Skip to main content

Advertisement

Log in

Comparative effect of selected caloric and non-caloric sweeteners on some neuroinflammatory indices in brain cortex and hippocampus of scopolamine-induced rat

  • Research
  • Published:
Nutrire Aims and scope Submit manuscript

Abstract

Purpose

Sweeteners are common in the human diet under different physiological conditions. Using a rat model of scopolamine-induced amnesia, this study aimed to compare the neuroinflammatory effects of sucrose (caloric) and aspartame (non-caloric), two popular sweeteners in Nigeria beverages and non-alcoholic drinks.

Methods

The study used male Wistar rats that were separated into six groups: a control group, a scopolamine group, and two additional groups that received scopolamine combined with either sucrose or aspartame at varying concentrations estimated from common beverages and non-alcoholic drinks in Nigeria (low and high consumption). All sweeteners were administered to the treatment groups once daily for 14 days, while the control group received distilled water. On days 12 and 14, scopolamine was administered. Thereafter, tumour necrosis factor-alpha (TNF-α), activities of adenosine deaminase (ADA), arginase, and acetylcholinesterase (AChE), as well as immunohistochemical analysis of glial fibrillary acidic protein (GFAP) and ionic calcium binding adaptor molecule 1 (IBA1), were determined in the brain cortex and hippocampus.

Results

Results showed that both sucrose and aspartame either maintained or aggravated the impairments caused by scopolamine in both the cortex and hippocampus. Particularly in the hippocampus, sucrose significantly aggravated the scopolamine-induced elevated TNF-α and reduced arginase and acetylcholinesterase activities, while in the cortex, sucrose aggravated scopolamine-induced elevated TNF-α and GFAP reactivity, while reducing ADA activity. On the other hand, aspartame aggravated Iba1 reactivity in the cortex.

Conclusion

In conclusion, at estimated levels found in common beverages and nonalcoholic drinks in Nigeria, both for low and high consumers, both sucrose and aspartame, and particularly aspartame, aggravated indices of neuroinflammation in the scopolamine-induced amnesic rat model. Consequently, these sweeteners may not be advisable under amnesic conditions. However, considering the limitations of animal studies, further studies, particularly clinical evaluations in humans, are highly encouraged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data associated with this study is available through the corresponding author upon reasonable request.

References

  1. Ashwell M, Gibson S, Bellisle F, Buttriss J, Drewnowski A, Fantino M, Gallagher AM, De Graaf K, Goscinny S, Hardman CA, Laviada-Molina H. Expert consensus on low-calorie sweeteners: facts, research gaps and suggested actions. Nutr Res Rev. 2020;33(1):145–54.

  2. Tou JC, Fitch C, Bridges K. Sweeteners: Uses, dietary intake and health effects. Chocolate, fast foods and sweeteners: consumption and health. Bishop MR. Nova Science Publishers, Inc. 2011:1–28.

  3. Rippe JM. The health implications of sucrose, high-fructose corn syrup, and fructose: What do we really know? J Diabetes Sci Technol. 2010;4(4):1008–11.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fitch C, Keim KS. Position of the Academy of Nutrition and Dietetics: Use of Nutritive and Nonnutritive Sweeteners...[corrected] [published erratum appears in J ACAD NUTR DIET 2012; 112(8):1279]. J Acad Nutr Diet. 2012;112(5):739–58.

    Article  PubMed  Google Scholar 

  5. White JS. Straight talk about high-fructose corn syrup: What it is and what it ain’t. Am J Clin Nutr. 2008;88(6):1716S-1721S.

    Article  CAS  PubMed  Google Scholar 

  6. Johnson RJ, Sánchez-Lozada LG, Andrews P, Lanaspa MA. Perspective: A historical and scientific perspective of sugar and its relation with obesity and diabetes. Adv Nutr. 2017;8(3):412–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pistollato F, Iglesias RC, Ruiz R, Aparicio S, Crespo J, Lopez LD, et al. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: A focus on human studies. Pharmacol Res. 2018;131:32–43.

    Article  PubMed  Google Scholar 

  8. Mastroeni D, Nolz J, Sekar S, Delvaux E, Serrano G, Cuyugan L, et al. Laser-captured microglia in the Alzheimer’s and Parkinson’s brain reveal unique regional expression profiles and suggest a potential role for hepatitis B in the Alzheimer’s brain. Neurobiol Aging. 2018;63:12–21.

    Article  CAS  PubMed  Google Scholar 

  9. Brouns F. Guideline: Sugars intake for adults and children. Geneva: World Health Organization; 2015. (Agro Food Ind Hi Tech. (2015)).

    Google Scholar 

  10. Gardner C, Wylie-Rosett J, Gidding SS, Steffen FLM, Johnson FRK, Reader D, et al. Nonnutritive sweeteners: Current use and health perspectives - A scientific statement from the American Heart Association and the American Diabetes Association. Circulation. 2012;126(4):509–19.

    Article  PubMed  Google Scholar 

  11. Fowler SP, Williams K, Resendez RG, Hunt KJ, Hazuda HP, Stern MP. Fueling the obesity epidemic? Artificially sweetened beverage use and long-term weight gain. Obesity. 2008;16(8):1894–900.

    Article  PubMed  Google Scholar 

  12. Lenoir M, Serre F, Cantin L, Ahmed SH. Intense sweetness surpasses cocaine reward. PLoS One. 2007;2(8):e698.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Balaban H, Nazıroğlu M, Demirci K, Övey İS. The protective role of selenium on scopolamine-induced memory impairment, oxidative stress, and apoptosis in aged rats: the involvement of TRPM2 and TRPV1 channels. Mol Neurobiol. 2017;54(4):2852–68.

    Article  CAS  PubMed  Google Scholar 

  14. Demirci K, Nazıroğlu M, Övey İS, Balaban H. Selenium attenuates apoptosis, inflammation and oxidative stress in the blood and brain of aged rats with scopolamine-induced dementia. Metab Brain Dis. 2017;32(2):321–9.

    Article  CAS  PubMed  Google Scholar 

  15. Wong-Guerra M, Jiménez-Martin J, Pardo-Andreu GL, Fonseca-Fonseca LA, Souza DO, de Assis AM, et al. Mitochondrial involvement in memory impairment induced by scopolamine in rats. Neurol Res. 2017;39(7):649–59.

    Article  CAS  PubMed  Google Scholar 

  16. Akinyemi AJ, Oboh G, Oyeleye SI, Ogunsuyi O. Anti-amnestic effect of curcumin in combination with donepezil, an anticholinesterase drug: involvement of cholinergic system. Neurotox Res. 2017;31(4):560–9.

    Article  CAS  PubMed  Google Scholar 

  17. Odubanjo VO, Ibukun EO, Oboh G, Adefegha SA. Aqueous extracts of two tropical ethnobotanicals (Tetrapleura tetraptera and Quassia undulata) improved spatial and non-spatial working memories in scopolamine-induced amnesic rats: Influence of neuronal cholinergic and antioxidant systems. Biomed Pharmacother. 2018;99:198–204.

  18. Sigala S, Imperato A, Rizzonelli P, Casolini P, Missale C, Spano PF. L-α-glycerylphorylcholine antagonizes scopolamine-induced amnesia and enhances hippocampal cholinergic transmission in the rat. Eur J Pharmacol. 1992;211(3):351–8.

    Article  CAS  PubMed  Google Scholar 

  19. Gutierres JM, Carvalho FB, Schetinger MRC, Rodrigues MV, Schmatz R, Pimentel VC, et al. Protective effects of anthocyanins on the ectonucleotidase activity in the impairment of memory induced by scopolamine in adult rats. Life Sci. 2012;91(23–24):1221–8.

    Article  CAS  PubMed  Google Scholar 

  20. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22(3):659–61.

    Article  CAS  PubMed  Google Scholar 

  21. Nair A, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Oboh G, Ogunsuyi OB, Olonisola OE. Does caffeine influence the anticholinesterase and antioxidant properties of donepezil? Evidence from in vitro and in vivo studies. Metab Brain Dis. 2017;32(2):629–39.

    Article  CAS  PubMed  Google Scholar 

  23. Czarnecka K, Pilarz A, Rogut A, Maj P, Szymańska J, Olejnik Ł, et al. Aspartame—true or false? Narrative review of safety analysis of general use in products. Nutrients. 2021;13(6):1957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.

    Article  CAS  PubMed  Google Scholar 

  25. Oboh G, Adebayo AA, Ademosun AO, Olowokere OG. Rutin alleviates cadmium-induced neurotoxicity in Wistar rats: involvement of modulation of nucleotide-degrading enzymes and monoamine oxidase. Metab Brain Dis. 2019;34(4):1181–90.

    Article  CAS  PubMed  Google Scholar 

  26. Kepka-Lenhart D, Ash DE, Morris SM. Determination of mammalian arginase activity. Methods in enzymology. 2008;440:221–30.

  27. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7(2):88–95.

    Article  CAS  PubMed  Google Scholar 

  28. Akinyemi AJ, Okonkwo PK, Faboya OA, Onikanni SA, Fadaka A, Olayide I, et al. Curcumin improves episodic memory in cadmium induced memory impairment through inhibition of acetylcholinesterase and adenosine deaminase activities in a rat model. Metab Brain Dis. 2017;32(1):87–95.

    Article  CAS  PubMed  Google Scholar 

  29. Erukainure OL, Ijomone OM, Sanni O, Aschner M, Islam MS. Type 2 diabetes induced oxidative brain injury involves altered cerebellar neuronal integrity and elemental distribution, and exacerbated Nrf2 expression: therapeutic potential of raffia palm (Raphia hookeri) wine. Metab Brain Dis. 2019;34(5):1385–99.

    Article  CAS  PubMed  Google Scholar 

  30. Ijomone OM, Nwoha PU. Nicotine inhibits hippocampal and striatal acetylcholinesterase activities, and demonstrates dual action on adult neuronal proliferation and maturation. Pathophysiology. 2015;22(4):231–9.

    Article  CAS  PubMed  Google Scholar 

  31. Sharma A, Amarnath S, Thulasimani M, Ramaswamy S. Artificial sweeteners as a sugar substitute: Are they really safe?. Indian journal of pharmacology. 2016 May;48(3):237.

  32. Tandel KR. Sugar substitutes: Health controversy over perceived benefits. J Pharmacol Pharmacother. 2011;2(4):236–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–72.

    Article  PubMed  Google Scholar 

  34. Novoa C, Salazar P, Cisternas P, Gherardelli C, Vera-Salazar R, Zolezzi JM, Inestrosa NC. Inflammation context in Alzheimer’s disease, a relationship intricate to define. Biol Res. 2022;55(1):1–8.

  35. Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. A&D Transl Res Clin Interv. 2018;4(1):575–90.

    Article  Google Scholar 

  36. Calovi S, Mut-Arbona P, Sperlágh B. Microglia and the purinergic signaling system. Neuroscience. 2019;405:137–47.

    Article  CAS  PubMed  Google Scholar 

  37. D’Ambrosio C, Cigliano L, Mazzoli A, Matuozzo M, Nazzaro M, Scaloni A, et al. Fructose Diet-associated molecular alterations in hypothalamus of adolescent rats: a proteomic approach. Nutrients. 2023;15(2):475.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hsu TM, Konanur VR, Taing L, Usui R, Kayser BD, Goran MI, et al. Effects of sucrose and high fructose corn syrup consumption on spatial memory function and hippocampal neuroinflammation in adolescent rats. Hippocampus. 2015;25(2):227–39.

    Article  CAS  PubMed  Google Scholar 

  39. Schmitt LO, Gaspar JM. Obesity-Induced brain neuroinflammatory and mitochondrial changes. Metabolites. 2023;13(1):86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Srivastava P, Tripathi PN, Sharma P, Rai SN, Singh SP, Srivastava RK, et al. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur J Med Chem. 2019;163:116–35.

    Article  CAS  PubMed  Google Scholar 

  41. Kaur G, Behl T, Bungau S, Kumar A, Uddin MS, Mehta V, Zengin G, Mathew B, Shah MA, Arora S. Dysregulation of the gut-brain axis, dysbiosis and influence of numerous factors on gut microbiota associated Parkinson’s disease. Current Neuropharmacology. 2021;19(2):233–47.

  42. Sauer AV, Hernandez RJ, Fumagalli F, Bianchi V, Poliani PL, Dallatomasina C, Riboni E, Politi LS, Tabucchi A, Carlucci F, Casiraghi M. Alterations in the brain adenosine metabolism cause behavioral and neurological impairment in ADA-deficient mice and patients. Scientific reports. 2017;7(1):40136.

  43. Wei CJ, Li W, Chen JF. Normal and abnormal functions of adenosine receptors in the central nervous system revealed by genetic knockout studies. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2011;1808(5):1358–79.

    Article  CAS  PubMed  Google Scholar 

  44. Whitmore KV, Gaspar HB. Adenosine deaminase deficiency–more than just an immunodeficiency. Frontiers in immunology. 2016;7:314.

  45. Schiano C, Grimaldi V, Scognamiglio M, Costa D, Soricelli A, Nicoletti GF, et al. Soft drinks and sweeteners intake: Possible contribution to the development of metabolic syndrome and cardiovascular diseases Beneficial or detrimental action of alternative sweeteners? Food Res Int. 2021;142:110220.

    Article  CAS  PubMed  Google Scholar 

  46. Gajecki D, Gawryś J, Szahidewicz-Krupska E, Doroszko A. Role of erythrocytes in nitric oxide metabolism and paracrine regulation of endothelial function. Antioxidants. 2022;11(5):943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ren Y, Li Z, Li W, Fan X, Han F, Huang Y, et al. Arginase: biological and therapeutic implications in diabetes mellitus and its complications. Oxid Med Cell Longev. 2022;2022:1–20.

    Google Scholar 

  48. Pandya CD, Lee B, Toque HA, Mendhe B, Bragg RT, Pandya B, et al. Age-dependent oxidative stress elevates arginase 1 and uncoupled nitric oxide synthesis in skeletal muscle of aged mice. Oxid Med Cell Longev. 2019;2019:1–9.

    Article  Google Scholar 

  49. Xiong Y, Yepuri G, Necetin S, Montani JP, Ming XF, Yang Z. Arginase-II promotes tumor necrosis factor-α release from pancreatic acinar cells causing β-cell apoptosis in aging. Diabetes. 2017;66(6):1636–49.

    Article  CAS  PubMed  Google Scholar 

  50. Yang Z, Ming XF. Arginase: the emerging therapeutic target for vascular oxidative stress and inflammation. Front Immunol. 2013;4:149.

  51. Kang GG, Trevaskis NL, Murphy AJ, Febbraio MA. Diet-induced gut dysbiosis and inflammation: Key drivers of obesity-driven NASH. iScience. 2023;26(1):105905.

    Article  PubMed  Google Scholar 

  52. Polis B, Samson AO. Arginase as a potential target in the treatment of Alzheimer’s disease. Adv Alzheimer’s Dis. 2018;7(4):119–40.

    Article  CAS  Google Scholar 

  53. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12.

    Article  CAS  PubMed  Google Scholar 

  54. Kiranmai M. Consumption of artificial sweeteners: boon or bane. International Journal of Pharmacy. 2016;6:94–98.

  55. Becker SL, Chiang E, Plantinga A, Carey H V., Suen G, Swoap SJ. Effect of stevia on the gut microbiota and glucose tolerance in a murine model of diet-induced obesity. FEMS Microbiol Ecol. 2020;96(6):fiaa079.

  56. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Obstet Gynecol Surv. 2015;70(1):31–2.

    Article  Google Scholar 

  57. Mou Y, Du Y, Zhou L, Yue J, Hu X, Liu Y, Chen S, Lin X, Zhang G, Xiao H, Dong B. Gut microbiota interact with the brain through systemic chronic inflammation: implications on neuroinflammation, neurodegeneration, and aging. Front Immunol. 2022;13:796288.

  58. Rai SN, Singh C, Singh A, Singh MP, Singh BK. Mitochondrial dysfunction: a potential therapeutic target to treat Alzheimer’s disease. Mol Neurobiol. 2020;57(7):3075–88.

    Article  CAS  PubMed  Google Scholar 

  59. Sochocka M, Donskow-Łysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease—a critical review. Mol Neurobiol. 2019;56(3):1841–51.

    Article  CAS  PubMed  Google Scholar 

  60. Chong CP, Shahar S, Haron H, Che Din N. Habitual sugar intake and cognitive impairment among multi-ethnic malaysian older adults. Clin Interv Aging. 2019;14:1331–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Freeman CR, Zehra A, Ramirez V, Wiers CE, Volkow ND, Wang GJ. Impact of sugar on the body, brain, and behavior. Front Biosci (Landmark edition). 2018;23(12):2255–66.

  62. Brites D, Monteiro M, Ribeiro AR, Cunha C, Vaz AR, Fernandes A. Role of neuron-microglia secretome and stress-related microRNAS in Alzheimer’s disease. InGLIA. 2017;65:E301–E302.

  63. Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol. 2016;53(2):1181–94.

    Article  CAS  PubMed  Google Scholar 

  64. Tripathi PN, Srivastava P, Sharma P, Tripathi MK, Seth A, Tripathi A, et al. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg Chem. 2019;85:82–96.

    Article  CAS  PubMed  Google Scholar 

  65. David B, Schneider P, Schäfer P, Pietruszka J, Gohlke H. Discovery of new acetylcholinesterase inhibitors for Alzheimer’s disease: virtual screening and in vitro characterisation. J Enzyme Inhib Med Chem. 2021;36(1):491–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tyagi E, Agrawal R, Nath C, Shukla R. Effect of melatonin on neuroinflammation and acetylcholinesterase activity induced by LPS in rat brain. Eur J Pharmacol. 2010;640(1–3):206–10.

    Article  CAS  PubMed  Google Scholar 

  67. Gutierres VO, Pinheiro CM, Assis RP, Vendramini RC, Pepato MT, Brunetti IL. Curcumin-supplemented yoghurt improves physiological and biochemical markers of experimental diabetes. Br J Nutr. 2012;108(3):440–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of International Society to Advance Alzheimer’s Research and Treatment (ISTAART) and Alzheimer’s Association.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

B.C. and O.B. came up with the concept for the study. S.T. carried out the bench work with input from O.B. The histopathology experiments were carried out in O. M.'s lab, while other bench work was done in G.O.'s lab. The data was gotten and recorded by S.T., after which it was curated by O.B. and B.C. The results were given a thorough review by all the authors, after which a manuscript was developed by O. P. This manuscript was first reviewed by the corresponding author (O.B.) after which all other authors reviewed the manuscript and sent it out for publication.

Corresponding author

Correspondence to Ogunsuyi Opeyemi Babatunde.

Ethics declarations

Ethics approval and consent to participate

The handling and use of the animals were in accordance with institutional ethical guide for the care and use of laboratory animals under ethical approval FUTA/ETH/21/20.

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babatunde, O.O., Christiana, A.B., Sunday, O.I. et al. Comparative effect of selected caloric and non-caloric sweeteners on some neuroinflammatory indices in brain cortex and hippocampus of scopolamine-induced rat. Nutrire 49, 13 (2024). https://doi.org/10.1186/s41110-024-00254-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s41110-024-00254-x

Keywords

Navigation