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Abstract

Tumors form a complex environment consisting of a variety of non-malignant cells.
Especially cancer-associated fibroblasts have been shown to have an important role
for different aspects of malignant tumors such as migration, metastasis, resistance to
chemotherapy and immunosuppression. Therefore, a targeting of these cells may be
useful for both imaging and therapy. In this respect, an interesting target is the
fibroblast activation protein (FAP) which is expressed in activated fibroblasts, but not
in quiescent fibroblasts, giving the opportunity to use this membrane-anchored
enzyme as a target for radionuclide-based approaches for diagnosis and treatment of
tumors and for the diagnosis of non-malignant disease associated with a
remodelling of the extracellular matrix.
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Introduction
Tumors can be considered as an assembly not only of malignant cells, but also of

stroma cells which include vascular cells, inflammatory cells and fibroblasts. These are

subsumed under the term stroma. The stroma may represent > 90% of the tumor mass

in tumors with desmoplastic reaction such as breast, colon and pancreatic carcinoma.

Especially a subpopulation of fibroblasts called cancer-associated fibroblasts (CAFs) is

known to be involved in growth, migration and progression of the tumor. CAFs have a

heterogeneous origin, they may develop from local fibroblasts, circulating fibroblasts,

vascular endothelial cells via endothelial to mesenchymal transition, adipocytes, bone

marrow derived stem cells or even from cancer cells via endothelial to mesenchymal

transition (Cirri and Chiarugi 2011; Garin-Chesa et al. 1990; Gascard and Tlsty 2017;

Ischii et al. 2016; Kalluri 2016; Öhlund et al. 2014). This heterogeneity of origin leads

to a heterogeneous proteome with different functionality. In general, activation of these

cells leads to changes in morphology with a more stellate shaped as opposed to a spin-

dle shaped form. Furthermore, the activated fibroblasts are able to migrate, proliferate,

production of extracellular matrix, express different markers such as α smooth muscle

actin (αSMA), platelet derived growth factor β (PDGFR β) and fibroblast activation

protein (FAP) whereas normal fibroblasts express fibroblast stimulating protein 1

(FSP1) and α1β1 integrin (Kalluri 2016). Activated fibroblast occur not only in tumors,
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but also in healing wounds and diseases with matrix remodelling such as chronic in-

flammation, heart infarction and liver and lung fibrosis (Aimes et al, 2003; Bauer et al.

2006; Egger et al. 2017; Hamson et al. 2014; Nagaraju et al. 2017; Tillmanns et al. 2015;

Uitte de Willige et al. 2013).

Interaction of CAFs with tumor cells
CAFs interact with the tumor cells in many ways. The remodelling of the extracellular

matrix for example by collagenolysis promotes the invasion of tumor cells and may be

involved in the induction of epithelial to mesenchymal transition (Chen and Kelly 2003;

Fuyuhiro et al. 2012; Gao et al. 2010; Goodman et al. 2003; Kim et al. 2015). Further-

more, the changes in the microenvironment including an increase in stiffness of the tis-

sue may be involved in therapy resistance as well as immunosuppression (Attieh and

Vignjevic 2016; Erez et al. 2010; Kraman et al. 2010; Turley et al. 2015).

Especially the activity of the fibroblast activation protein (FAP) seems to be involved

in the angiogenesis via the cleavage products of its substrates (Hamson et al. 2014;

Keane et al. 2011; Zukowska et al. 2003). This is substantiated by studies showing a

correlation between FAP expression and microvessel density in tumors (Keane et al.

2011; Huang et al. 2004). FAP expression has also been found to be associated with a

poor prognosis in a variety of tumors such as colon, pancreatic, ovarian and hepatocel-

lular carcinoma (Cohen et al. 2008; Henry et al. 2007; Ju et al. 2009; Zhang et al. 2011).

Besides these activities CAFs also secrete a variety of molecules, mostly growth fac-

tors and cytokines, which may induce epithelial to mesenchymal transition. The best

described factor up to now is the transforming growth factor β (TGFβ). The overex-

pression of TGFβ has been shown to induce an increased expression of a variety of pro-

teins known as mesenchymal markers including fibronectin, vimentin and matrix

metalloproteinase (Yu et al. 2014; Erdogan and Webb 2017). Other factors excreted by

stromal cells are hepatocyte growth factor (HGF), fibroblast growth factor (FGF) 1 and

2, stromal cell derived factor 1(SDF1/CXCL12), chemokine (C-C motif ) ligands (CCL)

2, 5,7 and 16, interleukin 6 and 8 and platelet derived growth factor (Attieh and Vignje-

vic 2016; Erdogan and Webb 2017).

Furthermore, metabolic cooperation between CAFs and tumor cells occurs. This

is realized by an increased expression of enzymes related to aerobic glycolysis such

as lactate dehydrogenase and M2 pyruvate kinase (Guido et al. 2012; Martinez-

Outschoorn et al. 2012; Öhlund et al. 2014; Pavlides et al. 2009) which has been

named reverse Warburg effect. This results in the secretion of metabolites such as

lactate and ketones which are taken up by tumor cells via monocarboxylate trans-

porters (MCTs) to enter the oxidative mitochondrial pathway. However, there may

be also other metabolic patterns with high expression of MCTs and low expression

of glucose transporters in activated fibroblasts (Koukourakis et al. 2006). Therefore,

diverse metabolic patterns are possible in different tumor types which have been

identified by Choi et al. (2013) as Warburg type (glycolysis in tumor cells, non-gly-

colysis in stroma cells), reverse Warburg type (non-glycolysis in tumor cells, gly-

colysis in stroma cells), mixed type (glycolysis in both cell types) and null type

with no glycolysis in both cell types. Altogether this puts into question whether

the signal obtained with FDG-PET is related to glucose metabolism in tumor cells,

stromal cells or both and to what extent in which tumor entity.
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Fibroblast activation protein as an important marker of CAFs
Due to their heterogeneity of origin and, therefore, the heterogeneity of the expression

pattern, it is difficult to use a unique marker which can be used for the identification of

all CAFs (Averya et al. 2018; Cortez et al. 2014; Kilvaer et al. 2018). Kilvaer et al. found

in an immunohistochemistry analysis of micro arrays in 536 patients with NSCLC that

the fibroblast and stromal markers PDGFRα, PDGFRβ, FAP-1 and vimentin showed

only weak correlations. In contrast, αSMA did not correlate with any of the other

markers. Therefore, the presence of phenotypically different subsets of CAFs may differ

between tumor regions due to heterogeneity of origin (Kilvaer et al. 2018).

However, there is at least one marker which is overexpressed in the stroma of many

tumor entities and potentionally usefull for imaging and therapy: the fibroblast activa-

tion protein. FAP is a type II membrane bound glycoprotein belonging to the dipeptidyl

peptidase 4 (DPP4) family. This family consists of several members: DPP4, quiescent

cell proline dipeptidase (QPP), FAP, prolyl oligopeptidase (POP), DPP8, DPP) and the

inactive members DPP6 and DPP10 (Juillerat-Jeanneret et al. 2017). DPP4 and FAP are

membrane–bound enzymes and show a 52% identity at the protein level (Jacob et al.

2012). In contrast to DPP4, having only exopeptidase activity, FAP shows both dipepti-

dyl peptidase and endopeptidase activity. (Hamson et al. 2014). Identified substrates for

the endopeptidase activity so far are gelatin, denatured type I collagen, α-antitrypsin

and several neuropeptides such as neuropeptide Y, peptide YY, B-type natriuretic pep-

tide and substance P (Hamson et al. 2014; Keane et al. 2011; Kelly et al. 2012; Lee et al.

2004; Park et al. 1999). The enzyme is known to have a role in normal developmental

processes during embryogenesis and in tissue modelling (Niedermeyer et al. 2000; Nie-

dermeyer et al. 2001; Brown et al. 1996; Jacob et al. 2012). It is not or only at insignifi-

cant levels expressed on adult normal tissues. Examples are uterus, cervix, placenta,

breast and skin, which show a low to moderate expression as compared to tumors

(Rettig et al. 1994; Dolznig et al. 2005). However, high expression occurs in wound

healing, inflammation such as arthritis, artherosclerotic plaques, fibrosis (Egger et al.

2017, Uitte de Willige et al. 2013) as well as in ischemic heart tissue after myocardial

infarction (Tillmanns et al. 2015; Nagaraju et al. 2017) and in more than 90% of epithe-

lial carcinomas (Bauer et al. 2006, Brokopp et al. 2011, Levy et al. 2002, Levy et al.

1999, Mentlein et al. 2011, Park et al. 1999, Rettig et al. 1988, Scanlan et al. 1994, Wang

et al. 2005,).

FAP has a total of 760 amino acids with an intracellular domain of only 6 amino acids

and a transmembrane domain with 20 amino acids. The largest part is the extracellular

domain which consists of a β-propeller domain and a catalytic domain (Kelly 2005;

Wang et al. 2008; Jacob et al. 2012). In the catalytic domain serin (S624), aspartate

(D702) and histidine (H734) form a triad, which classifies FAP as a serine protease

(Aertgeerts et al. 2005; Goldstein et al. 1997; Kelly et al. 2012; Piniero-Sanchez et al.

1997; Scanlan et al. 1994). Serine 624 is involved in dipeptidyl peptidase as well as in

endopeptidase activity. Furthermore, the catalytic site consists of a Gly-X-Ser-X-Gly se-

quence. FAP is produced as a 97 kDa subunit which needs dimerization to be enzymati-

cally active. Usually this occurs as homodimer, but also heterodimers with DPP4 and

β1 integrins have been found (Artym et al. 2002; Rettig et al. 1993). FAP expression

seems to be regulated via different transcription factors such as early growth response

(EGR-1), HOXA4 and E2F1 as shown by FAP promoter analysis (Zhang et al. 2010).
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Shedding may occur leading to soluble forms which have been detected in the plasma

(Niedermeyer et al. 1997; Lee et al. 2004; Wild et al. 2010; Piniero-Sanchez et al. 1997;

Mueller et al. 1999).

Therapies targeting CAFs
Since CAFs play a critical role in tumor growth, migration and progression, are genetic-

ally more stable than cancer cells and less susceptible to the development of therapy re-

sistance, they represent excellent target cells for antitumor therapy. FAP is broadly

expressed in the microenvironment of a variety of tumors and thus allows targeting of

different tumor entities including pancreas, breast and lung cancer, which account for a

large part of the entirety of solid tumors. Therefore, several approaches have been used

to treat tumors by targeting FAP: immunoconjugates (Ostermann et al. 2008), CAR T

cells (Wang et al. 2014; Lo et al. 2015), tumor immunotherapy (Lee et al. 2005), vac-

cines (Loeffler et al. 2006), peptide drug complexes (Brennen et al. 2012a, 2012b; Chen

et al. 2017; LeBeau et al. 2009; Wang et al. 2017), FAP inhibitors (Teichgräber et al.

2015) and antibodies (Hofheinz et al. 2003; Scott et al. 2003; Welt et al. 1994; Wüst et

al. 2001).

Preclinical studies with anti-FAP antibodies revealed promising results (Loeffler et al.

2006; Ostermann et al. 2008). One study used an oral DNA vaccine targeting fibroblast

activation protein for specific elimination of FAP-expressing fibroblasts in multi-drug

resistant colon and breast cancer models (Loeffler et al. 2006). This strategy led to a

CD8+ T cell-mediated killing the fibroblasts, suppression of primary tumor cell growth

as well as metastasis. In addition, effects on the microenvironment were observed such

as a decrease in collagen type I expression. Chemotherapeutic drugs showed an up to

70% higher uptake in these tumors with longer lifespan in these animals. Similarly,

treatment with an antibody-maytansinoid conjugate (mAb FAP5-DM1) led to a long-

lasting inhibition of tumor growth and to complete regressions in a variety of different

xenograft models. This was related to mitotic arrest and apoptosis in malignant epithe-

lial cells and disruption of fibroblastic and vascular structures (Ostermann et al. 2008).

However, these positive effects could not be seen in clinical application (Hofheinz et al.

2003). In this open-label, uncontrolled, multicentre study sibrotuzumab (BIBH 1) was

given to 17 patients with metastatic colorectal cancer. After 8 infusions of sibrotuzu-

mab tumor progression was seen in 15 patients and stable disease in two patients

which developed progression after 1 und 6 additional infusions (Hofheinz et al. 2003).

If CAFs are important regulators of the tumor microenvironment with direct and in-

direct influences on growth, migration, immune reactions and also resistance to con-

ventional therapy, then a selective depletion may result in detrimental affects on the

tumor. This depletion may be obtained by targeting of fibroblasts specific prodrugs,

CAR T cells, antibodies or specific ligands labelled with α-emitting radionuclides. How-

ever, questions about the safety of this approach may arise. These are related to the het-

erogeneity of the different fibroblast subpopulations in the tumor. As shown by Averya

et al. (2018) this heterogeneity is the result of a convergence of extracellular matrix

composition, tissue elasticity, and transforming growth factor β (TGF-β) signaling. In

their study FAP-positive fibroblasts and αSMA-positive myofibroblasts had distinct

gene expression signatures and and accordingly a different functionality. Although FAP

is expressed on the majority of activated fibroblasts in the tumor microenvironment,
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only a subset of these cells co-express αSMA (Kilvaer et al. 2018; Lo et al. 2015; Pure

and Blomberg 2018). Specific ablation of αSMA-postive myofibroblasts in mouse

models of pancreatic cancer led to suppression of the anti-tumor immunity, enhance-

ment of hypoxia and endothelial to mesenchymal transition, and reduction of survival

(Ozdemir et al. 2014). A further finding of the experiments of Ozdemir et al. was that

the depletion of the αSMA-positive fibroblasts had no effect on the amount of the

FAP-positive fibroblasts with only a modest and selective effect on the extracellular

matrix. In contrast, the specific depletion of FAP-positive fibroblasts either with genetic

approaches (Feig et al. 2013; Arnold et al. 2014; Kraman et al. 2010) and immunologic

methods (Lee et al. 2005; Loeffler et al. 2006; Kakarla et al. 2013; Ostermann et al.

2008; Schuberth et al. 2013; Tran et al. 2013; Wang et al. 2014) resulted in an inhib-

ition of tumor growth. This suggests that αSMA and FAP fibroblasts may influence the

tumor microenvironment differently. Indeed, some of the available studies provided dir-

ect evidence that the depletion of FAP-positive CAFs leads to an enhanced anti-tumor

immunity (Feig et al. 2013; Arnold et al. 2014; Kraman et al. 2010; Lo et al. 2015; Pure

& Lo 2016; Wang et al. 2014).

FAP-targeting strategies were shown to be more effective when combined with other

treatment modalities such as chemotherapy, vaccination or antibodies (Brünker et al.

2016, Fang et al. 2016a, 2016b, Fang et al. 2016a, 2016b, Huang et al. 2015, Xia et al.

2017, Zhang et al. 2016). This may be an approach to address the lack of efficacy ob-

served with sibrotuzumab (Hofheinz et al. 2003).

Since FAP is an enzyme, work on FAP also focussed on either FAP substrates or FAP

inhibitors. These could be used either to design prodrugs which are activated specific-

ally at the tumor site by the FAP activity or selective enzyme inhibitors. Activable pro-

drugs have been used using FAP substrates coupled to cytotoxic drugs such as melittin,

doxorubicin, thapsigargin (Akinboye et al. 2016; Brennen et al. 2012a, 2012b; Huang et

al. 2011a, 2011b; Ke et al. 2017; LeBeau et al. 2009), but so far no clinical success has

been reported.

Enyzme inhibitors were synthesized targeting the NH2-Xaa-Pro motif leading to Pro-

boroPro, Ala-boroPro, and Val-boroPro compounds (Connolly et al. 2008; Flentke et al.

1991; Poplawski et al. 2013). The resulting molecules were effective against most post-

prolyl peptidases and, therefore, had broad specificity. As an example, Val-boro-Pro

(PT-100, talabostat) proved to be a promising compound in preclinical studies (Egger

et al. 2017, Huang et al. 2011a, 2011b, Li et al. 2016, Pennisi et al. 2009). However, clin-

ical trials with talabostat revealed only minimal effects, even when combined with

chemotherapy (Narra et al. 2007; Eager et al. 2009a, 2009b).

In an attempt to develop FAP-specific inhibtors, Jansen et al. (2013 and 2014) exam-

ined a variety of struturally related small molecules with some of them being highly

specific for FAP. These molecules could be used as lead structures for new

radiopharmaceuticals.

Radionuclide based imaging and therapy
FAP imaging has been done with antibodies and an inhibitor molecule (Laverman et al.

2015; Meletta et al. 2015; Tanswell et al. 2001; van der Geest et al. 2017). For the detec-

tion of atherosclerotic plaques the boronic acid based FAP inhibitor MIP-1232 was

used in a preclinical study (Meletta et al. 2015; Zimmermann et al. 2010). Iodine-
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labelled MIP-1232 (Zimmermann et al. 2010) showed high accumulation in FAP-posi-

tive SK-Mel-187 xenografts. However, the binding of the compound to endarterecto-

mized tissues was similar in artherosclerotic plaques and normal arteries, indicating

that atherosclerosis imaging using this compound may be difficult (Meletta et al. 2015).

In contrast imaging of rheumatoid arthritis has been performed in animal models using

the antibody 28H1 labeled with 111In, 89Zr or 99mTc revealing a high tracer uptake in

inflamed joints. In this study the tracer accumulation was correlated to the arthritis

score (Laverman et al. 2015; van der Geest et al. 2017).

Furthermore, the anti-FAP antibody sibrotuzumab labeled with 131I was applied for

the treatment of patients with metastasized FAP-positive carcinomas (Scott et al. 2003;

Welt et al. 1994). 131I-sibrotuzumab revealed a slow elimination in the liver, the spleen

and other normal organs which was consistent with a slow blood pool clearance. How-

ever, considerable tracer accumulation was measured in metastatic lesions larger than

1.5 cm in all patients, which occurred usually at day 2 after administration (Scott et al.

2003). The detection rate could be improved using the SPECT technique detecting le-

sions down to 1 cm in diameter (Welt et al. 1994). Consistent with the general pharma-

cokinetics of antibodies the optimal time for imaging was found to be 3 to 5 days post

injectionem.

In addition to the slow clearance of sibrotuzumab, leading to a high background sig-

nal, another shortcoming of this approach was the use of 131I for either planar imaging

or SPECT. The high energy gamma emission requires the use of high energy collima-

tors and thick crystal detectors with a negative impact on image resolution. Together

this results in a limited sensitivity for the detection of small lesions. This can be en-

countered by applying radiolabelled small molecules such as MIP-1232 or other FAP

inhibitors. Using this approach, the limiting factor for the detection of tumor lesions is

the number of FAP-positive cells in the tumor micrenvironment i.e. the percentage of

stromal content, and/or the number of FAP molecules per fibroblast which may be de-

termined by the surrounding cells (Loktev et al. 2018). Since tumor lesions exceeding a

size of 1 to 2 mm require the formation of a supporting stroma (Davidson et al. 1997),

visualization of small lesions in the range of 3–5mm should be possible using these

molecules (Loktev et al. 2018).

Based on a small molecule enzyme FAP inhibitor (FAPI) with high affinity designed

by Jansen et al. (2013), we first developed the radiotracers FAPI-01 and FAPI-02 which

showed specific binding to human and murine FAP with a rapid and almost complete

internalization without addressing the closely related protein DPP4/CD26 (Loktev et al.

2018). FAPI-01 proved to be suboptimal due to enzymatic deiodination with efflux of

free iodine and consequently a lower intracellular radioactivity after longer incubation

intervals.

In contrast, FAPI-02 which is a DOTA-linked compound, showed better pharmacoki-

netic and biochemical properties. The compound was eliminated much slower than

FAPI-01, with an approximately 10-fold higher retention after 24 h. Furthermore, a

rapid internalization into FAP expressing cells was seen with a high tumor uptake both

tumor xenografts and patients with metastasized epithelial carcinomas (Loktev et al.

2018, Giesel et al. 2019a, 2019b).

In 80 patients with 28 different tumor entities (54 primary tumors and 229 metasta-

ses) a quantitative analysis of tracer uptake was done. The highest average SUVmax (>
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12) was found in sarcoma, esophageal, breast, cholangiocarcinoma and lung cancer, the

lowest uptake (average SUVmax < 6) was observed in pheochromocytoma, renal cell,

differentiated thyroid, adenoid-cystic and gastric cancer and an intermediate SUVmax

(SUV 6–12) was seen in patients with hepatocellular, colorectal, head-neck, ovarian,

pancreatic and prostate cancer. However, the SUV showed a considerable variation

across and within all tumor entities. Since the background in muscle and blood-pool

was very low (SUVmax < 2), the tumor-to-background contrast ratios were > 3-fold in

the intermediate and > 6-fold in the high uptake group. (Kratochwil et al. 2019).

The internalization into FAP expressing cells was confirmed by confocal microscopy

with a fluorescence-labeled FAPI-02 molecule (Loktev et al. 2018). In contrast to the

FAP-antibody F19, which is known to have a high affinity without being internalized,

FAPI-02 revealed an almost complete internalization after 1 h incubation. The mechan-

ism of internalization after FAP binding has been elaborated with FAP antibody frag-

ments (Fabs) in SK-Mel-187 cells showing also a rapid and almost complete

internalization (Fischer et al. 2012). Furthermore, a colocalization of the antibody frag-

ments with an early endosome marker was observed after 20 min and with a late endo-

some and lysosome marker after 40 min. The internalization of the anti-FAP-Fab/FAP

complex could be suppressed by an inhibitor for dynamin dependent endocytosis (Fi-

scher et al. 2012).

Since there is a very low accumulation in normal tissues and a rapid clearance from

the circulation, a high-contrast is obtained for PET imaging. Furthermore, FAPI-02 is

quickly eliminated from the organism by renal clearance without being retained in the

renal parenchyma which is favorable for a possible therapeutic application. In contrast

to 18F-FDG, which shows a high uptake in cells with a high need for glucose such as in-

flammatory tissue or the brain, FAPI-02 gets selectively enriched in tissues where its

target protein is expressed. The fact that there is no or a very low FAPI-02 uptake in all

normal organs, especially the brain and the liver, opens new possibilities for the detec-

tion of malignant lesions in these regions based on the high contrast images obtained

with that compound (Loktev et al. 2018, Giesel et al. 2018).

In order to optimize the uptake and tracer retention in the tumor, a series of com-

pounds based on FAPI-02 was developed (Lindner et al. 2018). Improvement of tracer

properties was obtained by utilization of 4,4-difluoroproline, which has been described

previously by Jansen et al. (2013, 2014). This substitution led to a 3-fold reduction of

the EC50 value for FAPI-04, one of the compounds tested, and a shift of the difference

in affinity for the related enzymes FAP and DPP4/CD26 with FAP/DPP4 binding ratios

of 45 and 750 for FAPI-02 and FAPI-04. In vitro efflux experiments revealed a signifi-

cantly slower washout of FAPI-04. Small animal PET imaging showed a higher tumor

uptake, longer dwell time and no significant increase of activity in normal organs. The

analysis of stability in human serum revealed no degradation during 24 h (Lindner et al.

2018). A comparison of the different molecules revealed that some modifications are

necessary to improve tumor retention: the heterocyclic segment, the position of the

linker at the quinolone moiety and the bond between DOTA and the propylamine as

opposed to the piperazine bond.

In order to enhance cellular retention by intracellular transport into the nucleus,

FAPI-10 was designed by adding a nuclear localization signal. However, although the

target binding was significantly higher compared to FAPI-02 in vitro, the tumor
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retention time in vivo was not improved and the presence of the peptide sequence led

to a high accumulation in the the kidneys disqualifying this compound for clinical

translation.

A preliminary dosimetry estimate for FAPI-02 and FAPI-04 was done in two patients

examined at 0.2 h, 1 h and 3 h after tracer injection revealing a dose of 1.4–1.8 mSv/

100MB which corresponds to an equivalent dose of approximately 3–4 mSv for an

injected activity of 200MBq (Giesel et al. 2018). Therefore, the effective dose of a 68Ga

FAPI PET is comparable to other 68Ga-based tracers such as 68Ga-DOTATOC/DOTA-

TATE (2.1 mSv/100MBq) or 68Ga-PSMA-11 (1.6–2.4 mSv/100MBq) and also to the

dose abtained after administration of with FDG (2 mSv/100MBq).

In patients both tracers showed a fast renal clearance resulting in a low uptake in the

normal organs. Usually radioactivity was seen only in the renal pelvis and the bladder,

with no accumulation in the renal parenchyma. Furthermore, only minimal changes in

background were observed between 10 min and 3 h p.i.. Visualization of metastases

with high contrast was obtained even at 10 min after tracer administration. This is illus-

trated by Fig. 1 which shows MIPs of patient with esophageal cancer at 10 min and 1 h

p.i.. For FAPI-02 tumor uptake decreased by 75% from 1 h to 3 h. In contrast, FAPI-04

showed a prolonged tumor retention with 25% washout. At 1 h both FAPI-tracers per-

formed equally with respect to tumor-to-background ratios.

A comparison to FDG in 6 patients revealed that the tumor uptake was almost equal

(average SUVmax-FDG 7.41; SUVmax-FAPI-2 7.37; n.s.). However, the background up-

take in brain (11.01 vs 0.32), liver (2.77 vs 1.69) and oral/pharyngeal mucosa (4.88 vs

2.57) was significantly lower with FAPI. This seems to be a promising feature of the

FAPI tracers with respect to the detection of brain or liver metastases, liver tumors or

head-and-neck tumors. As expected accumulation of FAPIs was observed not only in

tumors, but also at sites with tissue remodeling such as chronic inflammation after

Fig. 1 Patient with esophageal cancer and lymph node metastases. The MIPs at 10 min and 1 h p.i. show
tracer accumulation in the tumor and lymph node metastases. Radioactivity is also seen in the renal pelvis,
the ureter (at 10 mintes) and the bladder. In contrast, the renal parechnyma shows a very low signal

Lindner et al. EJNMMI Radiopharmacy and Chemistry            (2019) 4:16 Page 8 of 15



vaccination, activated arthrosis (Fig. 2) and physiologically in the uterus of a 53 year old

patient (Fig. 3). Since the presence of activated fibroblasts in the injured myocardium

may predict the cardiac remodelling after myocardial infarction (MI), 68Ga-FAPI-04

was used in a rat model of MI (Varasteh et al. 2019). Tracer uptake in the injured myo-

cardium peaked at day 6 after coronary ligation in the area of the MI territory. This

finding was confirmed by immunofluorescence which revealed the presence of FAP-

positive myofibroblasts in the infarct area. This indicates that the imaging of activated

fibroblasts may have a diagnostic and prognostic value in the setting of the manage-

ment of patients with MI.

A high FAPI uptake was found in pancreatic cancer, esophageal cancer, NSCLC, head

and neck cancer and colon cancer, whereas a patient with dedifferentiated thyroid can-

cer with high FDG uptake in the tumor lesions showed a low FAPI uptake or was

FAPI-negative (Giesel et al. 2018). However, advantages of FAPI imaging over FDG

could be the independency of blood sugar levels, no need for resting and the possibility

of early imaging even at 10 min p.i. which may be used to reduce the waiting time or

the amount of activity given to the patient. Furthermore, the FAPI ligands are chelator-

based containing DOTA which may be used for therapeutic applications. In order to fit

the physical half-life of the radionuclide used for therapy to the retention in the tumor,
90Y-90 with a half-life of 64 h was chosen for a proof of principle approach in a final

stage breast cancer patient with bone metastases which was treated with 2.9 GBq 90Y-

FAPI-04. Visualization of the metastases in Bremsstrahlung images was possible even

at 24 h after tracer administration (Lindner et al. 2018). This was associated with a sig-

nificant reduction of opioids given as pain medication. Furthermore, no side effects

were observed, especially no therapy related hematotoxicity.

Fig. 2 MIP and transaxial slices (CT, fusion image and PET) of a patient with gastric cancer and peritonitis
carcinomatosa: tracer uptake is seen in the left shoulder, the abdomen, and the right hip joint. The
accumulation in the left shoulder resulted from a 6 month enduring vaccination with peptides leading to a
chronic inflammation. The uptake in the right hip joint correspond to an activated arthritis, whereas the
multiple lesions in the abdomen are caused by the peritonitis carcinomatosa
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Further modifications were done with a focus on prolonged tumor retention while

retaining the imaging contrast obtained with FAPI-02 and FAPI-04. This was done ei-

ther by alteration of the lipophilicity by variations of the linker region mainly by bicyc-

lic analogues of the original piperazine moiety or by modification of the chemistry used

for DOTA/linker-attachment at the quinoline moiety (Loktev et al. 2019). An overview

of the most important FAPI variants is given in Fig. 4. Compared to FAPI-04, 11 out of

15 FAPI derivatives showed improved FAP binding in cell culure experiments. Seven

compounds showed an increased tumor uptake and high tumor-to-organ ratios in small

animal PET imaging and biodistribution studies. FAPI-21 and FAPI-46 revealed sub-

stantially improved ratios of tumor to blood, liver, muscle, and intestinal uptake and

FAP-specific binding in vivo which was verified in competition experiments with a

complete blocking of tumor accumulation after addition of unlabeled compound. A

first diagnostic application in cancer patients revealed a high intratumoral uptake of

both radiotracers which occured early at ten minutes p.i.. However, FAPI-21 showed a

higher uptake in oral mucosa, salivary glands and thyroid which was not the case for

FAPI-46.

In human tumors, the origin, number and distribution of FAP-expressing CAFs as

well as the number of FAP molecules per cell may differ. This may result in different

pharmacokinetic profiles of the radiotracers in different tumor entities. Conseqently, in

a first small series of patients a different kinetics from 1 h to 3 h p.i. was seen in differ-

ent tumor entities: a constant intracellular activity in colorectal, ovarian, oropharynx

and pancreatic carcinoma, a continuous decrease in breast carcinoma and an increasing

tracer accumulation in one patient with carcinoma of unknown primary (Loktev et al.

in revision). As mentioned above, this may be due to the heterogeneous origin of CAFs,

which may develop from resident fibroblasts, bone marrow derived mesenchymal stem

cells, endothelial cells, epithelial cells and even adipocytes. This difference in origin is

liely to result in different proteomes with a considerable expression of CAF markers

Fig. 3 MIP and transaxial slices (CT, fusion image and PET) of a patient with non small cell lung cancer.
Tracer uptake occurs in the primary tumor, mediastinal lymph node metastases, bone metastases and a soft
tissue metastasis. Physiological uptake is seen in the uterus
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such as FAP, αSMA or PDGFRβ. However, this observation has to be evaluated in a lar-

ger number of patients. From these studies we may expect important information with

respect to the indication of a FAPI-based endoradiotherapy: tumors with a longer re-

tention may respond better than tumors with a fast elimination of the

radiopharmaceutical.

Conclusion
In conclusion, FAPIs are promising tracers for diagnostic applications not only for tu-

mors showing a desmoplastic reaction, but also for non-malignant diseases with tissue

remodeling such as myocardial infarction, sarcoidosis, chronic as opposed to acute in-

flammation, lung, liver and kidney fibrosis, rheumatoid arthritis and artherosclerosis.

For a therapeutic application the physical half-life of the radionuclide has to be adjusted

to the retention time: Radionuclides with shorter half lives seem to be preferable than

radionuclides with a longer half life. This would be in favor of 188Re, 153Sm, 213Bi or
212Pb. Furthermore, a combination of an α and a β emitter seems promising by for a

simultaneous irradiation of CAFs and the surrounding tumor cells. A further

promising aspect of a therapeutic application is the combination with radiation

therapy by increasing the local dose or enabling a reduction of the externally deliv-

ered radiation leading to a decrease in side effects. Finally, since FAP-expressing

CAFs are known to be immunosuppressive, a combination with immunotherapy

may lead to a synergizing effect.

Fig. 4 Development of FAP-targeted theranostics. Chemical structures are shown for selected compounds
which were investigated in detail preclinically and/or clinically. Radionuclides in brackets were only used for
preclinical experiments
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