYD domain of AIM2 apart from the HIN-200 domain of AIM2 opens to interact with the PYD
domain of ASC (a). Since the PYD domain of ASC loosely interacts with the CARD domain of ASC, the interaction between the PYD domain of
AIM2 and PYD domain of ASC is thought to open the CARD domain of ASC, which will lead to interaction with protein A-conjugated acceptor
beads (b)

Kaneko et al. Inflammation and Regeneration  (2017) 37:9 Page 4 of 7



Kaneko et al. Inflammation and Regeneration  (2017) 37:9 Page 5 of 7
system can be a useful tool for investigating the pathogenesis
of BS/EOS and drug discovery [63].

How does the reconstituted inflammasome in a
cell-free system work?
We show representative data that suggest the mechanism
of how this system works (Fig. 2). We synthesized two
truncated forms of AIM2, AIM2-PYD-FLAG and AIM-
HIN-200-Biotin, using a wheat germ cell-free synthesis
system (Fig. 2a). The amplified luminescence proximity sig-
nal between AIM2-PYD-FLAG and AIM-HIN-200-Biotin
was 940.0 ± 100.5 with no materials and 626.7 ± 98.7 upon
incubation with poly(dA:dT) (Invivogen, San Diego,
CA, USA). The difference of signals was significant
(p = 0.000917) using Student’s t test (Fig. 2b). The data
suggest that the PYD domain of AIM2 interacts with the
HIN-200 domain of AIM2 loosely upon being incubated
with no materials. Once the specific ligand poly(dA:dT)
stringently interacts with the HIN-200 domain of AIM2,
then the PYD domain of AIM2 apart from the HIN-200
domain of AIM2 is open to interact with the PYD domain
of ASC. Since the PYD domain of ASC has been reported
to loosely interact with the CARD domain of ASC [64], the
interaction between the PYD domain of AIM2 and PYD
domain of ASC is thought to open the CARD domain of
ASC, which will lead to interaction with protein A-
conjugated acceptor beads in the cell-free system (Fig. 3),
or downstream CARD domain of caspase-1 in cells.

Conclusions
Various inflammasomes are thought to play important roles
in the maintenance of the homeostasis of cells, tissues, and
organs. Excess inflammasome signaling caused by genetic
mutations or pathogens may contribute to known or un-
known autoinflammatory diseases. Thus, inflammasomes
are expected to become attractive targets to treat autoin-
flammatory diseases. Although our cell-free system is lim-
ited in that only an initial event of assembly between ASC
or RIPK2 and an upstream protein is detected, reconsti-
tuted inflammasomes in a cell-free system will be useful
tools for investigating the pathogenesis of autoinflammatory
diseases and discovery of their therapeutics.
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