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Abstract

To determine the variations and spatial patterns of adult mortality across regions,
over time, and by sex for 137 small areas in Brazil, we first apply TOPALS to estimate
and smooth mortality rates and then use death distribution methods to evaluate the
quality of the mortality data. Lastly, we employ spatial autocorrelation statistics and
cluster analysis to identify the adult mortality trends and variations in these areas
between 1980 and 2010. We find not only that regions in Brazil’s South and
Southeast already had complete death registration systems prior to the study period,
but that the completeness of death count coverage improved over time across the
entire nation—most especially in lesser developed regions—probably because of
public investment in health data collection. By also comparing adult mortality by sex
and by region, we document a mortality sex differential in favor of women that
remains high over the entire study period, most probably as a result of increased
morbidity from external causes, especially among males. This increase also explains
the concentration of high male mortality levels in some areas.

Keywords: Small areas, Mortality estimation, Demographic techniques, Spatial
analysis
Introduction
Over the last several decades, Brazil has experienced an accelerated decline in infant,

child, and adult mortality, leading to a roughly 15-year median gain in life expectancy

at birth from 1950 to 2010, a much greater increase than in developed countries over

the same period. Nonetheless, despite signs of convergence in infant mortality because

of fewer deaths from infectious diseases, large differences remain across Brazilian re-

gions in both life expectancy at birth and adult mortality (França et al. 2017). Yet al-

though many studies describe such variations in infant and child mortality for Brazil’s

small areas (Souza et al., 2010; Barufi et al., 2012; McKinnon, 2010), by providing no

substantive evidence on spatiotemporal trends in adult mortality, they ignore an issue

that complicates most such research in less developed countries; namely, the overall

quality of mortality data across regions (Hill, 2017; Murray et al. 2010; Hill et al. 2009).
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In Brazil, this data quality problem is characterized by incomplete coverage of vital regis-

tration systems, errors in age declaration for both population and death counts, and a lack of

reliable information on cause of death (Queiroz et al. 2017; Borges, 2017; Gonzaga

and Schmertmann, 2016; Lima and Queiroz, 2014; França et al. 2008; Paes, 2005;

2007; Luy, 2011). Given that successful health planning requires disaggregated mor-

tality measures that accurately reflect regional health and morbidity variations, this

lack of reliable estimates also has a negative impact on public policy (Fenelon, 2013;

Ram et al. 2015; Ruther et al., 2017; Divino et al., 2009; Tsimbos et al., 2014). Proper

mortality estimates at the local level are also essential for the identification of more

vulnerable populations, the development of strong public health policies across re-

gions, and the achievement of Sustainable Development Goals (SDGs).

In this paper, therefore, we address this research gap by first applying TOPALS to

Ministry of Health mortality data for 137 small Brazilian areas to estimate and smooth

adult mortality (45q15) rates across age groups and then employing death distribution

methods (Hill et al., 2009) to assess the quality of the death registration data. Based on

these estimates, we are then able to identify the regional variations and spatial patterns

of adult mortality over time and by sex between 1980 and 2010. We find that, overall,

mortality data has improved over the years in Brazil, with mortality coverage increasing

from roughly 80% in 1980 to over 95% in 2010. This improvement has also spread to

Brazilian regions, resulting in a large portion of the country demonstrating nearly

complete death count coverage. Brazil has also experienced changes in data quality,

with a decline in deaths registered as “ill-defined” (less than 6% in 2017) and a decrease

in missing age and sex information on death certificates from 1% in 1980 to 0.3% in

2010 (albeit with large regional variations). All these improvements can be attributed

primarily to public investment in the collection of health data. At the same time, how-

ever, because of an increased number of deaths from external causes, particularly

among males, mortality differences by sex have remained substantial, accounting for

the high concentration of male adult mortality in some areas of the country.

Mortality studies in small areas
To illustrate the importance of regional mortality and health knowledge for informing

public health policies and health system coverage, Kulkarni et al. (2011) demonstrate

the large variation in life expectancy between US regions, with some presenting much

higher mortality rates than those observed in other developed countries. Similar re-

search by Kibele et al. (2015) for Germany further reveals that the factors that ex-

plained such variation in the past continue to influence current regional variation.

Hence, as in other developed regions, small areas in Brazil are likely to be characterized

by huge mortality differentials at a time when changing demographics are increasing

the demand for appropriate local health policies (França et al. 2017).

At the same time, demographers and health experts’ increasingly greater access to

geocoded data has augmented the importance of accurately estimating vital rate sched-

ules for small areas despite the inherent challenges. These latter include not only the

problem of country-level data limitations from small population size and event num-

bers (Alexander et al. 2017; Gonzaga and Schmertmann, 2016; Lima et al. 2016; Assun-

ção et al. 2005), but the unstable rate estimates common for small areas with small risk

populations even in national census or other very large datasets. As a result, traditional
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demographic techniques often yield extreme estimates for small population areas dominated

by sampling noise that may have little relation to underlying local mortality risks (Alexander

et al. 2017; Gonzaga and Schmertmann, 2016; Lima et al. 2016; Assunção et al. 2005).

To combat these challenges, an emerging body of literature on small area mortality esti-

mation is proposing several methodological alternatives for handling vital rate estimates

in less populated regions (Bernardinelli and Montomoli, 1992; Leone 2014; Ahmed and

Hill 2011; Lima et al. 2016; Stephens et al., 2013; Schmertmann and Gonzaga 2018),

among them, the use of empirical Bayesian models (Bernardinelli and Montomoli, 1992).

Another recent approach, albeit one not focused on small areas, applies locally weighted

regression functions and death distribution methods (DDM) to census data from Lesotho

and Nicaragua to produce smoothed mortality estimates (Leone 2014). For less populated

areas, Ahmed and Hill (2011) employ population characteristics and contextual factors to

estimate maternal mortality rates in small areas of Bangladesh; in particular, fitting a ran-

dom effects Poisson regression model that represents maternal death counts as their prox-

imate determinants. Alternatively, Adair and Lopez (2018) propose a symptomatic

variable method for estimating death count registration completeness, which, although

easily applicable to small areas, offers no capability for age profile adjustment.

In other studies for Brazil, Gonzaga and Schmertmann (2016) adapt De Beer’s

(2012) TOPALS (tool for projecting age-specific rates using linear splines), which

combines a relational model with Poisson regressions. Although this model was

originally used to smooth and forecast mortality in Human Mortality Database

countries, by extending it to Brazilian microregions, these authors are able to pro-

duce smooth mortality schedules for small areas. Similarly, Lima et al. (2016) com-

bine a hierarchical Poisson model with DDM to smooth mortality schedules,

enabling them to estimate life expectancies and 45q15 for 862 municipalities in two

Brazilian regions. In a more recent study, Schmertmann and Gonzaga (2018) draw

on previous DDM estimates and a verbal autopsy by Brazilian public health experts

to develop a Bayesian regression model for small-area mortality schedules that

combines a relational model with probabilistic prior information on death registra-

tion coverage. This model simultaneously controls for the problems of small local

samples and underreporting of deaths.

To address the specific problem of registration, Oliveira et al. (2017) develop a

random-censoring Poisson model (RCPM) that accounts for any uncertainty about

either the count or data reporting process. As an alternative, Alexander et al.

(2017) propose a hierarchical Bayesian model that produces subnational mortality

estimates based on temporal and spatial information, which when tested using sim-

ulated US county and real French départements data, yields reasonable results but

some degree of uncertainty in the estimates (Alexander et al. 2017). Another ap-

proach to these problems is to treat each small area as a separate unit of analysis

and not incorporate neighboring information or regression models based on micro-

data for larger areas (Ruther et al., 2017). For example, Tsimbos et al. (2014) use a

combination of model-life tables and regression models to estimate life expectancy

at the local level. Yet, none of the above small area studies and methods directly

addresses the issue of incomplete death count records, a failing we address in the

next section by proposing an easily replicable method that could be applied to a

variety of countries with defective information.
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Data and methods
Brazilian vital registration and population data

Our primary data source, the Ministry of Health DATASUS (http://www2.datasus.gov.br),

provides municipality-level information on total number of deaths and causes of death by

age and sex, with mortality data organized by ICD revision code (9th revision for 1980−1995,

10th for 1996 on). Although data are available from 1979 onward, we restrict our dataset to

1980−2010, a period during which missing sex and age information reduced sharply from an

average 1% per death to only 0.3%, albeit often with a considerable annual range (e.g., from

3% in Mato Grosso to under 0.5% in São Paulo). We standardize our estimation procedure

for all years by applying a proportional distribution of unknown age and sex data based on

the proportional share of known sex and age information in the data. As expected, we note a

higher percentage of death records with unknown sex and age in smaller areas of lesser de-

veloped regions, but the quality of this information has improved steadily over time.

Geographically, Brazil contains five major regions (North, Northeast, Southeast, South,

and Midwest) comprising 27 federal states subdivided into 137 mesoregions, which in turn

are subdivided into 558 microregions that comprise 5565 municipalities (according to the

2010 census). These municipalities have the responsibility for death data cleaning and com-

pilation and then transferring an electronic data file to the national office every 3 months.

The Brazilian Census (1980, 1991, 2000, and 2010) is responsible for gathering population

age and sex data at the local level, but although considered of good quality, an underenu-

meration problem may affect coverage for small areas. That is, according to post-census

enumeration surveys, a 7.3% underenumeration occurred in 1980, around 4% in 1991 and

2000, and as high as 9% in 2010, with the northern and northeastern states experiencing the

highest levels over time. We observed an important decline in missing information on age

and sex. For the years 1980 and 1991, we have used pro-rata distribution to allocate this

missing data by age and sex for all localities. The percentage of missing information has de-

clined substantially in the next years of 2000 and 2010. Moreover, IBGE reported that the

quality of the census, measured by the estimated number of underreporting, declined from

1991 onwards lower than previous years (IBGE, 2008), and they also indicate a large re-

gional difference across regions. This issue is more relevant for smaller areas. For ease of

comparison, we use the IBGE mesoregion definition to aggregate municipalities in compar-

able small areas, yielding a 1980−2010 data sample for 137 small areas of Brazil (Ehrl, 2017).

Two major advantages of this choice are that (1) these areas did not change their boundar-

ies over the period of analysis, and (2) they are similar in regional and socioeconomic

characteristics.
Methodology

We focus our analysis on 45q15, a synthetic measure of adult mortality, with 15 as the as-

sumed age of entry into adulthood being the turning point at which declining childhood

mortality risks are replaced by increased mortality risks for young-adult age groups. Be-

cause this simple measure covers a substantive age range up to age 60, it avoids problems

inherent in mortality estimates at more advanced ages while offering easy comparability

with existing studies. Not only will the results help fill the research void on variation in

adult mortality across Brazil’s different regions, but adequate estimates of adult mortality

could be used in other models to produce life table estimates for small areas.

http://www2.datasus.gov.br
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Estimating adult mortality rates in less populated areas

The TOPALS relational model (Gonzaga and Schmertmann, 2016) used to estimate

mortality rates by sex and age with a log mortality schedule that is the sum of two

functions: (1) a constant schedule (standard) that incorporates basic age patterns, and

(2) a parametric piecewise-linear function comprised of straight-line segments between

designated ages (knots). This latter represents differences between the standard and log

mortality schedule in the population of interest, as expressed in the following equation:

λ αð Þ
|ffl{zffl}

100�1

¼ λ
|{z}

100�7

� þ B
|{z}

100�7

α
|{z}

7�1
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where λ is a vector of log mortality rates in a mesoregion, λ* is a standard schedule (the
national log mortality rate), B is a matrix of constants in which each column is a linear B-

splines basis function with knots defined at exact ages (x = 0, 1, 10, 20, 40, 70, 100; cf.

Gonzaga and Schmertmann, 2016), and α is a vector of parameters representing offsets to

the standard schedule. In Eq. (1), the α values represent additive offsets ðλx − λ�xÞ to the

log mortality rate schedule at knots between which the offsets change linearly with age.

According to Gonzaga and Schmertmann (2016), based on any set of observed age-

specific deaths (Dx) and populations (Nx), deaths are distributed as independent Poisson

variables with a log likelihood of

logL αð Þ ¼ constantþ
X

x

Dxλx αð Þ −Nx exp λx αð Þð Þ½ � ð2Þ

Given TOPALS’ inherent properties, the choice of a standard schedule is far less im-
portant in our model than in other demographic relational models like indirect

standardization, especially as the assumption that all mesoregions within any Brazilian

state have the same age-specific mortality rates schedule is unreliable (Gonzaga and

Schmertmann, 2016). Moreover, because TOPALS estimates parameters by maximizing

a Poisson likelihood function for age-specific deaths conditional on age-specific expos-

ure, these estimates have a 95% interval confidence, a major improvement for small-

area estimation in less developed countries. As a result, rather than the point estimates

of mortality measures offer by earlier studies, we can report the error term, which may

be closely related to data quality, population size, and other local characteristics.

Estimating completeness of death registration for mesoregions

To obtain the expected number of deaths per population, we employ a DDM approach

that evaluates death count coverage in relation to population count (Hill et al. 2009). Des-

pite some limitations, DDM, whose formalization is extensively detailed in the literature,1

provides highly robust and consistent results for a series of applications across the globe

(Peralta et al. 2019; Hill, 2017; Wang et al. 2016). In brief, DDM derives the mortality age

pattern for a set period by comparing the death age distribution with the population age

distribution via three primary methods: general growth balance (GGB, Hill 1987),

synthetic extinct generations (SEG; Bennett and Horiuchi, 1981), and adjusted synthetic

extinct generations (SEG-adj; Hill et al. 2009). In doing so, it makes several strong
1See, for example, Bennett and Horiuchi (1981); Hill (1987); Hill et al. (2005); Hill et al. (2009); Dorrington
et al. (2014a; 2014b); Murray et al. (2010).
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assumptions: the population is closed, the degree of death coverage and degree of popula-

tion count coverage are constant by age, and declaration of the ages of the living and dead

is free of error.

The first DDM method, GGB, is derived from the basic demographic balancing equation,

whose expressed identity is that population growth rate is equal to the difference between

entry and exit rates. Because this identity holds for open-ended age segments x+, and in

closed populations, the only entries are birthdays at age x, the “birthday” rate x+ minus the

growth rate x+ provides a residual estimate of the death rate x+. If this residual estimate can

be calculated from the population data in two national censuses, then a direct comparison

of recorded deaths enables estimation of death recording completeness relative to the popu-

lation (Hill, 1987; Hill et al., 2005; Hill et al. 2009). That is, the relations between input rates

and the difference between growth and mortality rates in every age group allow estimation

of a simple linear relation between the two censuses whose intercept incorporates any vari-

ation in coverage. It is also possible to estimate a slope that indicates the degree of regis-

tered death coverage from the average coverage of both censuses.

The SEG method (Bennett and Horiuchi, 1981), on the other hand, uses specific growth

rates by age to convert a death age distribution into a population age distribution. More

specifically, once the observed deaths at a given age x in the population are equal to the

number of those aged x in the population, adjusted by the population growth rate by age

range, the deaths at age x+ in a population provide an estimate of the number aged x in

that population. The ratio of population above age x (estimated by reported deaths) to ob-

served population above age x then represents the death registration coverage

The adjusted version of SEG is designed to deal with SEG’s highly problematic

assumption that a population is closed to migration or has a very small migration

flow, which is especially unrealistic in the case of Brazil and its regions. For ex-

ample, when the population is not closed (migration flows) or when the two cen-

suses give differential coverage, Hill et al. (2009) consider the GGB more robust

than the SEG in simulations with age declaration errors in the census and death

records. In simulations where census (death record) coverage varies (increases) by

age, however, the GGB’s sensitivity often results in overestimation of the death

registration coverage (Hill et al. 2009). The SEG method, in contrast, although

relatively robust in the presence of age declaration errors in census and death re-

cords or when the difference in census coverage varies by age, produces substan-

tially biased estimates in the presence of migration.

Although the literature proposes several methodologies for addressing these problems

(Hill and Queiroz, 2010; Bhat, 2002), the adjusted SEG offers the simpler alternative of con-

sidering only age groups that are not greatly influenced by migration flows. That is, above a

certain age x over which net migration is negligible, method performance minimizes the im-

pact of migration flows. Estimate quality is further enhanced by using GGB-adj to combine

the two methods (Hill, 2017), which Hill et al. (2009) suggest may be more robust than sep-

arate application. Because the most appropriate age interval selection technique for estimat-

ing underregistration involves assessing GGB-produced diagnostic charts, the adjusted

method first applies GGB to obtain estimates of the change in population enumeration (k1/

k2), which it uses to adjust the coverage of both censuses, and then applies SEG using the

adjusted population for mortality data coverage. Given minimal differences in the final esti-

mates, we adopt this combined method and use the DDM R-package to estimate the
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undercounting of deaths for all 137 Brazilian mesoregions in the 1980−2010 period (https://

cran.r-project.org/package=DDM).
Spatiotemporal analyses

To study the spatial evolution of adult mortality, we first use cluster analyses based on latent

class models to determine spatial clustering across mesoregions and then employ spatial

autocorrelation measures to determine the hotspots and outliers of adult mortality across

the country. The latent class cluster (LCC) group model falls into the family of mixture like-

lihood clustering (McLachlan and Basford 1988; Everitt 1993), model-based clustering (Ban-

field and Raftery 1993; Bensmail et al. 1997; Fraley and Raftery 1998), mixture-model

clustering (Jorgensen and Hunt 1996; McLachlan et al. 1999), Bayesian classification (Chee-

seman and Stutz 1995), unsupervised learning (McLachlan and Peel 1996), and LCC ana-

lysis (Vermunt and Magidson, 2000). The method differs from standard cluster analysis

techniques in its use of a model-based clustering approach to group information (Vermunt

and Magidson 2002). That is, whereas classical cluster methods like k-means are commonly

based on intuitively reasonable procedures (Everitt et al. 2011) but have difficulty deciding

on the best distance method and estimation procedure for number of clusters, LCC applies

statistical models for the population under study. In practical terms, LCC assumes that the

population consists of many subpopulations or clusters with different multivariate probabil-

ity density functions, defined by a finite mixture of underlying probability distributions

(Everitt et al. 2011; Vermunt and Magidson 2002).

This finite mixture modeling is a form of latent variable analysis in which each subpop-

ulation is a latent categorical variable and the latent classes are described by the different

components of the mixture density. The allocation of objects to clusters is optimal when

based on specific criteria that minimize the within-cluster variation and/or maximize the

between-cluster variation (Vermunt and Magidson 2002). Whereas use of a statistical

model offers the advantage of less arbitrary choice of cluster criterion, LCC allows great

flexibility in the use of either simple or complicated distributional forms of the observed

variables within clusters (Everitt et al. 2011; Vermunt and Magidson, 2002).

In our subsequent analysis of the spatial pattern of variation in adult mortality across

Brazil’s mesoregions, we use the Moran Index, a correlation coefficient measuring the

linear relation between same variable values across neighboring areas. It is thus

assigned the prefix “auto” and considered a spatial autocorrelation index (Bailey and

Gatrell, 1995; Bivand et al., 2008), which may be global or local (Ward and Gleditsch,

2007; Anselin, 1995). Using global autocorrelation permits determination of whether

the global spatial pattern is random (Anselin, 1995)—for example, whether the

variation in adult mortality probability is higher in some subnational areas with a

well-defined spatial gradient between them—while local autocorrelation enables

measurement of the relation between closest neighboring areas. Certain situations

require simultaneous analysis of both the local and global indexes: for example,

using local autocorrelation to identify local spatial clusters or hotspots while asses-

sing the influence of individual locations on the magnitude of the global statistic

and identifying outliers (Anselin, 1993). The test of significance for these findings

is based on pseudo-distribution references generated from simulations (Bailey and

Gatrell, 1995; Bivand et al. 2008).

https://cran.r-project.org/package=DDM
https://cran.r-project.org/package=DDM
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Results
Evolution of death count and adult mortality coverage completeness in Brazil

The distribution of smoothed male mortality rates across mesoregions in four different

Brazilian states reveals substantial diversity in death data quality, from very poor in Ama-

zonas and Bahia to relatively better in Rio de Janeiro and Santa Catarina (see Fig. 1). By

plotting the mortality rate schedule for the entire state in each panel, we illustrate that

mortality rates between mesoregions within some states may have different age schedules,

especially at young adult ages, which could affect death probability between 15 and 60

years. Even on a state level, the ratio of deaths to exposition has higher variability across

ages. In terms of mortality rate differences between mesoregions, however, whereas Rio

de Janeiro and Santa Catarina show none, Amazonas and Bahia differ greatly, possibly as

a result of different death record completeness. In general, the application of TOPALS

yields reasonable age schedules for mortality rates in small areas, enabling accurate ana-

lysis of spatial and temporal variation across the country.

After smoothing mortality rates, we first apply DDM to estimate death count complete-

ness and adjust mortality estimates when necessary and then more closely examine the es-

timates of smoothed plus adjusted (i.e., TOPALS + DDM) deaths for one select

mesoregion, Southern Amazona (see Fig. 2). We denote the region’s observed log mortal-

ity rates by +; its TOPALS estimates by small triangles; its TOPALS + DMM estimates,

their 95% confidence intervals, and crossing segments by solid dots; and the observed log

mortality rates for the entire state by a solid grey line. The most noteworthy observation
Fig. 1 Observed and smoothed age-specific mortality rates according to selected mesoregions in Brazil,
males, 1980–1991. Source: IBGE (1980, 1991, and 2000) and DATASUS (2019)



Fig. 2 Observed and smoothed age-specific mortality rates for Mesoregion Southern Amazonas in Brazil,
males, 1980–1991. Source: IBGE (1980, 1991, and 2000) and DATASUS (2019)
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is the level of adjustment necessary to account for death underregistration in this mesore-

gion, which in fact reflects the tendency of most small areas in Brazil’s Northern and

Southern states to have the lowest death record completeness in the 1980–1991 period.

In Tables 1 and 2, by listing the descriptive statistics on coverage completeness for

1980−2010 death counts and adult mortality (45q15) in Brazil’s five major regions for

females and males (Tables 1 and 2), respectively, we show that the quality of national

mortality data improved considerably in the later decades, with much less regional vari-

ation. For example, states in the South and Southeast recorded 100% of deaths in the

most recent year, for both sexes, while some states in the North and Northeast, despite

lower information quality for some areas, also show significant advances compared to

earlier periods. As a result, by 2010, most mesoregions in the south-Southeast, as well

as some in the Northeast and Midwest, had complete death registry coverage. Great

progress is also evident in the quality of mortality information in the poorest mesore-

gions of the north-Northeast, especially those with the worst record quality in previous

periods. In fact, based on the 95% confidence interval for 45q15 estimates, these records

reveal a significant decline in adult mortality for both sexes during the three decades

examined, underscoring the summary statistics’ usefulness in providing an overview of

general changes across the country.

The estimates in Fig. 3, which are based on the TOPALS plus combined DDM (Hill

et al. 2009), outline the spatial evolution of death count completeness by sex and mesore-

gion from 1980 to 2010. As the figure shows, during the 1980–1991 period, the Brazilian

regions with the highest and most reliable data quality were those in the southern part of



Table 1 Completeness of Death Counts and Adult Mortality Rates for Females: Brazil and regions,
1980–2010

Brazil Completeness 45q15

1980–
1991

1991–
2000

2000–
2010

1980–1991 (95%
IC)

1991–2000 (95%
IC)

2000–2010 (95%
IC)

Mean .9497 .9696 .9367 .135 (.126; .148) .115 (.107; .125) .108 (.101; .116)

Minimum .1163 .1299 .3879 .067 (.058; .079) .063 (.051; .077) .071 (.056; .089)

Maximum 1 1 1 .379 (.237; .570) .288 (.181; .441) .144 (.135; .204)

Total of
areas

137 137 137 137 137 137

North 1980–
1991

1991–
2000

2000–
2010

1980–1991 (95%
IC)

1991–2000 (95%
IC)

2000–2010 (95%
IC)

Mean .7692 .8934 .8528 .154 (.126; .190) .112 (.095; .132) .109 (097;.122)

Minimum .1163 .1299 .3879 .067 (.058; .079) .063 (052; .077) .071 (.056; .089)

Maximum 1 1 1 .379 (.238; .571) .288 (.181; .441) .143 (.128; .204)

Total areas 20 20 20 20 20 20

Northeast 1980–
1991

1991–
2000

2000–10 1980–1991 (95%
IC)

1991–2000 (95%
IC)

2000–2010 (95%
IC)

Mean .8375 .9132 .8864 .112 (.104; .122) .104 (.097; .111) .106 (.099; .113)

Minimum .2945 .4922 .5610 .075 (.066; .085) .076 (.070; .082) .086 (.078; .093)

Maximum 1 1 1 .202 (.194; .210) .159 (.153; .166) .144 (.135; .154)

Total areas 42 42 42 42 42 42

Midwest 1980–
1991

1991–
2000

2000–
2010

1980–1991 (95%
IC)

1991–2000 (95%
IC)

2000–2010 (95%
IC)

Mean .9478 1 .9738 .134 (.122; .147) .119 (.110; .129) .123 (.105; .121)

Minimum .5182 .8870 .8658 .076 (.061; .094) .098 (.087; .110) .094 (.091; .098)

Maximum 1 1 1 .157 (.151; .171) .138 (.127; .153) .129 (.120; .143)

Total areas 15 15 15 15 15 15

South 1980–
1991

1991–
2000

2000–
2010

1980–1991 (95%
IC)

1991–2000 (95%
IC)

2000–2010 (95%
IC)

Mean 1 1 1 .137 (.129; .145) .119 (.112; .126) .104 (.099; .110)

Minimum .9754 .9537 .9202 .110 (.103; .119) .100 (.093; .104) .185 (.081; .090)

Maximum 1 1 1 .176 (.167; .187) .148 (.140; .158) .130 (.123; .138)

Total areas 23 23 23 23 23 23

Southeast 1980–
1991

1991–
2000

2000–
2010

1980–1991 (95%
IC)

1991–2000 (95%
IC)

2000–2010 (95%
IC)

Mean 1 1 .9787 .150 (.142; .159) .127 (.120; .134) .111 (.105; .117)

Minimum .9523 .8613 .8295 .122 (.116; .127) .105 (.100; .110) .093 (.087; .096)

Maximum 1 1 1 .179 (.171; .191) .163 (.152; .175) .140 (.132; .149)

Total areas 37 37 37 37 37 37

Source: IBGE (1980, 1991, and 2000) and DATASUS (2019)
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the country, with most northern areas characterized by very poor data quality. By 2010,

however, most of Brazil’s regions had completeness levels above 70% with far less vari-

ation in the best and worst completeness levels in each region. The estimates also reveal

clear improvement in data quality in the Northeast regions over the 2000–2010 period, al-

though the areas closest to state capitals2 enjoy good coverage over the entire decade

while others still need improvement over the next few years. Over the entire study period,
2In Brazil, all state capitals in the Northeast region are located in seacoast areas.



Table 2 Completeness of Death Counts and Adult Mortality Rates, Males, Brazil, and regions, 1980–
2010

Completeness 45q15

Brazil 1980–
1991

1991–
2000

2000–
2010

1980–1991 (95%
IC)

1991–2000 (95%
IC)

2000–2010 (95%
IC)

Mean .9799 .9639 .9459 .229 (.217; .244) .216 (.205; .227) .210 (.201; .220)

Minimum .1804 .2927 .5875 .097 (.086; .110) .107 (.093; .122) .133 (.121; . 144)

Maximum 1 1 1 .445 (.331; .591) .336 (.322; .433) .289 (.277; .302)

Total areas 137 137 137 137 137 137

North 1980–
1991

1991–
2000

2000–
2010

1980–1991 (95%
IC)

1991–2000 (95%
IC)

2000–2010 (95%
IC)

Mean .8818 .8737 .8609 .223 (.197; .253) .195 (.177; .216) .199 (.185; .215)

Minimum .1804 .2927 .5875 .097 (.086; .110) .107 (.093; .122) .133 (.121; .144)

Maximum 1 1 1 .445 (.323; .591) .332 (.281; .433) .269 (.259; .301)

Total areas 20 20 20 20 20 20

Northeast 1980–
1991

1991–
2000

2000–
2010

1980–1991 (95%
IC)

1991–2000 (95%
IC)

2000–2010 (95%
IC)

Mean .8922 .9417 .9276 .188 (.177; .199) .186 (.177; .196) .201 (.192; .210)

Minimum .3976 .6882 .6939 .113 (.101; .125) .138 (.127; .146) .159 (.149; 170)

Maximum 1 1 1 .323 (314; .332) .303 (.298 ; .308 .275 (.267; .282)

Total areas 42 42 42 42 42 42

Midwest 1980–
1991

1991–
2000

2000–
2010

1980–1991 (95%
IC)

1991–2000 (95%
IC)

2000–2010 (95%
IC)

Mean .9256 .9844 .9517 .236 (.222; .252) .227 (.215; .239) .222 (.212; .233)

Minimum .4593 .7961 .8225 .160 (.139; .184) .185 (.170; .201) .191 (.179; .202)

Maximum 1 1 1 .285 (.269; .307) .250 (.235; .266) .257 (.248; .269)

Total areas 15 15 15 15 15 15

South 1980–
1991

1991–
2000

2000–
2010

1980–1991 (95%
IC)

1991–2000 (95%
IC)

2000–2010 (95%
IC)

Mean 1. 1. 1. .240 (.230; .250) .223 (.214; .232) .206 (.199; .214)

Minimum .9733 .9531 .9147 .196 (.188; .204) .183 (.174; .190) .168 (.162; .174)

Maximum 1 1 1 .280 (.274; .286) .260 (.255; .265) .237 (.227; .247)

Total areas 23 23 23 23 23 23

Southeast 1980–
1991

1991–
2000

2000–
2010

1980–1991 (95%
IC)

1991–2000 (95%
IC)

2000–2010 (95%
IC)

Mean 1. .9897 .9727 .271 (.261; .282) .251 (.242; .260) .224 (.216; .232)

Minimum .9335 .8472 .8182 .219 (.210; .228) .207 (.197; .217) .191 (.186; .197)

Maximum 1 1 1 .336 (.331; .352) .336 (.322; .351) .289 (.277; .302)

Total areas 37 37 37 37 37 37

Source: IBGE (1980, 1991, and 2000) and DATASUS (2019)
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death count coverage is higher for males than for females, especially in North Brazil, al-

though the sex difference does seem to decrease during the 2000−2010 decade.

Two possible reasons for this decline are a major increase during this period in mor-

tality from external cause, especially among males, and better registration of external

death causes (Queiroz, et al. 2017; Moura, et al. 2015; Lima and Queiroz, 2014; Waisel-

fiz, 2013). In the literature, there is evidence in Brazil that external causes of death

(such as homicides and transit accidents) have almost complete coverage in all Brazilian

regions (Murray, et al. 2013; Campos and Rodrigues 2004). As summarized by



Fig. 3 Evolution of completeness of deaths counts by sex and Mesoregions in Brazil, 1980–2010. Source:
IBGE (1980, 1991, 2000 and 2010) and DATASUS (2019)
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Schmertmann and Gonzaga (2018) violent causes of deaths due to homicides and traffic

accidents must be reported to the local health department and to the police. Hence, there

are more sources of information for this particular death cause, improving its quality in

turn. One may also argue that there is variation in the quality of this information across

regions of the country, but the process of registering this type of death is defined by a fed-

eral law (Murray, et al. 2013). In addition, external causes of deaths, especially for males,

have increased in the last decades, and these deaths are concentrated among young male

adults (Murray, et al. 2013; Soares Filho et al., 2016; França, et al. 2017; Borges, 2017).

In relation to the regional pattern of female mortality, one should highlight that the

country has not fulfilled its commitment to reduce 75% of maternal deaths until 2015. In

2015, the ratio of maternal mortality was around 62 deaths per 100,000 live births. There

are also large regional inequalities, regions in the North and Northeast parts of the coun-

try present much higher maternal mortality than the regions in the Southern parts of the

country (Silva et al., 2016). Rodrigues, et al. (2016) shows an increase in maternal mortal-

ity in regions in the North and Northeast and a steady decline in the Southeast and South.

The authors also suggest that some areas have shown an increase in maternal mortality in

the 2000s. Despite this rising trend in maternal deaths, as suggested by Borges (2017), for

larger areas, in recent decades it is observed an increased gap between male and female

life expectancy. The main explanation for that is the elevated male mortality by external

causes of death. Baptista and Queiroz (2019) also show that mortality by cardiovascular

diseases is lower and declines faster for females than for males.

While death count coverage increased over the three decades, however, adult mortality

for both sexes and all mesoregions declined, as shown by the evolution of death probabil-

ity at age 15−60 (45q15) across the 1980−2010 period (see Fig. 4). Nonetheless, despite a

seemingly similar pattern of decline for males and females, male mortality remained

higher in some parts of the country, especially in the Southeast, costal Northeast, and a

few Northern areas where the risk of dying aged 15−60 was around 0.25 for males. One

possible explanation is a rise in violence rates (Moura et al., 2015; Waiselfiz, 2013;



Fig. 4 Evolution of adult mortality (45q15) by sex and mesoregions in Brail, 1980–2010. Source: IBGE (1980,
1991, 2000 and 2010) and DATASUS (2019)
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Reichenheim et al. 2011), which although they decreased in the Southeast between 1990

and 2010, remained high, with a relative increase in the Northeast during the same period

(Waiselfiz, 2013; de Andrade and Diniz, 2013; Carvalho et al. 2012; Pereira and Queiroz,

2016). At the same time, the 95% confidence interval signals that the variation in adult

mortality reduced over time and across regions, indicating a quickly declining level of un-

certainty, whose higher (lower) level in less (more) populated and less (more) developed

areas of the country reflects the improvement in data quality. Most Northern and North-

eastern areas also show a slowing pace of mortality decline for both sexes, which may be

attributable to two factors: the increased risk of death from external causes in these re-

gions (Borges, 2017; Waiselfiz, 2013), and a large decline in mortality level over the 1990-

2000 decade that set a low starting point for levels in the next decade.

In Fig. 5, by plotting the death probability at ages 15−60 for both sexes in 1980–1991

against that in 2000–2010, with the 45q15 estimates for the former (latter) on the x-

axis (y-axis), we demonstrate that the regions with a high death probability in the

1980s are still those with high mortality levels in the later periods. Hence, although

adult mortality (45q15) differs substantially across Brazilian regions over the three de-

cades of study, most regions with high mortality levels in 1980–1991 also had high

levels in 2000−2010, with similar trends observable for both males and females.
Spatial analysis of adult mortality patterns
The process of divergence and slow convergence in Brazil’s adult mortality in recent

years reflects the slow rhythm of mortality decline in some regions of the country (Bor-

ges, 2017; França, et al., 2017; Baptista and Queiroz, 2019). That is, in general, regions

with high mortality levels in 1980 show a slower decline in adult mortality but have

higher levels in the more recent periods. One way to examine this trend is to esti-

mate—and then spatially analyze—the variation in intercensal adult mortality probabil-

ities, which, in addition to further explaining earlier observations, should shine light on the

corresponding mortality dynamics across time and space. To this end, we divide our three

study decades into two periods and perform cluster estimates using centroids from the



Fig. 5 Relationship between adult mortality probabilities in two periods, Males, Brazil (1980/1991 and 2000/
2010). Source: IBGE (1980, 1991 and 2000) and DATASUS (2019)
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mesoregions as spatial control variables, together with the variation in death probability. Fig-

ure 6 shows spatial cluster of variation in adult mortality for two intercensal periods.

For males in study period 1 (1980−1991 to 1991−2000), we identify three spatial clus-

ters, the first encompassing the entire North and parts of the Northeast and Midwest.

This cluster comprises mainly mesoregions with adult mortality reduction (69.7%), un-

changed variability (12.1%), and increased adult death probability in 18.2% areas over

time. The second cluster, in the Northeast, is more heterogeneous and comprises

mesoregions with no change in mortality risk (48.5%) during period 1, 30.3% of whose

areas actually experienced a decline in adult mortality between 1980−1991 and 1991

−2000. The third cluster is similar but includes no mesoregions with increased death

probability across these two decades.

For males in period 2 (1991−2000 to 2000−2010), we identify five clusters of mor-

tality variation, including the same Midwest and Northern groups as in period 1,

while also noting that most areas show either no change (35.9%) or an increase

(38.5%) in adult mortality. Only the Northeast cluster includes more areas with in-

creased mortality risk (75%). Two additional groups of mesoregions in the Southeast,

South, and parts of the Midwest are predominantly characterized by adult mortality

reduction. The Southeast is divisible into two spatial clusters: the Upper Southeastern

region, in which 74% of areas experience a mortality reduction but 26% show no sig-

nificant change; and the Lower Southeastern cluster, in which 100% of the mesore-

gions experience mortality decline. The profile of the latter is nonetheless similar to

that of the former, with 80% of areas experiencing a decrease and 20% showing no

change in 45q15 mortality. It is also worth noting that not all mesoregions show only

an increase or only a decrease in death probability for any one cluster, prompting us

to describe mortality levels based on the number of areas that experienced a reduced

or increased mortality risk.

For females in period 1, we identify a fourth spatial cluster whose profile, with few ex-

ceptions, changes little compared to that of males. In fact, even though we find distinct

spatial patterns of variation for five and three female clusters in the first and second



Fig. 6 Spatial cluster of variation in males and female adult probability of death between 1980 and 2010 by
mesoregions in Brazil with corrections for underreporting of deaths. Source: IBGE (1980, 1991, and 2000)
and DATASUS (2019)
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periods, respectively, these patterns differ only slightly from those of males. Across the

time span, the Northern and high Midwest clusters are again the most heterogeneous,

with mortality reduction being slightly predominant (33.3%) and 41% of the mesoregions

experiencing increased adult mortality in period 2. The Northeastern spatial cluster is

characterized mainly by increased mortality (53.3% of areas), with 37.8% showing no

change in 45q15 variation. Both these clusters show a similar pattern of adult mortality

variation, with a majority of mesoregions experiencing decreasing adult mortality.

The above cluster analysis of Brazilian mesoregions across our two study time periods

(1980−1991 to 1991−2000; 1991-2000 to 2000-2010) reveals two particularly interesting pat-

terns: First, during the first 20 years of adult mortality change in the country, although some

clusters in the Northeast and some parts of the North experienced increased mortality risk,

levels in Brazil’s most developed areas barely changed. Second, although this pattern of in-

creased mortality risk in the Northeast and some Northern areas persisted over the entire

time span, this risk either decreased or remained unchanged in the most developed regions,

especially the South and Southeast. This geographic difference in profile strongly suggests

an association between lower mortality levels and socioeconomic development.
Spatial analyses of adult mortality variation in Brazil

Our last investigative phase is a spatial auto-correlation analysis using global and local

Moran Indexes to measure adult mortality variation by sex and region between period

1 (1980−1991 to 1991−2000) and period 2 (1991−2000 to 2000−2010). To assess the

presence of spatial clusters of high and low change in adult mortality (45q15), we em-

ploy the local Moran’s I statistic as a local indicator of spatial association (LISA; Anse-

lin 1995; Cliff and Ord 1975). Our specific focus is whether relative reductions in adult

mortality are randomly distributed or concentrated in particular areas. The significant
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positive values on the global index for both males and females indicate that the spatial

variation in 45q15 is not random.

In Fig. 7, the areas designated high-high (low-low) are those that experienced a high

(low) variation in mortality in period 1 relative to period 2, with the outliers, high-low

and low-high, being regions with significant heterogeneity in mortality variation but a

unique pattern of either high or low variation in each specific area. None of these out-

liers are significant, however, at a 0.05 significance level. In period 1, some regions in

the North are characterized by low-low areas, suggesting low adult mortality variation

across the northern region and surrounding areas, except for a small group of northern

regions in the Northeast, which show predominantly high-high variation. This latter in-

dicates neighboring mesoregions with high adult mortality variation for both men and

women. Overall, during Period 1, the regions with significant adult mortality vari-

ation—both low-low and high-high—are located in northern Brazil.

In period 2, the areas of homogenously high variation in adult mortality, whose spa-

tiotemporal pattern holds for both males and females, are a set of mesoregions in the

north central portion of the Northeast, semi-arid mesoregions in the Northeast, and

mesoregions in the North. As previously explained, because very few Brazilian regions

show an increase in mortality during the analytic period, we can treat this variation as

a decline in adult mortality. The results further indicate that in much of northern

Brazil, adult mortality reduction is low in several neighboring areas in period 1 and ac-

centuated in several mesoregions Period 2. A similar pattern is observable in the north

central part of the Northeast, which, compared with high-high areas in the two differ-

ent periods, shows some indication of a high-high concentration, possibly implying

contagion on the rate of adult mortality decline over time in that area. The south cen-

tral portion of the country, in contrast, is characterized by a low-low spatial cluster in

period 2 that is concentrated in the Southeast, a result that is hardly surprising given

that most Southeast states already had the lowest mortality rates in the country.

Despite the overall decline in adult mortality levels over time, however, we note an

evolution of 45q15 homogenization and convergence across the country. That is, even
Fig. 7 Local and spatial autocorrelation of the variation on the adult mortality probabilities (15q45) by sex
and mesoregion, Brazil (1980–1991, 2000–2010). Source: IBGE (1980, 1991, and 2000) and DATASUS (2019)
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with the persistence of hotspots in certain locations, Brazilian adult mortality levels are

becoming more alike across mesoregions, especially among females. On the other hand,

our examination of adult mortality convergence across Brazilian mesoregions between

1980 and 2010 reveals significant differences, as well as high mortality hotspots in some

areas as a result of increasing deaths from external causes, especially among young

males (Waiselfiz, 2013; Pereira and Queiroz, 2016). At the same time, reduced mortality

rates in other areas with lower socioeconomic levels may imply better living conditions

and overall improvements in health.

Conclusions
The empirical findings reported in this paper make a valuable contribution not only to

the research on mortality in general but also to that on data quality and adult mortality

in small areas of Brazil, whose accuracy tends to be hampered by defective data. Our

combined TOPALS and DDM methodology, in addition to assessing the quality of Bra-

zil’s regional death count information, produces accurate adult mortality estimates (and

confidence intervals) for these small areas by age, sex, and population in a manner eas-

ily replicable in all countries that suffer from data deficiencies (Tabutin et al., 2017).

Nonetheless, although this method is applicable to all analytic periods and geographic

areas—a major advantage of our methodological approach—it suffers from one major

limitation; namely, the potential for population size and data quality-related errors

when estimating data completeness and adult mortality rates for small areas. Although,

a detailed discussion of these errors is beyond the scope of this (and many other) pa-

pers (cf. Baker et al., 2013a, b), we do control for them by focusing on adult mortality

among 5-year age groups in mesoregions, a unit far less volatile than city or census

tract. We also provide 95% confidence intervals for the mortality age profiles, thereby

designating the uncertainty level for each estimate across region and time. As a final

precaution, we use regions with at least 53,934 inhabitants, and in additional unre-

ported analyses compare our main results with outcomes using an empirical Bayesian

estimator. The similarity of these findings supports our confidence in the robustness of

our results.

The main observations from our study, which resemble those documented for larger

areas (Paes, 2005; Paes, 2007; Lima and Queiroz, 2014; Queiroz, et al. 2017), are that the

quality of death count registration in Brazil has been improving over time in all its regions

while the adult mortality rate has been declining, albeit with a notable gap between males

and females. On the other hand, not only are certain areas of the country still character-

ized by stagnant or increasing mortality levels because of violence-related young adult

deaths, but our examination of the evolving completeness of death count and adult mor-

tality coverage in Brazil reveals remarkable regional differences. For example, whereas

states in the more developed South and Southeast achieved completeness levels close to

100% over time for both sexes; some states in less developed Northeast and Northern re-

gions still have lower quality information but have made significant recent advances over

the 1980s.

Similar improvement in death count completeness occurred over the study period in

Brazil’s North and Northeast, with areas closest to state capitals having higher coverage

in all decades (Paes, 2005; Paes, 2007; Lima and Queiroz, 2014; Queiroz, et al. 2017).

The converse of this pattern is confirmed by active search-based estimations of infant
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death coverage in these areas (Szwarcwald et al. 2014), which suggest that underreport-

ing is probably lower than official estimations (IBGE, 2013). By 2010, therefore, most

states in south-Southeastern regions, as well as some in Northeast and Midwest re-

gions, had complete death registry coverage, and much progress had been made in im-

proving mortality information quality even in the poorest north-Northeastern areas,

particularly those with the worst record quality in the earlier decades.

In Brazil, there are few studies that applied spatial and demographic analyses on overall

mortality (Baptista and Queiroz, 2019; Schmertmann and Gonzaga, 2018). In general, the

focus is on epidemiological and public health aspects of mortality, and the studies’ target

are the entire country, major geographic regions (Southeast, Northeast, Federal States,

etc.), or very specific counties. Therefore, there is a need for studies investigating the vari-

ation of mortality across time and space using smaller areas. In this paper, we show that

the epidemiologic transition in Brazil has not followed the linear and unidirectional pat-

tern, and it is quite heterogeneous across regions of Brazil and within regions. Moreover,

we argue that additional studies should pay attention to social and regional inequalities in

mortality. In this sense, this study helps to understand the dynamics of the health transi-

tion in the country over a long period of time, and it may have positive impacts on local

public health policies. Our results are in line with other analyses that focus on states or

major regions of the country, but we provide more detailed results for small regions.

Although the adult mortality estimates suggest improved health conditions in the coun-

try over the study period, the differences in adult mortality by sex have remained almost

constant, primarily because of male deaths from external causes (Pereira and Queiroz,

2016; Malta, et al. 2017; Ladeira, et al. 2017). Such deaths also partly explain the very small

variation in 45q15 across regions over time: above 0.200 for males; around 0.120 for fe-

males, with intersex differences remaining practically constant from 2000 to 2010. Not

only is female adult mortality far lower than male mortality, with the highest death prob-

ability for 2010 found in Rio de Janeiro, Espírito Santo, Alagoas, and Pernambuco, but the

regions with the fastest decline in adult mortality are those with highest mortality levels in

earlier decades. For instance, the burden of disease is higher in the North and Northeast,

while chronic diseases like cardiovascular, diabetes, and obstructive pulmonary disease

predominate in all other regions (Souza et al., 2017). Mental disorders, especially depres-

sion, homicide, and traffic accidents are also higher in the region and present a huge pub-

lic health problem (Borges, 2017; Waiselfiz, 2013).

The remarkable changes in adult mortality across Brazilian regions over the three de-

cades studied are particularly underscored by the spatio-temporal cluster analysis whose

spatial statistics of death probability variation reveal a homogeneous increase in adult

mortality in the North and most of the Northeast between 1980 and 1991. Likewise, the

increase in adult mortality during the first study decade (2000−2010) was more persistent

in the Northeast, mainly for males, probably because between 2002 and 2010, violence in

this region increased 12.2 % for whites and 96.7% for blacks compared to respective de-

creases of 50.8% and 30.1% in the Southeast (Waiselfiz, 2013). In fact, the South and

Southeast saw a persistent decline in adult mortality for both sexes in all three decades of

our analysis.

These patterns of increasing adult mortality in the north-Northeast and reductions in

the south-Southeast are consistent with changes in the age pattern for cause of death,

suggesting that central and local government efforts to improve Brazil’s data quality
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(Borges, 2017; Frias, et al. 2017) are bearing fruit. Yet although the improved data may

enhance understanding of the dynamics of health and mortality transitions in the coun-

try, more investment is clearly necessary in areas that still lag behind in such upgrad-

ing. In particular, there must be continuous study and evaluation of data quality,

especially for small areas, and investment by all administrative levels into improving

health information in Brazil (Mello Jorge et al., 2010).

Indeed, the significant improvement in the quality of adult mortality data observed in

our study appears related to investment in the public health care system and adminis-

trative procedures to improve the recording of vital events. Hence, attempts to improve

data quality may be significantly positively impacted by investment in such initiatives as

the Family Health Program, which works closely with the community and monitors the

health status of several individuals in each location. Future research might also build

upon results reported in this paper to perform more in-depth analyses of data quality

on a state level, provide substantive empirical evidence of the mortality differential be-

tween males and females, and expand understanding of the social and economic deter-

minants of Brazil’s mortality differential overall.
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