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Abstract

Background: The ability of the patient specific 3D printed neurovascular phantoms to accurately replicate the
anatomy and hemodynamics of the chronic neurovascular diseases has been demonstrated by many studies. Acute
occurrences, however, may still require further development and investigation and therefore we studied acute
ischemic stroke (AIS). The efficacy of endovascular procedures such as mechanical thrombectomy (MT) for the
treatment of large vessel occlusion (LVO), can be improved by testing the performance of thrombectomy devices
and techniques using patient specific 3D printed neurovascular models.

Methods: 3D printed phantoms were connected to a flow loop with physiologically relevant flow conditions,
including input flow rate and fluid temperature. A simulated blood clot was introduced into the model and placed
in the proximal Middle Cerebral Artery (MCA) region. Clot location, composition, length, and arterial angulation
were varied and MTs were simulated using stent retrievers. Device placement relative to the clot and the outcome
of the thrombectomy were recorded for each situation. Digital subtraction angiograms (DSA) were captured before
and after LVO simulation. Recanalization outcome was evaluated using DSA as either ‘no recanalization’ or
‘recanalization’. Forty-two 3DP neurovascular phantom benchtop experiments were performed.

Results: Clot angulation within the MCA region had the most significant impact on the MT outcome, with a p-
value of 0.016. Other factors such as clot location, clot composition, and clot length correlated weakly with the MT
outcome.

Conclusions: This project allowed us to gain knowledge of how such characteristics influence thrombectomy
success and can be used in making clinical decisions when planning the procedure and selecting specific
thrombectomy tools and approaches.
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Background
Three-Dimensional printing (3DP) offers the ability to
build geometrically-accurate patient-specific vascular
phantoms/models that can aid clinical decision making,
including treatment planning [1]. In addition, these
phantoms may be used for benchtop experimentation,
device testing, and physiological simulations for
hemodynamics investigation and complex fluid-device
structure interactions assessments [2–5]. Current multi-
material printers replicate complex human vascular
anatomy into a photopolymer replica within a few tens
of microns accuracy, using materials that mimic vascular
mechanical properties, thus allowing realistic simulations
of endovascular interventions [6, 7]. Use of these phan-
toms, to practice various approaches and procedures
shows promise as a method to optimize interventional
outcomes and reduce the rate of peri-procedural
complications.
3D printing has shown much promise in simulating

vascular procedures with chronic conditions associated
to them including ischemia, myocardial infarction, ab-
dominal aortic aneurysms, and arteriovenous malforma-
tion [7–11]. Use of these phantoms to practice various
approaches has been proven as a method to improve
interventional outcomes, reduce the risk of periproce-
dural complications, and optimize treatment planning.
The ability to mimic the arterial wall mechanical proper-
ties such as compliance and stiffness [3, 4, 12–14] in
combination with programmable pumps to replicate car-
diac waveforms and controlled outflow systems that
mimic the capillary resistance [15, 16], allows for cre-
ation of comprehensive systems that provide means to
simulate the local and global hemodynamics.
On the other hand, simulation of acute conditions in-

cluding acute ischemic stroke (AIS) from large vessel oc-
clusion (LVO) using 3D printed patient specific
phantoms has not been fully investigated. These kinds of
studies would be beneficial in providing insight to the
clinicians regarding the various techniques and devices
that are used for acute treatment of stroke which affects
nearly 700,000 people in the United States annually.
Often, the cause of these strokes is a lack of blood flow
due to an arterial LVO in need of endovascular revascu-
larization using stent retriever mechanical thrombec-
tomy (MT) [17, 18]. During these procedures a
retrievable device is deployed across the clot which be-
comes entrapped within the wiring of the device and is
subsequently removed by retrieving the device. Stent re-
triever thrombectomy is currently recommended in pa-
tients with AIS from LVO. The success of
thrombectomy is graded using Thrombolysis in Cerebral
Infarction (TICI) scale which ranges from 0 (full occlu-
sion) to 3 (no occlusion). Recanalization is the main fac-
tor that determines whether the treatment method of

thrombectomy of AIS patients with LVO produced a
good treatment outcome [19, 20]. If successful recanali-
zation is achieved, the patient is 4–5 times more likely
to recover with minimal disability after stroke.
For this study we propose to develop patient spe-

cific 3D printed models which allow AIS simulation
and subsequent mechanical thrombectomy while using
flow conditions relevant to cerebral hemodynamics.
Using this setup, we also propose to study how vari-
ants, such as clot consistency, location and local
geometry affect the efficacy of endovascular proce-
dures for the treatment of LVOs. This type of study
could add significant knowledge in regards to MT
technique comparisons [14, 21, 22].

Methods
Patient specific model design
This study was approved by the IRB at University at
Buffalo. We used retrospectively-collected data of pa-
tients who underwent CT-angiography and had a le-
sion free main cerebral vasculature. Patients
underwent 320- detector row CT angiography (Aqui-
lion ONE, Canon Medical Systems, Tustin, CA). The
basilar arteries, internal carotid, vertebral, as well as
the Circle of Willis, middle cerebral arteries (MCA),
anterior cerebral arteries (ACA), and posterior cere-
bral arteries (PCA) were segmented using a Vitrea
workstation (Vital Images, Minnetonka, MN) with a
voxel size of 0.625 × 0.625 × 0.5 mm and a slice thick-
ness of 0.5 mm. Stereolithographic (STL) files were
saved of the patient geometry and imported in Auto-
desk Meshmixer, an advanced mesh manipulation
software (San Rafael, California). The neurovascular
section of the phantom contains arteries distal to the
external carotid artery bifurcation, extending to the
second bifurcation in the middle cerebral, and anter-
ior communicating arteries. For this vascular domain
the vessel diameters ranged from approximately 2
mm to 5 mm, properly correlating to the human
anatomy [23].
The phantom manufacturing process including the

3D mathematical operators used to design the phan-
tom, have been explained in full detail in previous
work [2, 5, 24, 25] and design steps will be only
briefly described (Fig. 1). Within Meshmixer, lumen
segmentation artifacts were removed and a minimal
smoothing process reduced the number of artifacts
while maintaining the overall geometry of the vascula-
ture. A base designed in SolidWorks (SolidWorks
Corp., Waltham, MA) was appended to the vascula-
ture as a support structure to provide stability to the
phantom during the benchtop flow experimentation.
In addition, the ICA segment between the carotid si-
phon and ophthalmic artery segment was either
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supported or reinforced by using a hardened material
(Fig. 1(e) arrow) to reduce any sagging along the
curvature of the vessel for proper device navigation.
The phantom was 3D printed in a soft material, Stra-
tasys Tango+ (Stratasys, Eden Prairie, MN) to repli-
cate the neurovascular wall elasticity [12].
Optimal post-print processing of the inner artery

lumen to achieve realistic device artery surface inter-
actions, a friction analysis was conducted in a previ-
ous study [12, 26] Using their findings, we
implemented a sodium hydroxide solution to etch
the rough inner surfaces followed by coating with
HidroMed (AdvanSource Biomaterials Wilmington,
MA). Wall thickness and material composition were
both tested to replicate the compliance of the neuro-
vasculature. A compliance chamber was developed to
measure changes in vessel diameter under pressures
ranging from 0 to 210 mmHg while the vessels were
submerged in body temperature water to simulate
physiological conditions. The results obtained con-
cluded that Tango+ with a 1 mm thickness and 4.5
mm diameter was the only material to exhibit a
compliance close to the healthy range (0.08–0.12
mm2/mmHg) of 0.075 mm2/mmHg.
The accuracy of the 3D printed models were also

tested within another study performed within our
group prior to this experimentation [4]. The center-
lines from both of the CCTA images of the patient
and the phantom were generated within Mimics Re-
search (Materialize, Plymouth, MI) and the minimum
diameter, maximum diameter, best fit diameter, cross-
sectional area, and tortuosity were calculated. It was
concluded that the phantom diameter measurements
were within 1 mm of the patient images on average
and the tortuosity had a very small average difference.
This verifies that our 3D printed phantoms created in
an elastic material are maintaining the three-
dimensional geometry.

Benchtop flow experimentation
Phantoms were connected to a flow loop with a simu-
lated physiologically relevant input flow rate of the ca-
rotid artery and fluid temperature of 37 degrees Celsius
(Fig. 2) [27]. We maintained the temperature of the fluid
within the flow loop to be consistently at body
temperature using an Anova sous vide (Anova Applied
Electronics, Inc. San Francisco, CA) as the Nitinol used
in the clot retriever devices is strongly dependent on
temperature. Standard digitally subtracted angiograms
(Canon Medical Systems Corp., Tustin, CA) were taken
with a Canon Infix C-arm prior to insertion of the clot
and medical devices. DSA images were obtained at 10
frames/sec at system-selected parameters of kV and mA.
Fresh clots were prepared following the methods pre-
sented by Duffy, et.al [28].. Clot type D (40% red blood
cells, calcium chloride) and type G (pure fibrin, calcium
chloride) were created.
Clots were then measured into pieces of varying lengths

between 5mm and 25mm for the experimentation.
A clot was introduced into the model and placed any-

where in the M1 or M2. The 3D printed patient specific
models connected to a flow loop is shown in Fig. 3. A
guide catheter was inserted into the internal carotid ar-
tery (ICA) of the 3D printed phantom on the side of oc-
clusion. The guide catheter provides support for the
microcatheter which was next inserted to navigate to the
location of the occlusion. The stent retriever was de-
ployed across the simulated blood clot at the occlusion
site. We used both Trevo XP (Stryker Corporation, Kala-
mazoo, MI) and Solitaire X (Medtronic, Dublin, Ireland)
stent retrievers. Stent retriever diameters ranged from 4
to 6 mm and did not influence the experimental out-
come so we did not include those results in this study. A
stent retriever thrombectomy was then simulated with
the following parameters studied: angulation (angle of
the vasculature in which the clot is placed) (Fig. 4), clot
length (before and after insertion), clot morphology (D/

Fig. 1 Flow chart of images describing the manufacturing process for a patient specific phantom of the Circle of Willis. a An Angio CT image is
acquired of the neurovasculature. b The neurovasculature is segmented out from the rest of the brain tissue and a 3D geometry is created. c A
3D mesh of triangular vertices is created within Autodesk Meshmixer. d The mesh is made a solid geometry and hollowed out for the creation of
vessel lumens and a (e) support structure holds in place the vessels. Arrow pointing to hardened support material to reduce vessel sagging. f The
model is 3D printed in Stratasys Tango+ material to simulate the vascular compliance and is ready to be connected to a flow loop for
simulation studies
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G clots), clot location within the device and within the
vasculature, and treatment approach (standard thromb-
ectomy with/without aspiration). DSA was performed
prior to thrombectomy to confirm adequate occlusion
and after thrombectomy to document angiographic out-
come. DSA was graded according to the TICI scale. TICI
2b/3 was considered “successful” recanalization, TICI 0-
2a was consider “unsuccessful” recanalization.

Statistical analysis
A p-value < 0.05 was considered indicative of a statisti-
cally significant difference. A multi-variable regression

model was performed on the entirety of the data with
the experimental outcome as the y-variable and the clot
angulation within the vasculature (x1), initial clot length
(x2), clot composition (x3), clot location within device
(x4), and clot location within vasculature (x5) as the x-
variables. Estimated coefficients (β0, β1, β2, β3, β4, β5), p-
values and odds ratios were determined. Odds ratios
were determined by binarizing the results as follows: clot
angulation (> = 120°, < 120°); clot length (> 12mm, <=12
mm); clot composition (hard, soft); clot location in de-
vice (mid, proximal/distal); clot location in vasculature
(M1/M2).

Fig. 3 The 3D printed patient specific Circle of Willis is connected to a flow loop. (Red) The patient specific neurovasculature and (Purple) a
standard aortic arch are highlighted. 20 different patient specific models have been printed. A clot is introduced into the proximal MCA and tests
the effectiveness of stent retriever thrombectomy with TICI scoring system in patients with absent or robust collaterals of the circle of Willis using
a conventional vs. BGC

Fig. 2 Schematic representation of the clot model. The model contains separate inflow and outflow channels and is connected to a pulsatile
pump via a closed circuit. Arrows indicate direction of flow. A 9 F sheath allows the introduction of guide catheters and thrombectomy devices.
Biplane angiography is used during thrombectomy experiments. A zoomed in image of the 3D printed model displays a clot located within
the M2

Sommer et al. 3D Printing in Medicine            (2021) 7:32 Page 4 of 10



Results
Using these phantoms, angiograms were captured before
recanalization, showing the extent of the thrombus, and
after the thrombectomy to determine the recanalization
outcome. Figure 5 displays the change in blood flow be-
fore and after the stent retriever has been deployed. Fig-
ure 6 depicts a montage of the contrast flowing through
a 3D printed model after both an unsuccessful and a
successful mechanical thrombectomy simulated
procedure.
The experimental outcome was recorded for each ex-

periment as either recanalization or no recanalization
(Fig. 7). Based on our results, 29 of the 42 benchtop ex-
periments were successful.
The results for the 42 experiments have been analyzed

based on the parameters we changed within the study to
determine their single variable significance to experi-
mental outcome (Table 1).
Based on these experimental parameters, the ‘Clot An-

gulation’ proved to be the only experimental variable of
‘Significance’ with a p-value of 0.016. Table 1 also dis-
plays the means with 95% confidence intervals of each
experimental variable for both the successful and unsuc-
cessful experimental outcomes.

Based on the multi-variable regression model used, es-
timated regression coefficients were output for each ex-
perimental independent variable to determine whether
they have an impact on the experimental outcome
(Table 2). All estimated regression coefficients were very
close to zero which implies that all the experimental var-
iables have little impact on the experimental outcome.

Discussion
3D printing offers a unique opportunity to build geo-
metrically accurate patient specific vascular phantoms
that can be used for benchtop testing, flow simula-
tions, treatment planning, device testing, and physio-
logical simulations. Patient specific vascular models
engineered through additive manufacturing can be
used to visualize complex anatomical structures and
simulate device deployment. Previous studies have
used phantoms with stiff photopolymers that lack the
compliance of the vasculature which is crucial for
properly simulating the physiology within the vascular
anatomy [15, 29–31]. To capture the compliant na-
ture of the vasculature, flexible photoresins such as
the Stratasys Tango family (Stratasys, Eden Prairie,
MN) and the Visijet 3D Systems family (3D Systems,
Rock Hill, SC) is needed and has been tested under
previous investigation [26]. With the preservation of
the hemodynamics within the vasculature by means
of compliance, stiffness and pressure simulations, 3D
printed vascular models can accurately depict the
fluid mechanics within the human anatomy [32–34].
We performed a comprehensive study using 3D

printed patient specific neurovascular phantoms which
may allow for a relatively simple means to test devices,
fine tune procedures, and train surgeons. This project
employs a novel approach that combines 3D model
manufacturing technology with the ability to generate
patient-specific anatomical variants for accurate simula-
tion of real-world clinical scenarios of AIS from LVO
treated with mechanical thrombectomy.
Through the evaluation of controlled changing pa-

rameters within our experimental setup, we were
able to demonstrate the use of 3DP vascular phan-
toms to simulate acute complications such as AIS.
In addition, we design a set of tests to determine
single variable and multivariable significance on the
experimental outcome using variants that may affect
the MT such as clot composition, location, geometry
and length. The local geometry, namely the clot an-
gulation, proved to be the single significant experi-
mental variable, p-value of 0.016, that affects the
experimental thrombectomy outcome. Acute angles
may prevent the device from fully engaging the clot,
and thus reduce the thrombectomy effectiveness.
Clot length within our testing range, 5 mm to 25

Fig. 4 The angulation of the clot within the vasculature was
measured as an experimental variable to determine if it has effect
on the experimental outcome
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mm, was not a significant factor which might also
be due to the fact that the devices used were be-
tween 30 and 40 mm long and enclosed fully the de-
vice. Also, the longer clots tend to stop more
proximal in the circle of Willis which made them
easier to access and remove. This last aspect also
ties into the location analysis, we did not see a

significant correlation between the location within
the vasculature and MT efficacy.
There are a few phantom design related limitations

to our study. 3D printing based phantoms are sub-
ject to CT imaging errors including scan errors due
to patient motion, blooming due to calcification, and
a reduction in image accuracy with the 3DP

Fig. 6 Angiograms were taken post-stent retriever thrombectomy for each of the cases. A successful case and an unsuccessful case are displayed
above. The successful case shows contrast flowing through the neurovascular phantom resulting in no occlusion. While the unsuccessful case
shows the contrast flow being halted where the blood clot is still blocking the vessel resulting in full occlusion (red arrow)

Fig. 5 Angiograms were taken both pre- and post- stent retriever thrombectomy was completed. Pre- clot retrieval, there is very little or no
contrast flowing at the location of the clot. Post- clot retrieval there is contrast flowing through the part of the vessel where the clot was
removed. Case 1 and case 2 in this figure display this significant change in fluidic flow at the location of the clot. The red boxes are enlarged
views of the specific locations where the contrast flow changes
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resolution of 200 μm surpassing the spatial resolution
of the CCTA of 630 μm. Since most of the neurovas-
culature are between 2 to 4-mm diameter, small seg-
mentation errors can result in significant changes in
the hemodynamics. Involving the segmentation
process, there may have been some errors in defin-
ing the vessel wall boundaries with high accuracy;
however, we cross-validated this process between
two users to avoid significant errors. Also, in the
process of segmentation artifact elimination, we
sculpted the mesh within Autodesk Meshmixer ma-
nipulating single triangular vertices, which might
have created slight geometric alterations. Addition-
ally, with the models being printed in an elastic ma-
terial, this allows for deformations to occur within
the printing process which may affect the accuracy
of the benchtop testing over time.
Other limitations are related to the proposed

benchtop system. Since the experimental implemen-
tation was challenging due to accumulation of iodin-
ated contrast and clot fragments we did not use a
standard water glycerol mixture to simulate blood
viscosity. This is a limitation of our study since use
of water only as a working fluid could potentially
change the fluid dynamics of the system especially at
the occlusion location, due to the complexity of the
simulation and the abundance of unknown variables
being tested. We heated the water to body

temperature as the nitinol within the thrombectomy
devices reacts best at this temperature. However; the
clot to vessel wall interaction may introduce error
into the system as the composition of both surfaces
vary from that of the human blood clots and vessels.
As an in vitro-study our approach has some limita-

tions but also benefits which may not be replicated
with other in-vitro models or animal models. The
limitations include, only partial reproducibility of the
biomechanical properties of the arterial network and
device-clot-blood interaction and missing the effect
of distal microvasculature which could affect the
hemodynamics. On the other hand, the 3D printing
models allow studies to be performed in an identical
replica of the human vasculature, using patients who
underwent mechanical thrombectomies with known
outcomes. This fact may become far more relevant
for device testing then animal models or idealized
models since it allows not only to research generic
device behavior in human like geometries but also
optimize this kind of a treatment.. There is also
great value of this benchtop setup as a training de-
vice for interventionalists. Before training on a hu-
man patient, these patient specific 3DP printed
models incorporated into our benchtop set up allow
for techniques such as stent retriever deployment,
catheter insertion, and image-guided device naviga-
tion. With the incorporation of vessel elasticity and
compliance parameters, these models provide a novel
approach in simulated patient specific vascular
studies.

Conclusions
The main advantage of using this in vitro model of
thrombectomy is that it provides a highly controlled
environment where only a single variable (such as an-
gulation of MCA or clot length) or treatment ap-
proach can be changed at a time. This project
allowed us to gain knowledge of how such character-
istics influence thrombectomy success can be used in
making clinical decisions when planning the

Table 1 Single Variable Statistical Tests of Significance were determined for each of the following experimental variables: clot
angulation, clot length, clot composition, clot location in device, and clot location in vasculature. Either a student t-test or a chi-
squared test were performed to output the p-value for each experimental variable. Means for both successful and unsuccessful
cases are presented with ±95% confidence

Experimental Variable Statistical Test Mean
(Successful)

Mean
(Unsuccessful)

P-Value

Clot Angulation Student T-test 118.10 ± 19.44° 153.46 ± 17.37° 0.016

Clot Length Student T-test 16.76 ± 2.64 mm 15.38 ± 3.68 mm 0.557

Clot Composition Chi-Squared Test N/A N/A 0.115

Clot Location in Device Chi-Squared Test N/A N/A 0.196

Clot Location in Vasculature Chi-Squared Test N/A N/A 0.579

Fig. 7 An experimental outcome was determined for each of the 42
benchtop experiments performed as ‘No Recanalization’
or ‘Recanalization’

Sommer et al. 3D Printing in Medicine            (2021) 7:32 Page 7 of 10



procedure and selecting specific thrombectomy tools
and approaches.
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