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Abstract

Detecting anomalies in wind turbine blades from aerial images taken by drones can reduce the costs of periodic
inspections. Deep learning is useful for image recognition, but it requires large amounts of data to be collected on
rare abnormalities. In this paper, we propose a method to distinguish normal and abnormal parts of a blade by
combining one-class support vector machine, an unsupervised learning method, with deep features learned from a
generic image dataset. The images taken by a drone are subsampled, projected to the feature space, and compressed
by using principle component analysis (PCA) to make them learnable. Experiments show that features in the lower
layers of deep nets are useful for detecting anomalies in blade images.
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1 Introduction
Wind power is a widespread renewable form of energy,
and its scale has gradually enlarged for the sake of power
generation efficiency. However, accidents involving the
blades of the turbines, the causes of which are abra-
sion, metal fatigue, and lightning strikes, are a serious
concern after the installation [1]. While thorough peri-
odic safety checks and maintenance are effective, these
measures require many experts and the loss of power
caused by shutting down the wind turbine is burden-
some [2]. Compared with high-place work such as rope
work, blade inspection by an automated drone requires
less labor and the inspection time can be dramatically
reduced. The recorded images are also useful in the long
term for various purposes. However, the judgment of
whether an image shows evidence of damage still depends
on visual inspection of the images by trained experts. This
involves not only labor but also variation in the judgment
criteria depending on the skill levels of the experts and
other personal factors. The shortage of such experts for
maintenance is also a serious problem.
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Here, deep learning would be a promising means of
automated inspection owing to its high performance in
image classification, detection, segmentation, etc. How-
ever, applying it to anomaly detection poses two problems.
First, a large amount of data is required for training a
deep neural network. Since blades usually work normally,
images of blades with abnormalities are difficult to collect.
This leads to an imbalance in the training data, making the
accuracy of classes with insufficient data unstable. Second,
anomalies in blade images such as hairline cracks are faint,
and finding good features to represent them is not a trivial
problem.
To address these issues, we propose a method that uti-

lizes one-class support vector machines (OCSVM) [3] and
features from themiddle layer of convolutional neural net-
works (CNNs) [4], compressed via principal component
analysis (PCA). OCSVM can fit a hypersurface to normal
data without supervision, and thus, it is a popular method
in unsupervised anomaly detection. A CNN [4] trained on
a large-scale general image dataset was used to extract the
feature spaces, since a CNN that is properly trained on a
large-scale dataset such as ILSVRC can be used as a fea-
ture extractor for various tasks even if it is not fine-tuned
on the target domain data [5].
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Furthermore, to make high-dimensional deep features
learnable, the dimensionality has to be reduced; we chose
PCA for this purpose. Figure 1 shows an overview of
the method. Since OCSVM can perform training with
only positive samples, it greatly alleviates the cost of data
annotation, while generalized image features are available
through CNNs.
Our experiments compared the classifications using a

deep-feature space against those acquired using a popu-
lar hand-crafted feature, namely the histogram of oriented
gradients (HOG) [6], and the feature extracted by the con-
volutional autoencoders (CAEs) [7], both implemented
with OCSVM. The deep-feature-based classification sig-
nificantly improves on the one made with HOG and
CAEs, indicating that generic image features are also
useful for detecting anomalies in blade images. We also
compared the performance of features extracted using dif-
ferent layers of the CNN and found that those from lower
layers perform better than those from higher ones, since
lower layers are good at expressing anomalies such as
cracks.
The contributions of the paper are summarized as fol-

lows. First, we show a novel approach towards practical
automatic blade inspection using images taken by a drone.
Second, we show a method to utilize features acquired
through a generic image dataset (crawled from the web)
for unsupervised anomaly detection in a substantially
different image domain such as the blade surface. We par-
ticularly show that the features acquired in lower layers of
CNNs trained with ImageNet are also useful for detecting
blade anomalies, even when the data are compressed by
PCA.

2 Related work
Crack detection is often required when inspecting roads
and infrastructure. For this subject, some supervised
approaches exist. Cha et al. [8] used CNNs to detect

concrete cracks, although their method had to use 20,000
normal and 20,000 abnormal training samples. Although
supervised approaches are powerful, they are often not
suitable for anomaly detection, because it is difficult to
collect labeled data of rare abnormalities.
A few theoretical studies have used deep learning for

unsupervised anomaly detection. Autoencoders are one
of the popular approaches among them. Autoencoders
combined with Gaussian mixtures [9], and the generative
adversarial networks [10] are used with minimization of
reconstruction error. An optimization that minimizes the
volume of hypersphere of the outputs [11] has also been
proposed. Those theoretical studies are mostly tested only
with simulative anomaly detection settings (e.g., MNIST
with one-class-vs-others setting).
Erfani et al. [12] combined a linear one-class SVM

with deep belief nets, which produced comparable perfor-
mance to that of deep autoencoders. Bendale et al. [13]
performed novelty detection with networks trained with
ImageNet, but the domain of the novelty images was still
limited in the web images, and themethod’s transferability
was not discussed.

OCSVM [3] While the regular SVM finds a hyper-plane
that separates two classes with the largest margin from
support vectors in a feature space, OCSVM is trained only
with normal data of one class so that it finds a hyper-
surface having the maximum margin differentiating the
region having a high density of normal data from that of
the origin, as shown in Fig. 1. A kernel trick is usually used
so that a non-linear hypersurface can fit the data.

CNN [4] Below, we use VGG-16 [4], which is pre-trained
on the ILSVRC2014 ImageNet dataset, as a feature extrac-
tor. VGG-16 is a CNN architecture that won the ILSVRC
in 2014 [4]. It has 13 convolution layers and three fully

Fig. 1 An overview of the proposed anomaly detection method
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connected layers, in total 16 weight layers. All convolu-
tional layers use 3 by 3 kernels, and the pooling layer uses a
maximum pooling of 2 by 2. The ReLU activation function
is used after each hidden layer.

3 Anomaly detection for blade images
The process starting from acquiring images and ending
with outputting a classification score is described below.
In the training, images without anomalies are sampled and
projected into the deep-feature space, and OCSVM con-
structs a discriminant hypersurface, the circle shown in
Fig. 1, by using these normal data points. In the testing,
OCSVM regards data points outside the hypersurface as
anomalies.

3.1 Preprocessing of acquired images
Figure 2 shows the procedure of data acquisition and pre-
processing of images. The details of the drone and the
captured data are provided in Section 4.1. Next, the back-
grounds are removed from the captured images. Because
the wind turbines are usually situated in windy locations
and their blades are fairly high above the ground, it is dif-
ficult for the drone to take clear images when it is near
the blade; typically, some of the background remains in
the image. The gradient between the background and the
blade is large, and although it is reflected in the features,
such changes in features are inappropriate for detecting
anomalies. Furthermore, the background of the test data
and training data are likely to have different distribu-
tions which can be easily detected as anomalies. Although
there are many semantic segmentation algorithms that
can automatically remove the background, most of them
require a large number of training data with pixel-level
labels. In this paper, we manually chose regions without
any background.
Second, we need to divide the image into small patches.

Here, a high-resolution image is needed to detect small

defects in the blade. However, a high-resolution image
would produce feature vectors of higher dimension, mak-
ing the classifier difficult to train. Thus, we divided images
into small patches covering 128 by 128 pixels, to be fed
into a feature extractor. This is the smallest size in which
the anomalies such as cracks are still recognizable to the
human eye.

3.2 Feature extraction
The feature extraction procedure is shown in Fig. 3. We
used VGG-16 as the feature extractor. While the output of
each hidden layer can be used as a feature vector, the ear-
lier layers tend to extract low-level features such as edges
and corners. The later layers tend to extract more complex
features, and the features extracted by the last few layers
are apt to extract information on each class of the training
dataset. Therefore, when using pre-trained models with-
out fine-tuning, it is presumably better to use layers closer
to the input because of their generalization ability.
The feature vector of each 128-by-128 pixel patch

extracted by the first layer of VGG-16 is still as high
as 262,144 dimensions. The higher the dimension of the
feature vector is, the larger the model of the classifier
will be, and a sparse distribution of data in the feature
space will make the training of the classifier more difficult.
Therefore, it is necessary to compress the feature vector
further.
Principal component analysis is a method of dimen-

sional compression under the premise of a minimal loss
of information by mapping feature vectors from the orig-
inal feature space to the low-dimensional space with the
largest contribution of the variance. In this paper, we
compress the 262,144-dimension feature vector to 8,000
dimensions. In addition, we re-scale the feature vector
by using min-max normalization, so that it is easier for
OCSVM to fit the training data. Each feature value is
re-scaled using the following equation.

Fig. 2 Data acquisition and preprocessing of input images
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Fig. 3 Feature extraction process

x′ = x − min(X)

max(X) − min(X)
. (1)

3.3 Parameters of OCSVM
We used the Gaussian RBF (radial basis function) kernel
for the SVM kernel trick. The test data closer to the ori-
gin were classified as abnormal, and those on the opposite
side (corresponding to the region inside the circle in Fig. 1)
were classified as normal.
The hyper-parameters of OCSVM include ν (nu) and γ

(gamma). ν is the ratio of outliers to reduce the influence
of outliers in the training data. In the learning, OCSVM
will ignore the 100 × ν percent of the data that is far-
thest from the center of the training data. γ is a parameter
proportional to the reciprocal of the standard deviation
of the Gaussian distribution. As γ increases, the discrim-
inant hypersurface fits more snugly to the learning data
and the enclosed hypervolume becomes smaller. When γ

becomes smaller, the hypersurface becomes smoother and
the region of normal data becomes larger.

4 Experiment
4.1 Data preparation and evaluation metrics
The images of the pressure side and suction side of the
wind turbine blades were captured using aMATRICE 210,
a drone manufactured by DJI Corporation and equipped
with a 45-mm lens. We manually operated the drone dur-
ing the data acquisition and took images after focusing
on the blade in a static state. To ensure no anomalies to
be missed during image capture, we made consecutive
images have large overlaps. The resolution of the images
was 5280 × 2970.
The training data contained 130 images of blades with

no damage, and it was divided into 73,918 patches. The
test data contained 30 blade images with known dam-
age, and it was divided into 21,085 patches. We man-
ually screened the patches and labeled 244 patches of
test data with damage as abnormal for the evaluation. As
a result, the anomalous patches amounted to 1.16% of
the total.
We set ν as 0.01, and γ as 0.1, in the experimental imple-

mentation of OCSVM. The code was written using python
and the scikit-learn library. We used a Xeon E5-2637 v4

(3.5 GHz, 8 core CPU) to train the OCSVM. The training
took 3 to 4 h, depending on the data and parameters.
Since the anomalies accounted for only about 1% of the

total data, the usual sort of evaluation metric for clas-
sification, such as accuracy, is not adequate (a classifier
that answers normal to all data achieves 99% accuracy.)
To evaluate the results properly, we defined the patches
showing damage as positive and normal patches as neg-
ative and used the precision, recall, and F1 score as
evaluation scores, defined as follows:

precision = TP
TP + FP

, recall = TP
TP+FN

, (2)

F1 score = 2 × precision × recall
precision + recall

, (3)

where TP, TN, FP, and FN are the number of true pos-
itives, true negatives, false positives, and false negatives,
respectively.

4.2 Comparedmethod
We compared OCSVM in the deep-feature space against
the most common conventional image feature, the his-
togram of oriented gradients (HOG) [6]. TheHOG feature
is a monochrome gradient-based feature that can repre-
sent shapes and textures in an image, and it is good at
detecting cracks in planar objects [14]. HOG calculates
image gradients for each pixel and makes them into a
histogram in a unit of cells, and then normalize the gra-
dients by using a block composed of numerous cells. It
is robust to changes in illumination. In the experiment,
output dimension of HOG was 8100, and we did not
compress it by PCA.
We also compared the feature extracted by the encoders

of CAEs with ours. The implemented encoder includes
four convolutional layers and two max pooling layers,
namely, the first two blocks of the VGG.We borrowed the
structure from VGG so that the architectural difference
between ours and CAEs becomes as small as possible.
On top of them, we added an 8-channel 3 × 3 convolu-
tional layer for dimensionality reduction; thus, the dimen-
sion of feature extracted by the encoder was 8192. The
decoder mirrors the encoder part, and the autoencoder
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was trained to reconstruct the blade images. Through
training, it should ideally capture a compressed feature
with details of blade images which is helpful for image
reconstruction.

4.3 Results
The classification results of anomalies (as positives) using
HOG, CAEs, and VGG-16 features with OCSVM are
summarized in Table 1. With the first layer of VGG-16,
OCSVM detected 192 of the 21,085 test patches as abnor-
mal. Among them, 121 were true abnormal patches and 71
were normal patches. Namely, 49.6% of the total abnormal
patches were correctly detected, and 63.0% were indeed
abnormal among the detected patches. For the normal
patches as positives, precision and recall were respectively
99.4% and 99.7%. The values for the VGG features were
significantly better than those produced by the HOG fea-
tures. This may be because the defects in the blade cannot
be represented only by the magnitude and direction of
the gradients and more complicated features such as deep
features properly express the difference between abnor-
mal and normal. Besides, the max pooling in the VGG
networks reduced the effect of noise and deformation
to features, thereby improving robustness. The CAE fea-
tures produced the lowest F1 score due to low precision,
because it classified some overexposure patches as abnor-
mal and was not able to detect hairline cracks. Regarding
the VGG features, the first layer outperformed the third
layer. The difference was especially noticeable in the recall
value. The low-level features seem to be better than higher
level ones at reflecting defects in the blades.
Figure 4 a, b, and c show examples of correctly detected,

missed, and miss-detected images. Observing TP in (a),
one can see that both deep cracks and shallow hairline
cracks can be detected. This indicates that the VGG fea-
ture is effective for representing cracks in blade images,
and it is preserved even compressed via the PCA. How-
ever, in (b), the hairline cracks and cracks with smaller
contrast with background tend to be missed, especially
near the boundary of patches. The training data included
patches with painted edges and/or dirt on the blades, but
since the edge direction and dirt patterns are not gener-
ally aligned, there would likely be a difference between the

Table 1 Classification results of anomalies with CAEs, HOG, and
VGG features

Feature Precision Recall F1 score

CAEs 0.101 0.344 0.156

HOG 0.164 0.263 0.202

VGG16 layer3 +PCA 0.546 0.224 0.318

VGG16 layer1 +PCA 0.630 0.496 0.555

(a)

(b)

(c)

Fig. 4 Results of experiment: the top row shows correctly detected
anomaly patches (TP), the middle row shows undetected anomaly
patches (FN), and the bottom row shows normal patches that were
miss-detected as anomalies (FP). a True positive. b False negative.
c False positive

feature vectors. Looking closely at the distance of those
patches to the discriminant surface of the learned data, we
can see that they are ignored as outliers in OCSVM; thus,
it is difficult to correctly detect them with the current
approach.
The classifier discriminates on the basis of whether the

distance between the data and the discriminant hypersur-
face is larger than the threshold value. A precision-recall
curve can be drawn by changing this threshold. As shown
in Fig. 5, when the recall is very low, the precision does
not increase. This means that there are several normal
patches that are distant from the discriminant hyper-
surface (ignored by nu during training) and mixed with
abnormal patches. We show such examples in Fig. 4c. The
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Fig. 5 Precision-recall curve of the classification result with anomaly as positive

images with the stain tend to be detected as abnormal
more often than the images with the thin hairline crack.

5 Conclusion
We presented a method to detect anomalies in blade
images by running OCSVM in a compact deep-feature
space via PCA. Despite the use of unsupervised learning,
the proposed combination of CNN, PCA, and OCSVM
achieved 0.55 in F1 score. Furthermore, we showed that
the lower layer of deep features are more useful than the
higher one at detecting anomalies in blade images. It is
known that the deep features perform better than HOG
because of the ability to extract context information; how-
ever, the deep features still defeated HOG when detecting
the basic shape such as cracks even without fine-tuning.
The limitation of the method is that it may wrongly
detect conspicuous dirt, stains, and patterns of painted
lines. In future work, we will collect and annotate more
abnormal images of blades and examinemethods combin-
ing anomaly detection and supervised learning based on
CNNs.
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