Skip to main content

Advertisement

Log in

Effects of A1 and A2 variants of β-casein on human health—is β-casomorphin-7 really a harmful peptide in cow milk?

  • Review
  • Published:
Nutrire Aims and scope Submit manuscript

Abstract

This article aims to review the effects of cow milk containing A1 or A2 or mixed variants of β-casein on human health. The information based on the health effects of cow milk was collected from the most authentic scientific database including Scopus, PubMed, and Google Scholar by searching specific keywords like “cow milk”, “A1A2 beta-casein”, “beta-casomorphins”, “A2 cow milk”, and “A2 milk”. The search hits a total of 197 articles including patents in which about 70 most relevant articles were critically reviewed. The literature revealed that the most abundant category of cow milk found worldwide is mixed A1/A2 in which both A1 and A2 variants of β-casein are found in equal ratio. Among the major three categories, A2 cow milk received much attention both from the scientific community and the wider public due to its possible health benefits over A1 milk mainly in diabetes and heart-related problems. On the other hand, milk containing the A1 variant of β-casein is supposed to be harmful due to the formation of β-casomorphin-7 (BCM-7) peptide, although the scientific community is not unanimous for this claim. The claim for the harmful effects of the A1 variant should be further validated with more scientific studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adapted from Farrell et al. [36].

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data and material related to the present study are given in the manuscript.

Code availability

Not applicable

References

  1. American Diabetes Association. 15. Diabetes care in the hospital: standards of medical care in diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S211–S220.

  2. Asledottir T, Le TT, Melin BP, Devold TG, Larsen LB, Vegarudm GE. Identification of bioactive peptides and quantification of b-casomorphin-7 from bovine b-casein A1, A2 and I after ex vivo gastrointestinal digestion. Int Dairy J. 2017;71:98–106.

    Article  CAS  Google Scholar 

  3. Atamer Z, Post AE, Schubert T, Holder A, Boom RM, Hinrichs J. Bovine β-casein: isolation, properties and functionality, a review. Int Dairy J. 2017;66:115–25.

    Article  CAS  Google Scholar 

  4. Barnett MP, McNabb WC, Roy NC, Woodford KB, Clarke AJ. Dietary A1 beta-casein affects gastrointestinal transit time, dipeptidyl peptidase 4 activity, and inflammatory status relative to A2 beta-casein in Wistar rats. Int J Food Sci Nutr. 2014;65:720–7.

    Article  CAS  PubMed  Google Scholar 

  5. Beales P, Elliott R, Flohé S, Hill J, Kolb H, Pozzilli P, Wang G-S, Wasmuth H, Scott F. A multi-centre, blinded international trial of the effect of A1 and A2 beta-casein variants on diabetes incidence in two rodent models of spontaneous type I diabetes. Diabetologia. 2002;45(9):1240–6.

    Article  CAS  PubMed  Google Scholar 

  6. Beard JR, Alana M, Cassels A. World Report on Ageing and Health; World Health Organization: Geneva, Switzerland, 2015; Available online: http://www.who.int/ageing/publications/world-report-2015/en/. Accessed on 19 October 2015.

  7. Berrington JE, Barge D, Fenton AC, Cant AJ, Spickett GP. Lymphocyte subsets in term and significantly preterm UK infants in the first year of life analysed by single platform flow cytometry. Clin Exp Immunol. 2005;140(2):289–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Besten GD, Lange K, Havinga R, Dijk THV, Gerding A, Eunen KV, Müller M, Groen AK, Hooiveld GJ, Bakker BM, Reijngoud DJ. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol Gastrointest Liver Physiol. 2013;305(12):G900-910.

    Article  Google Scholar 

  9. Biagi E, Candela M, Turroni S, Garagnani P, Franceschi C, Brigidi P. Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacol Res. 2013;69:11–20.

    Article  PubMed  Google Scholar 

  10. Boland MJ, Crawford RA, Fenwick RM, Hill JP, Norris CS. Milk containing beta-casein with proline at position 67 does not aggravate neurological disorders. Australian patent, AU9037401A. 2002. https://patents.google.com/patent/AU9037401A/en.

  11. Brantl V, Teschemacher H, Henschen A, Lottspeich F. Novel opioid peptides derived from casein (betacasomorphins). I. Isolation from bovine casein peptone, Hoppe-Seylers. Z Physiol Chem. 1979;360(2):1211–1224.

  12. Brooke-Taylor S, Dwyer K, Woodford K, Kost N. Systematic review of the gastrointestinal effects of A1 compared with A2 beta-casein. Adv Nutr. 2017;8:739–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brown AM, Zondlo NJ. A propensity scale for type II polyproline helices (PPII): aromatic amino acids in proline-rich sequences strongly disfavor PPII due to proline-aromatic interactions. Biochemistry. 2012;51:5041–51.

    Article  CAS  PubMed  Google Scholar 

  14. Cade R, Privette M, Fregly M, Rowland N, Sun Z, Zele V, Wagemaker H, Edelstein C. Autism and schizophrenia: intestinal disorders. Nutr Neurosci. 2000;3(1):57–72.

    Article  CAS  PubMed  Google Scholar 

  15. Campbell JH, Mclachlan U, Mclachlan UH, Tailford KA. Therapeutic uses of beta-casein A2 and dietary supplement containing beta-casein A2. European Patent Office, EP1562629A1. 2009. Online available: https://patents.google.com/patent/EP1562629A1/en.

  16. Caroli AM, Chessa S, Erhardt GJ. Milk protein polymorphisms in cattle: effect on animal breeding and human nutrition. J Dairy Sci. 2009;92:5335–52.

    Article  CAS  PubMed  Google Scholar 

  17. Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S3-23.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chin-Dusting J, Shennan J, Jones E, Williams C, Kingwell B, Dart A. Effect of dietary supplementation with beta-casein A1 or A2 on markers of disease development in individuals at high risk of cardiovascular disease. Br J Nutr. 2006;95(1):136–44.

    Article  CAS  PubMed  Google Scholar 

  19. Clarke AJ. Beta-casein A2 and reducing or preventing symptoms of lactose intolerance. Global patent, WO2015a005804A1. 2015a. Online available: https://patents.google.com/patent/WO2015005804A1/en.

  20. Clarke AJ. Beta-casein A2 and blood glucose levels. Global patent, WO2015b026245A1. 2015b. Online available: https://patents.google.com/patent/WO2015026245A1/en.

  21. Clarke AJ. Beta-casein A2 and antioxidant capacity. Global patent, WO2016190750A1. 2016. Online available: https://patents.google.com/patent/WO2016190750A1/en

  22. Clarke AJ. Beta-casein A2 and prevention of inflammation of the bowel. Global patent, WO2014193248A1. 2019. Online available: https://patents.google.com/patent/WO2014193248A1/en.

  23. Clarke AJ, Yelland GY. Beta-caseins and cognitive function. Global patent, WO2017171563A1. 2017. Online available: https://patents.google.com/patent/WO2017171563A1/en

  24. Cook SI, Sellin JH. Review article: short chain fatty acids in health and disease. Aliment Pharmacol Ther. 1998;12(6):499–507.

    Article  CAS  PubMed  Google Scholar 

  25. Dalgleish DG. On the structural models of bovine casein micelles – review and possible improvements. Soft Matter. 2011;7:2265–72.

    Article  CAS  Google Scholar 

  26. Danino D, Livney Y, Ramon O, Portnoy I, Cogan U. β-Casein assemblies for enrichment of food and beverages and methods of preparation thereof. Global patent, WO2009101612A3. 2009. Online available: https://patents.google.com/patent/WO2009101612A3/en

  27. Dar AH, Kumar S, Kumari P, Mukesh M, Singh DV, Sharma RK, Ghosh AK, Singh B, Panwar VA, Sodhi M. Distribution of allelic and genotyping frequency of A1/A2 allele of beta casein in Badri cattle. J Livest Biodivers. 2018;8(2):115–9.

    Google Scholar 

  28. De Noni I, Cattaneo S. Occurrence of betacasomorphins 5 and 7 in commercial dairy products andin their digests following in vitro simulated gastrointestinal digestion. Food Chem. 2010;119(2):560–6.

    Article  Google Scholar 

  29. Deth R, Clarke A, Ni J, Trivedi M. Clinical evaluation of glutathione concentrations after consumption of milk containing different subtypes of beta-casein: results from a randomized, cross-over clinical trial. Nutr J. 2016;15:82.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dickinson E. Interfacial, emulsifying and foaming properties of milk proteins. In: Fox PF, McSweeney PLH, editors. Advanced dairy chemistry-1 Proteins. Boston, MA.: Springer; 2003. p. 1229–60.

    Chapter  Google Scholar 

  31. Elliott RB. Epidemiology of diabetes in Polynesia & New Zealand. In: Levy-Marchal C, Czernichow P, editor. Epidemiology and etiology of insulin-dependent diabetes in the young, Vol. 21, Basel: Karger, 1992 pp. 66–71.

  32. Elliott RB, Hill JP. Method of selecting non-diabetogenic milk or milk products and milk or milk products so selected. New Zealand patent, 295774. 1994.

  33. Elliott RB, Harris DP, Hill JP, Bibby NJ, Wasmuth HE. Type I (insulin-dependent) diabetes mellitus and cow milk: casein variant consumption. Diabetologia. 1999;42:292–6.

    Article  CAS  PubMed  Google Scholar 

  34. Esmailzadeh L, Shivazad M, Sadeghi AA, Karimitorshizi M. Performance, intestinal morphology and microbiology of broiler chickens fed egg powder in the starter diet. Braz J Poult Sci. 2016;18(4):705–10.

    Article  Google Scholar 

  35. European Food Safety Authority. Scientific Report of EFSA prepared by a DATEX Working Group on the potential health impact of beta-casomorphins and related peptides. EFSA J. 2009;231:1–107.

    Google Scholar 

  36. Farrell HM, Jimenez-Flores R, Bleck GT, Brown EM, Butler JE, Creamer LK, Hicks CL, Hollar CM, Ng-Kwai-Hang KF, Swaisgood HE. Nomenclature of the proteins of cows’ milk - sixth revision. J Dairy Sci. 2004;87:1641–74.

    Article  CAS  PubMed  Google Scholar 

  37. Felman A. What to know about coronary heart disease. Med News Today. 2021;184130. online available at https://www.medicalnewstoday.com/articles/184130. Accessed 13 Dec 2021

  38. Ferreon JC, Hilser VJ. The effect of the polyproline II (PPII) conformation on the denatured state entropy. Protein Sci. 2003;12(3):447–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fogoros RN. What is inflammation of the lungs? Very well health. 2020. Online available: https://www.verywellhealth.com/chest-pain-common-potential-causes-1745274. Accessed 3 Jan 2022.

  40. Forrest SA, Yada RY, Rousseau D. Interactions of vitamin D3 with bovine b-lactoglobulin A and b-casein. J Agric Food Chem. 2005;53:8003–9.

    Article  CAS  PubMed  Google Scholar 

  41. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14:576–90.

    Article  CAS  PubMed  Google Scholar 

  42. Haq MRU, Kapila R, Sharma R, Saliganti V, Kapila S. Comparative evaluation of cow beta-casein variants (A1/A2) consumption on Th2-mediated inflammatory response in mouse gut. Eur J Nutr. 2014;53(4):1039–49.

    Article  Google Scholar 

  43. Hartwig A. Carcinogenicity of metal compounds: possible role of DNA repair inhibition. Toxicol Lett. 1998;102–103:235–9.

    Article  PubMed  Google Scholar 

  44. He M, Sun J, Jiang ZQ, Yang YX. Effects of cow’s milk beta-casein variants on symptoms of milk intolerance in Chinese adults: a multicentre, randomised controlled study. Nutr J. 2017;16:72.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ho S, Woodford K, Kukuljan S, Pal S. Comparative effects of A1 versus A2 beta-casein on gastrointestinal measures: a blinded randomised cross-over pilot study. Eur J Clin Nutr. 2014;68(9):994–1000.

    Article  CAS  PubMed  Google Scholar 

  46. Hopkins PN. Effects of dietary cholesterol on serum cholesterol: a meta-analysis and review. Am J Clin Nutr. 1992;55(6):1060–70.

    Article  CAS  PubMed  Google Scholar 

  47. International Diabetes Federation. IDF atlas 9th edition. 2019. Online available: https://www.diabetesatlas.org/en/. Accessed 7 Dec 2021.

  48. Jianqin S, Leiming X, Lu X, Yelland GW, Ni J, Clarke AJ. Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self-reported intolerance to traditional cows’ milk. Nutr J. 2016;15(1):35.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jinsmaa Y, Yoshikawa M. Enzymatic release of neocasomorphin and beta-casomorphin from bovine beta-casein. Peptides. 1999;20(8):957–62.

    Article  CAS  PubMed  Google Scholar 

  50. Jung TH, Hwang HJ, Yun SS, Lee WJ, Kim JW, Ahn JY, Jeon WM, Han KS. Hypoallergenic and physicochemical properties of the A2 beta-casein fraction of goat milk. Korean J Food Sci Anim Resour. 2017;37(6):940–7.

    PubMed  PubMed Central  Google Scholar 

  51. Kamiński S, Cieślińska A, Kostyra E. Polymorphism of bovine beta-casein and its potential effect on human health. J Appl Genet. 2007;48(3):189–98.

    Article  PubMed  Google Scholar 

  52. Kostyra E, Sienkiewicz-Szłapka E, Jarmołowska B, Krawczuk S, Kostyra H. Opioid peptides derived from milk proteins. Pol J Food Nutr Sci. 2004;13(Suppl. 1):25–35.

    CAS  Google Scholar 

  53. Lambers TT, Broeren S, Heck J, Bragt M, Huppertz T. Processing affects beta-casomorphin peptide formation during simulated gastrointestinal digestion in both A1 and A2 milk. Int Dairy J. 2021;121:105099.

    Article  CAS  Google Scholar 

  54. Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. Eur Heart J. 2020;41(1):99–109.

    Article  CAS  PubMed  Google Scholar 

  55. Lijun C, Bin L, Junying Z, Tiemin J, Weiming Z, Jiantao L, Yanpin L, Weicang Q. Application of beta-casein A2 and composition thereof in promoting proliferation of Bifidobacterium. Global patent, WO2021003741A1. 2021. https://patents.google.com/patent/US20160113997A1/en

  56. Lomer MCE, Parkes GC, Sanderson JD. Review article: lactose intolerance in clinical practice–myths and realities. Aliment Pharmacol Ther. 2008;27(2):93–103.

    Article  CAS  PubMed  Google Scholar 

  57. Mangge H, Becker K, Fuchs D, Gostner JM. Antioxidants, inflammation and cardiovascular disease. World J Cardiol. 2014;6(6):462–77.

    Article  PubMed  PubMed Central  Google Scholar 

  58. McLachlan CNS. Beta-casein A1, ischaemic heart disease mortality, and other illnesses. Med Hypotheses. 2001;56:262–72.

    Article  CAS  PubMed  Google Scholar 

  59. McLachlan CNS. Milk lacking beta-casein A1. US patent, US6570060B2. 2003. https://patents.google.com/patent/US6570060B2/en

  60. McLachlan CNS. Milk or dairy products derived from animals and which are free of beta casein. New Zealand patent, 306584. 2005. Online available: https://app.iponz.govt.nz/app/Extra/IP/Mutual/Browse.aspx?sid=637552645895567892

  61. Milan AM, Shrestha A, Karlstrom HJ, Martinsson JA, Nilsson NJ, Perry JK, Day L, Barnett MPG, Cameron-Smith D. Comparison of the impact of bovine milk beta-casein variants on digestive comfort in females self-reporting dairy intolerance: a randomized controlled trial. Am J Clin Nutr. 2020;111:149–60.

    Article  PubMed  Google Scholar 

  62. Mishra BP, Mukesh M, Prakash B, Sodhi M, Kapila R, Kishore A, Bujarbaruah KM. Status of milk protein, b-casein variants among Indian milch animals. Indian J Anim Sci. 2009;79:722–5.

    CAS  Google Scholar 

  63. Moitzi C, Portnaya I, Glatter O, Ramon O, Danino D. Effect of temperature on self-assembly of bovine b-casein above and below isoelectric pH. Structural analysis by cryogenic-transmission electron microscopy and smallangle X-ray scattering. Langmuir. 2008;24:3020–9.

    Article  CAS  PubMed  Google Scholar 

  64. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7:189–200.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Muehlenkamp MR, Warthesen JJ. β-Casomorphins: analysis in cheese and susceptibility to proteolytic enzymes from Lactococcus lactis ssp. cremoris. J Dairy Sci. 1996;79(1):20–26.

  66. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197–223.

    Article  PubMed  Google Scholar 

  67. Nguyen DD, Johnson SK, Busetti F, Solah VA. Formation and degradation of beta-casomorphins in dairy processing. Crit Rev Food Sci Nutr. 2015;55(14):1955–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. O’Callaghan A, Sinderen DV. Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol. 2016;7:925.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Özcan Ş, Saim B, İbrahim A. A1 and A2 bovine milk, the risk of beta-casomorphin-7 and its possible effects on human health: A1 and A2 milk and the risk of beta-casomorphin-7. Selcuk J Agric Food Sci. 2018;32(3):632–9.

    Google Scholar 

  70. Padberg S, Schumm-Draeger PM, Petzoldt R, Becker F, Federlin K. Significance of A1 and A2 antibodies against β-casein in insulin-dependent diabetes mellitus. Deut Med Wochensch. 1999;124(50):1518–21.

    Article  CAS  Google Scholar 

  71. Post AE, Arnold B, Weiss J, Hinrichs J. Effect of temperature and pH on the solubility of caseins: environmental influences on the dissociation of α(S)- and β-casein. J Dairy Sci. 2012;95(4):1603–16.

    Article  CAS  PubMed  Google Scholar 

  72. Ramakrishnan M, Eaton TK, Sermet OM, Savaiano DA. Milk containing A2 beta-casein only, as a single meal, causes fewer symptoms of lactose intolerance than milk containing A1 and A2 beta-caseins in subjects with lactose maldigestion and intolerance: a randomized, double-blind, crossover trial. Nutrients. 2020;12(12):3855.

    Article  CAS  PubMed Central  Google Scholar 

  73. Rasheed A, Azeez RFA. A review on natural antioxidants. In: Traditional and complementary medicine. (C. Mordeniz Ed.). London: IntechOpen. 2019. https://doi.org/10.5772/intechopen.82636.

  74. Raynes JK, Day L, Augustin MA, Carver JA. Structural differences between bovine A1 and A2 beta-casein alter micelle self-assembly and influence molecular chaperone activity. J Dairy Sci. 2015;98(4):2172–82.

    Article  CAS  PubMed  Google Scholar 

  75. Rizzoli R. Dairy products, yogurts, and bone health. Am J Clin Nutr. 2014;99(5):1256S-1262S.

    Article  CAS  PubMed  Google Scholar 

  76. Roginski H. Encyclopedia of dairy sciences. London: Academic Press; 2003.

    Google Scholar 

  77. Sahin O, Boztepe S, Aytekin I. A1 and A2 bovine milk, the risk of beta-casomorphin-7 and its possible effects on human health: A1 and A2 milk and the risk of beta-casomorphin-7. Selcuk J Agric Food Sci. 2018;32(3):632–9.

    Google Scholar 

  78. Sebastiani C, Arcangeli C, Ciullo M, Torricelli M, Cinti G, Fisichella S, Biagetti M. Frequencies evaluation of β-casein gene polymorphisms in dairy cows reared in Central Italy. Animals. 2020;10(2):252.

    Article  PubMed Central  Google Scholar 

  79. Shapira A, Assaraf YG, Epstein D, Livney YD. β-Casein nanoparticles as an oral delivery system for chemotherapeutic drugs: impact of drug structure and properties on co-assembly. Pharm Res. 2010;27:2175–86.

    Article  CAS  PubMed  Google Scholar 

  80. Shapira A, Markman G, Assaraf YG, Livney YD. β-Casein-based nanovehicles for oral delivery of chemotherapeutic drugs: drug-protein interactions and mitoxantrone loading capacity. Nanomedicine. 2010;6:547–55.

    Article  CAS  PubMed  Google Scholar 

  81. Sheng X, Li Z, Ni J, Yelland G. Effects of conventional milk versus milk containing only A2 beta-casein on digestion in Chinese children: a randomized study. J Pediatr Gastroenterol Nutr. 2019;69(3):375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Soenen S, Rayner CK, Jones KL, Horowitz M. The ageing gastrointestinal tract. Curr Opin Clin Nutr Metab Care. 2016;19:12–8.

    Article  PubMed  Google Scholar 

  83. Sun J, Robinson SR, Sheng X. Comparative effects of A1 beta-casein and A2 beta-casein. Chin J Clin Nutr. 2020;28(4):245–50.

    Google Scholar 

  84. Sun Z, Cade JR. A peptide found in schizophrenia and autism causes behavioral changes in rats. Sage J. 1999;3(1):85–95.

    Google Scholar 

  85. Syme CD, Blanch EW, Holt C, Jakes R, Goedert M, Hecht L, Barron LD. A Raman optical activity study of rheomorphism in caseins, synucleins and tau. New insight into the structure and behaviour of natively unfolded proteins. Eur J Biochem. 2002;269:148–56.

    Article  CAS  PubMed  Google Scholar 

  86. Tailford KA, Berry CL, Thomas AC, Campbell JH. A casein variant in cow’s milk is atherogenic. Atherosclerosis. 2003;170(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  87. Taylor SB, Dwyer K, Woodford K, Kost N. Systematic review of the gastrointestinal effects of A1 compared with A2 b-casein. Adv Nutr. 2017;8:739–48.

    Article  Google Scholar 

  88. Thakur N, Chauhan G, Mishra BP, Mendiratta SK, Pattanaik AK, Singh TU, Karikalan M, Meshram SK, Garg L. Comparative evaluation of feeding effects of A1 and A2 cow milk derived casein hydrolysates in diabetic model of rats. J Funct Foods. 2020;75:104272.

    Article  CAS  Google Scholar 

  89. Thomson AB. Small intestinal disorders in the elderly. Best Pract Res Clin Gastroenterol. 2009;23:861–74.

    Article  PubMed  Google Scholar 

  90. Thorning TK, Raben A, Tholstrup T, Soedamah-Muthu SS, Givens I, Astrup A. Milk and dairy products: good or bad for human health? An assessment of the totality of scientific evidence. Food Nutr Res. 2016;60:32527.

    Article  PubMed  Google Scholar 

  91. Truswell AS. The A2 milk case: a critical review. Eur J Clin Nutr. 2005;59(5):623–31.

    Article  CAS  PubMed  Google Scholar 

  92. Tuzimski T, Petruczynik A. Review of new trends in the analysis of allergenic residues in foods and cosmetic products. J AOAC Int. 2020;103(4):997–1028.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Umpierrez GE, Hellman R, Korytkowski MT, Kosiborod M, Maynard GA, Montori VM, Seley JJ, Van den Berghe G. Management of hyperglycemia in hospitalized patients in non-critical care setting: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97:16–38.

    Article  CAS  PubMed  Google Scholar 

  94. Venn BJ, Skeaff CM, Brown R, Mann JI, Green TJ. A comparison of the effects of A1 and A2 beta-casein protein variants on blood cholesterol concentrations in New Zealand adults. Atherosclerosis. 2006;188(1):175–8.

    Article  CAS  PubMed  Google Scholar 

  95. Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol. 2014;11(5):276–89.

    Article  PubMed  Google Scholar 

  96. Yadav S, Singh ND, Yadav AG, Kulshreshtha A, Sharma P, Singh VP. Oral feeding of cow milk containing A1 variant of β casein induces pulmonary inflammation in male Balb/c mice. Sci Rep. 2020;10:8053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zingone F, Bucci C, Iovino P, Ciacci C. Consumption of milk and dairy products: facts and figures. Nutrition. 2017;33:322–5.

    Article  PubMed  Google Scholar 

  98. Zoghbi S, Trompette A, Claustre J, El Homsi M, Garzon J, Jourdan G, Scoazec JY, Plaisancie P. Beta-casomorphin-7 regulates the secretion and expression of gastrointestinal mucins through a mu-opioid pathway. Am J Physiol Gastrointest Liver Physiol. 2006;290:G1105–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author Ravindra Semwal expresses his gratitude to his current employer, the Department of Technical Education, Govt. of Uttarakhand, for granting sabbatical/study leave to pursue a PhD degree.

Author information

Authors and Affiliations

Authors

Contributions

Ravindra Semwal: data collection and manuscript writing. Sunil Kumar Joshi: supervision and review. Ruchi Badoni Semwal: data collection. Monika Sodhi: review. Kumud Upadhyaya: data collection and review. Deepak Kumar Semwal: conceptualization, review, and editing.

Corresponding author

Correspondence to Deepak Kumar Semwal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semwal, R., Joshi, S.K., Semwal, R.B. et al. Effects of A1 and A2 variants of β-casein on human health—is β-casomorphin-7 really a harmful peptide in cow milk?. Nutrire 47, 8 (2022). https://doi.org/10.1186/s41110-022-00159-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s41110-022-00159-7

Keywords

Navigation