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Abstract

In this paper, we propose a saliency detection model for RGB-D images based on the deep features of RGB images
and depth images within a Bayesian framework. By analysing 3D saliency in the case of RGB images and depth
images, the class-conditional mutual information is computed for measuring the dependence of deep features
extracted using a convolutional neural network; then, the posterior probability of the RGB-D saliency is formulated by
applying Bayes’ theorem. By assuming that deep features are Gaussian distributions, a discriminative mixed-membership
naive Bayes (DMNB) model is used to calculate the final saliency map. The Gaussian distribution parameters can be
estimated in the DMNB model by using a variational inference-based expectation maximization algorithm. The
experimental results on RGB-D images from the NLPR dataset and NJU-DS400 dataset show that the proposed model
performs better than other existing models.
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1 Introduction
Saliency detection is a fundamental problem in computer
vision that aims to highlight visually salient regions or
objects in an image. Le Callet and Niebur introduced the
concepts of overt and covert visual attention and the con-
cepts of bottom-up and top-down processing [1]. Visual
attention models have been successfully applied in many
domains, including multimedia delivery, visual retarget-
ing, quality assessment of images and videos, medical
imaging, and 3D image applications [1]. Today, with the
development of 3D display technologies and devices, var-
ious applications are emerging for 3D multimedia, such
as 3D video retargeting [2], 3D video quality assessment
[3, 4], and so forth. Overall, the emerging demand for
visual attention-based applications for 3D multimedia has
increased the need for computational saliency detection
models for 3D multimedia content.
Salient object detection has attracted a lot of inter-

est in computer vision [5]. Numerous efforts have been
devoted to designing different low-level saliency cues for
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2D saliency detection, such as contrast-based features and
background priors. Because human attention is preferen-
tially attracted by high-contrast regions with their sur-
roundings, contrast-based features (such as colour, edge
orientation, or texture contrast) have a crucial role in
deriving salient objects [6]. The background prior lever-
ages the fact that most salient objects are located far
from image boundaries [7]. Based on the basic assump-
tion, which non-salient regions (i.e. background) can be
explained by the low-rank matrix, salient objects can also
be defined as the sparse noises in a certain feature space
where the input image is represented as a low-rank matrix
[8]. Most existing computational visual saliency models
follow a bottom-up framework that generates indepen-
dent saliency map in each selected visual feature space
and combines them in a proper way. To address these
problems, Li et al. proposed a saliency map computational
model based on tensor analysis [9].
The recently introduced sensing technologies, such as

Microsoft Kinect, provide an excellent ability and flex-
ibility to capture RGB-D images. In addition to RGB
information, depth has been shown to be one of the prac-
tical cues for extracting saliency. Furthermore, Ju et al.
proposed a novel saliency method that worked on depth
images based on the anisotropic centre-surround differ-
ence [10]. In contrast to saliency detection for 2D images,
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the depth factor must be considered when performing
saliency detection for RGB-D images. Depth cues pro-
vide additional important information about content in
the visual field and can therefore also be considered rel-
evant features for saliency detection. With the additional
depth information, RGB-D co-saliency detection, which
is an emerging and interesting issue in saliency detec-
tion, aims to discover the common salient objects in a set
of RGB-D images [11]. The stereoscopic content carries
important additional binocular cues for enhancing human
depth perception [12, 13]. Therefore, two important chal-
lenges when designing 3D saliency models are how to
estimate the saliency from depth cues and how to com-
bine the saliency from depth features with those of other
2D low-level features.
In this paper, we propose a new computational saliency

detection model based on the deep features of RGB
images and depth images within a Bayesian framework.
The main contributions of our approach consist of two
aspects: (1) to estimate saliency from depth cues, we
propose the creation of a depth feature based on a con-
volutional neural network (CNN) trained by supervision
transfer, and (2) by assuming that the deep features of RGB
images and depth images are conditionally independent
given the classes, the discriminative mixed-membership
naive Bayes (DMNB)[14] model is used to calculate the
final saliency map by applying Bayes’ theorem.

2 Related work
In this section, we provide a brief survey and review of
RGB-D saliency detection methods. These methods all
contain a stage in which 2D saliency features are extracted.
However, depending on the way in which they use depth
information in terms of developing computational mod-
els, these models can be classified into three different
categories:

Depth-weighting models This type of model adopts
depth information to weight a 2D saliency map to calcu-
late the final saliency map for RGB-D images with feature
map fusion [15–18]. Fang et al. proposed a novel 3D
saliency detection framework based on colour, luminance,
texture, and depth contrast features, and they designed a
new fusion method to combine the feature maps to obtain
the final saliency map for RGB-D images [15]. In [16],
colour contrast features and depth contrast features were
calculated to construct an effective multi-feature fusion
to generate saliency maps, and multi-scale enhancement
was performed on the saliency map to further improve the
detection precision, focusing on 3D salient object detec-
tion. Ciptadi et al. proposed a novel computational model
of visual saliency that incorporates depth information and
demonstrated the method by explicitly constructing a 3D
layout and shape features from depth measurements [17].

Iatsun et al. proposed a 3D saliency model by relying
on 2D saliency features jointly with depth obtained from
monocular cues, in which 3D perception is significantly
based on monocular cues [18]. The models in this cate-
gory combine 2D features with a depth feature to calculate
the final saliency map, but they do not include the depth
saliency map in their computation processes.

Depth-pooling models This type of model combines
depth saliency maps and traditional 2D saliency maps
simply to obtain saliency maps for RGB-D images
[19–22]. Peng et al. provided a simple fusion framework
that combines existing RGB-produced saliency with new
depth-induced saliency: the former one is estimated from
existing RGB models, whereas the latter one is based on
the multi-contextual contrast model [19]. Ren et al. pre-
sented a two-stage 3D salient object detection framework,
which first integrates the contrast region with the back-
ground, depth and orientation priors to achieve a saliency
map and then reconstructs the saliency map globally [20].
Xue et al. proposed an effective visual object saliency
detection model via RGB and depth cues with mutually
guided manifold ranking and obtained the final result by
fusing RGB and depth saliency maps [21]. Wang et al.
proposed two different ways to integrate depth informa-
tion in the modelling of 3D visual attention, where the
measures of depth saliency are derived from the eyemove-
ment data obtained from an eye tracking experiment using
synthetic stimuli [22]. The models in this category rely
on the existence of “depth saliency maps”. These depth
saliency maps are finally combined with 2D saliency maps
using a saliency map pooling strategy to obtain the final
3D saliency map.

Learning-based models Rather than using a depth
saliency map directly, this type of model uses machine
learning techniques to construct a 3D saliency detection
model for RGB-D images based on extracted 2D features
and depth features [23–26]. Inspired by the recent suc-
cess of machine learning techniques in constructing 2D
saliency detectionmodels, Fang et al. proposed a learning-
based model for RGB-D images using a linear SVM [23].
Zhu et al. proposed a learning-based approach for extract-
ing saliency from RGB-D images, in which discriminative
features can be automatically selected by learning several
decision trees based on the ground truth, and those fea-
tures are further utilized to search the saliency regions
via the predictions of the trees [24]. Bertasius et al. devel-
oped an EgoObject Representation, which encodes these
characteristics by incorporating shape, location, size, and
depth features from an egocentric RGB-D image, and
trained a random forest regressor to predict the saliency
of a region using the ground-truth salient object [25]. Qu
et al. designed a new CNN to fuse different low-level
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saliency cues into hierarchical features for automatically
detecting salient objects in RGB-D images [26].
Most existing approaches for 3D saliency detection

either treat the depth feature as an indicator to weight the
RGB saliency map [15–18] or consider the 3D saliency
map as the fusion of saliency maps of these low-level fea-
tures [19–22]. It is not clear how to integrate 2D saliency
features with depth-induced saliency feature in a better
way, and linearly combining the saliency maps produced
by these features cannot guarantee better results. Some
other more complex combination algorithms have been
proposed. These methods combine the depth-induced
saliency map with the 2D saliency map either directly
[19] or in a hierarchical way to calculate the final RGB-
D saliency map [20]. However, because they are restricted
by the computed saliency values, these saliency map com-
bination methods are not able to correct incorrectly esti-
mated salient regions. From the above description, the
key to 3D saliency detection models is determining how
to integrate the depth cues with traditional 2D low-level
features.
In this paper, we focus on how to integrate RGB and the

additional depth information for RGB-D saliency detec-
tion. This saliency-map-level integration is not optimal
because it is restricted by the determined saliency values.

Conversely, we incorporate colour and depth cues at the
feature level within a Bayesian framework.

3 The proposed approach
In this section, we introduce a method that integrates
the colour saliency probability with the depth saliency
probability computed from Gaussian distributions based
on deep features and yields a prediction of the final 3D
saliency map using the DMNB model within a Bayesian
framework. The general architecture of the proposed
framework is presented in Fig. 1.
First, we train a CNN model for depth images by teach-

ing the network to reproduce the mid-level semantic rep-
resentation learned from RGB images for which there are
paired images. Then, deep features of the RGB and depth
images are extracted by a CNN.
Second, the class-conditional mutual information

(CMI) is computed to measure the dependence of the
deep features of the RGB and depth images; then, the
posterior probability of the RGB-D saliency is formulated
by applying Bayes’ theorem. These two features com-
plement each other in detecting 3D saliency cues from
different perspectives and, when combined, yield the final
3D saliency value. By assuming that deep features are
Gaussian distributions, the parameters of the Gaussian

Fig. 1 The flowchart of the proposed model. The framework of our model consists of two stages: the training stage, which includes a depth CNN
trained for feature learning and a generative process for saliency, and the testing stage. From a pair of RGB and depth images, our model extracts
deep features using a colour CNN and depth CNN, respectively, and performs saliency prediction using the DMNB model [14] within a Bayesian
framework. In this work, we perform experiments based on the NLPR dataset in [19]
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distribution can be estimated in the DMNB model using
a variational inference-based expectation maximization
(EM) algorithm.

3.1 Feature extraction using CNN
Most existing saliency detection methods focus on how
to design low-level saliency cues or model background
priors. Low-level saliency cues alone do not produce
good saliency detection results, particularly when salient
objects are present in a low-contrast background with
confusing visual cues. Objects cannot be classified as
salient objects from the low-contrast background either
based on low-level saliency cues or background priors,
but they are semantically salient in high-level cognition
as they are distinct in object categories. Due to its capa-
bility of learning high-level semantic features, a CNN is
effective for estimating the saliency maps of images and
has been used for saliency detection [27, 28]. A CNN is
able to generate representative and discriminative hyper-
features rather than hand-designing heuristical features
for saliency.
To better detect semantically salient objects, it is impor-

tant to use high-level knowledge on object categories.

We employ deep convolutional neural networks to model
the saliency of objects in RGB images and depth images.
As shown in Fig. 2, the upper branch of our saliency
detection pipeline is a deep CNN architecture with global
context for RGB images, and the lower branch of our
saliency detection pipeline is a deep CNN architecture
with global context for depth images. For RGB images, the
Clarifai [29] model is adopted as the baseline model, and
a task-specific pre-training scheme is designed to make
the global-context modelling suitable for saliency detec-
tion [27]. We use a CNN similar to the Clarifai model for
saliency detection with a pre-training using supervision
transfer [30] for limited labelled depth images. The super-
vision transfer occurs at the penultimate layer of the global
context model. Taking the output of the penultimate layer
of the two global context models as input, the DMNB
model is trained to classify background and saliency, indi-
cating the probabilities of whether a centred superpixel is
in the background or belongs to a salient object.

3.1.1 Deep features of RGB image
Superpixel segmentation is first performed on RGB-D
images [31], and the input of the global-context CNN is

a

b

Fig. 2 Architecture for supervision transfer. a The Architecture of Clarifai model, where Relu denotes a rectified linear function relu(x) = max(x, 0),
which rectify the feature maps thus ensuring the feature maps are always positive, lrn denotes a local response normalization layer, and Dropout is
used in the fully connected layers with a rate of 0.5 to prevent CNN from overfitting. b Upper branch: Deep CNN-based global-context modelling for
RGB saliency detection with a superpixel-centred window padded with the mean pixel value of the RGB training dataset. Lower branch: Deep
CNN-based global-context modelling for depth saliency detection with a superpixel-centred window padded with the mean pixel value of the
depth training dataset. We train a CNN model for depth images by teaching the network to reproduce the mid-level semantic representation
learned from RGB images for which there are paired images. The supervision transfer occurs at the penultimate layer of the global context model.
For the loss function, we use the L2 distance
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a superpixel-centred large context window that includes
the full RGB image. Regions that exceed the image bound-
aries are padded with the mean pixel value of the RGB
training dataset. The padded images are then warped to
227×3 as input, where the three dimensions represent
width, height, and number of channels. With this normal-
ization and padding scheme, the superpixel to be classified
is always located at the centre of the RGB image, and the
spatial distribution of the global context is normalized in
this way. Moreover, it ensures that the input covers the
entire range of the original RGB image. We refer readers
to [27] for further details.

3.1.2 Deep features of depth image
We demonstrate how we transfer supervision from RGB
images to depth images as obtained from a range sen-
sors, such as the Microsoft Kinect, for the downstream
task of saliency detection. We consider the domain of
RGB images as Ms for which there is large dataset of
labelled images Ds, and we treat depth images as Md
with limited labelled data Dd for which we would like to
train a rich representation for saliency detection. We use
convolutional neural networks as our layered rich repre-
sentation. For our layered image representation models,
we use CNNs with the network architecture from the
Clarifai model.
We denote the deep features of the RGB image as

a corresponding K layered rich representation � =
{φi

Ms ,Ds
, ∀i ∈ [1 · · ·K ] }. φi

Ms,Ds
is the ith layer of the

Clarifai model for modality Ms that has been trained on
labelled images from dataset Ds. Now, we want to learn
the deep features of depth images from modality Md, for
which we do not have access to a large dataset of labelled
depth images. We have already hand-designed an appro-
priate CNN architecture � = {ψ i

Md
, ∀i ∈[ 1 · · ·L] } from

the Clarifai model. The task is then to effectively learn
the parameters associated with various operations in the
CNN architecture without having access to a large set of
annotated images for modalityMd.
The scheme for training the depth CNN for depth

images of modalityMd is to learn the parameters of CNN
� such that feature vectors from ψL

Dd
(Id) for image Id

match the feature vectors from ψ i∗
Ms,Ds

(Is) for its image
pair Is in modality Ms for some chosen and fixed layer
i∗ ∈ [1 · · ·K ]. By paired images, we mean a set of images
of the same scene in two different modalities. We denote
these parameters of CNN W [1···L]

d = {wi
d, ∀i ∈ [1 · · ·L] }

to be learned by supervision transfer from layer i∗ in � of
modalityMs to layer L in � of modalityMd :

min
W [1···L]

d

∑

(Is,Id)∈Us,d

f (ψL
Md

(Id),φi∗
Ms,Ds(Is)) (1)

where Us,d denotes the NLPR dataset, which includes
paired images from modalities Ms and Md. For the loss

function f, we use the L2 distance between the feature vec-
tors, f (·) = || · ||22. Then, the deep features of depth images
are extracted by CNN � .

3.2 Bayesian framework for saliency detection
Let the binary random variable zs denote whether a point
belongs to a salient class. Given the observed deep fea-
tures of RGB image xc and the deep features of depth
image xd of that point, we formulate the saliency detection
as a Bayesian inference problem to estimate the posterior
probability at each pixel of the RGB-D image:

p(zs|xc, xd) = p(zs, xc, xd)
p(xc, xd)

(2)

where p(zs|xc, xd) is shorthand for the probability of pre-
dicting whether a pixel is salient, p(xc, xd) is the like-
lihood of the observed deep features of RGB images
and depth images, and p(zs, xc, xd) is the joint probabil-
ity of the latent class and observed features, defined as
p(zs, xc, xd) = p(zs)p(xc, xd|zs).
In this paper, the class-conditional mutual informa-

tion (CMI) is used as a measure of the dependence
between two features xc and xd, which can be defined as
I(xc, xd|zs) = H(xc|zs) + H(xd|zs) − H(xc, xd|zs), where
H(xc|zs) is the class-conditional entropy of xc, defined
as − ∑

i p(zs = i)
∑

xc p(xc|zs = i) log p(xc|zs = i).
Mutual information is zero when xc and xd are mutually
independent given class zs and increases with increasing
level of dependence, reaching the maximum when one
feature is a deterministic function of the other. Indeed,
the independence assumption becomes more accurate
with decreasing entropy, which yields an asymptotically
optimal performance of the naive Bayes classifier [32].
The visual result for class-conditional mutual informa-

tion between the deep features of RGB images and depth
images on the NLPR dataset is shown in Fig. 5. We
employ a CMI threshold τ to discover feature dependen-
cies. For CMI between the deep features of RGB images
and depth images less than τ , we assume that xc and xd
are conditionally independent given the classes zs, that is,
p(xc, xd|zs) = p(xc|zs)p(xd|zs). This entails the assump-
tion that the distribution of the deep features of RGB
images does not change with the deep features of depth
images. Thus, the pixel-wise saliency of the likelihood is
given by p(zs|xc, xd) ∝ p(zs)p(xc|zs)p(xd|zs).

3.3 Generative model for saliency estimation
Given the graphical model of DMNB for saliency detec-
tion shown in Fig. 3, the generative process for {x1:N , y}
following the DMNB model can be described as follows
(Algorithm 1), where Dir() is shorthand for a Dirichlet
distribution, Mult() is shorthand for a multinomial dis-
tribution, x1:N = (xc, xd), z1:N = zs = (zc, zd), N is
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Fig. 3 Graphical models of DMNB for saliency estimation. y and x are
the corresponding observed states, and z is the hidden variable,
where each feature xj is assumed to have been generated from one
of C Gaussian distributions with a mean of {μjk , [ j]N1 } and a variance of
{σ 2

jk , [ j]
N
1 }, and y is either 0 or 1, indicating whether the pixel is salient

Algorithm 1 Generative process for saliency detection
following the DMNB model
1: Input: C.
2: Initialization: α, η.
3: Choose a component proportion: θ ∼ Dir(θ |α).
4: For each feature:

choose a component zj ∼ Mult(zj|θ);
choose a feature value xj ∼ p(xj|zj,�j).

5: Choose the label: y ∼ p(y|zj, η).

the number of features, and y is the label that indicates
whether the pixel is salient.
In this work, the deep features of both RGB and

depth images are assumed to have been generated
from a Gaussian distribution with a mean of {μjk , [ j]N1 }
and a variance of {σ 2

jk , [ j]
N
1 }. The marginal distribution

of (x1:N , y) is

p(x1:N , y|α,�, η)=
∫
p(θ |α)

⎛

⎝
N∏

j=1

∑

zj
p(zj|θ)p(xj|zj,�j)p(y|zj, η)

⎞

⎠dθ

(3)

where θ is the prior distribution over C components, � =
{(μjk , σ 2

jk), [ j]
N
1 , [ k]C1 } are the parameters for the distribu-

tions of N features, and p(xj|zj,�j) � N (xj|μjk , σ 2
jk). In

two-class classification, y is either 0 or 1 generated from
Bern(y|η). Because the DMNB model assumes a genera-
tive process for both the labels and features, we use both
X = {(xij), [ i]M1 , [ j]N1 } and Y = {yi, [ i]M1 } as a collection
of M superpixels in trained images from the generative
process to estimate the parameters of the DMNB model
such that the likelihood of observing (X ,Y) is maximized.
In practice, we may find a proper C using the Dirichlet
process mixture model (DPMM)[33]. The DPMM thus
provides a nonparametric prior for the parameters of a
mixture model that allows the number of mixture compo-
nents to increase as the training set increases, as shown in
Fig. 6.

Due to the latent variables, the computation of the
likelihood in Eq. 3 is intractable. In this paper, we
use a variational inference method, which alternates
between obtaining a tractable lower bound to the true
log-likelihood and choosing the model parameters to
maximize the lower bound. By directly applying Jensen’s
inequality [14], the lower bound to log p(y, x1:N |α,�, η) is
given by

log p(y, x1:N |α,�, η) ≥ Eq(log p(y, x1:N , z1:N |α,�, η))

+ H(q(z1:N , θ |γ ,φ)) (4)

Noting that x1:N and y are conditionally independent
given z1:N , we use a variational distribution:

q(z1:N , θ |γ ,φ) = q(θ |γ )

N∏

j=1
q(zj|φ) (5)

where q(θ , γ ) is aC-dimensional Dirichlet distribution for
θ and q(zj|φ) is a discrete distribution for zj. We use L to
denote the lower bound:

L = Eq[ log p(θ |α)]+Eq[ log p(z1:N |θ)]
+ Eq[ log p(x1:N |z1:N , γ )]
− Eq[log q(θ)]−Eq[log q(z1:N )]+Eq[log p(y|z1:N , η)]

(6)

where Eq[ log p(y|z1:N , η)]≥ ∑C
k=1 φk(ηky − eηk

ξ
) −

( 1
ξ

+ log ξ) and ξ > 0 is a newly introduced varia-
tional parameter. Maximizing the lower-bound function
L(γk ,φk , ξ ;α,�, η) with respect to the variational param-
eters yields updated equations for γk , φk and ξ as follows:

φk ∝ e
(�(γk)−�(

∑C
l=1 γl)+ 1

N (ηkyi− eηk
ξ

−∑N
j=1

(xij−μjk )2

2σ2jk
))

(7)

γk = α + Nφk (8)

ξ = 1 +
∑C

k=1
φkeηk (9)

The variational parameters (γ ∗,φ∗, ξ∗) from the infer-
ence step provide the optimal lower bound to the log-
likelihood of (xi, yi), and maximizing the aggregate lower
bound

∑M
i=1 L(γ ∗,φ∗, ξ∗,α,�, η) over all data points with

respect to α, � and η, respectively, yields the estimated
parameters. For μ, σ and η, we have μjk =

∑M
i=1 φikxij∑M
i=1 φik

,

σjk =
∑M

i=1 φik(xij−μjk)
2

∑M
i=1 φik

, and ηk = log(
∑M

i=1 φikyi∑M
i=1

φik
ξi

).

Based on the variational inference and parameter esti-
mation updates, it is straightforward to construct a vari-
ational EM algorithm to estimate (α,�, η). Starting with
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Algorithm 2 Variational EM algorithm for DMNB
1: Input: threshold εL.
2: repeat
3: E-step: Given (α(t−1),�(t−1), η(t−1)), for each feature

value and label, find the optimal variational parame-
ters using (10).
Then, L(γ

(t)
i ,φ(t)

i , ξ (t)
i ;α,�, η) provides a lower

bound to log p(yi, xi|α,�, η).
4: M-step: Improved estimate of the model parameters

(α,�, η) are obtained by maximizing the aggregate
lower bound (11).

5: until
∑

L(γ
(t)
i ,φ(t)

i , ξ (t)
i ;α(t),�(t), η(t))

− ∑
L(γ

(t+1)
i ,φ(t+1)

i , ξ (t+1)
i ;α(t+1),�(t+1), η(t+1)) ≤

εL

an initial guess (α0,�0, η0), the variational EM algorithm
alternates between two steps, as follows (Algorithm 2).

(
γ

(t)
i ,φ(t)

i , ξ (t)
i

)
= argmax

γi,φi,ξi
L

(
γi,φi, ξi;α(t−1),�(t−1), η(t−1)

)

(10)

(
α(t),�(t), η(t)

)
= arg max

(α,�,η)

M∑

i=1
L

(
γ

(t)
i ,φ(t)

i , ξ (t)
i ;α,�, η

)

(11)

After obtaining the DMNB model parameters from the
EM algorithm, we can use η to perform saliency predic-
tion. Given the feature x1:N , we have

E[ log p(y|x1:N ,α,�, η)]=
{

ηTE[ z]−E[ log(1 + eηT z)] y = 1
0 − E[ log(1 + eηT z)] y = 0

(12)

where z is an average of z1:N over all of the observed
features. The computation for E[ z] is intractable; there-
fore, we again introduce the distribution q(z1:N , θ) and
calculate Eq[ z] as an approximation of E[ z]. In particu-
lar, Eq[ z]= φ; therefore, we only need to compare ηTφ

with 0.

3.4 Experimental evaluation
3.5 Generative model for saliency estimation
3.5.1 Evaluation datasets
In this section, we conduct some experiments to demon-
strate the performance of our method. We use the NLPR
dataset1 and NJU-DS400 dataset2 to evaluate the perfor-
mance of the proposed model, as shown in Table 1. The
NLPR dataset [19] includes 1000 images of diverse scenes
in real 3D environments, where the ground-truth was
obtained by requiring five participants to select regions
where objects are present, i.e. the salient regions were
marked by hand. The NJU-DS400 dataset [10] includes

Table 1 Comparison of the benchmark and existing 3D saliency
detection datasets

Name Size Object no. Scene types Centre bias

NLPR dataset 1000 one (mostly) 11 Yes

NJU-DS400
dataset

400 one (mostly) > 10 Yes

400 images of different scenes, where the ground-truth
was obtained by four volunteers labelling the salient object
masks.
We will analyse the 3D saliency situation in RGB-D

images based on human judgement. In terms of the NLPR
dataset [19], the 3D saliency is decided jointly by RGB
images and depth images, as shown in Fig. 4. For each
selected image pair fromNLPR dataset, three participants
are asked to draw a rectangle according to their first glance
at the the most attention-grabbing region in RGB image
and depth image, respectively. The 3D saliency situation
is determined by thresholding the overlap ratio between
the rectangle and the corresponding ground truth salient
object mask. We use the Intersection over Union (IOU)
to measure the match between bounding boxes and the
ground truth, respectively. The IOU threshold is set at 0.5.
The 3D saliency situation in RGB-D images follows three
conditions:

Colour-depth saliency, in which both IOU values of
RGB images and depth images are more than the IOU
threshold, defined as Db = {Ib

c , Ib
d}, where Ib

c and Ib
d

denote RGB images and depth images, respectively.

Colour saliency, in which only IOU values of RGB
images are more than the IOU threshold and IOU values
of depth images are less than the IOU threshold, defined
asDc = {Ic

c ,Ic
d}, where Ic

c and Ic
d denote RGB images and

depth images, respectively.

Depth saliency, in which only IOU values of depth
images are more than the IOU threshold and IOU values
of RGB images are less than the IOU threshold, defined as
Dd =

{
Id
c , Id

d

}
, where Id

c and Id
d denote RGB images and

depth images, respectively.
We removed RGB-D image pairs with severely overlap-

ping salient objects and this leaves us with 992 images
out of 1000 images from NLPR dataset. The image pro-
portion of the three conditions about 3D saliency in
RGB-D images is shown in Table 2. In the NLPR RGB-
D dataset, most of the regions are 3D salient regions in
the RGB images and depth images, namely, the colour-
depth saliency ratio reaches 76.7%, which is much higher
than the colour saliency situation and the depth saliency
situation. These split datasets are used for training and
evaluation.
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Fig. 4 3D saliency situation in RGB-D images. a Colour-depth saliency: both RGB images and depth images are salient. b Colour saliency: only RGB
images are salient. c Depth saliency: only depth images are salient

3.5.2 Evaluationmetrics
There are currently no specific and standardized mea-
sures for computing the similarity between the fixation
density maps and saliency maps created using computa-
tional models in 3D situations. Nevertheless, there is a
range of different measures that are widely used to per-
form comparisons of saliency maps for 2D content. We
introduce two types of measures to evaluate algorithm
performance on the benchmark. The first one is the gold
standard: F-measure. The second is the precision-recall
(PR) curve. A continuous saliency map can be converted
into a binary mask using a threshold, resulting in a pair
of precision and recall values when the binary mask is
compared against the ground truth. A PR curve is then
obtained by varying the threshold from 0 to 1. The PR
curve indicates the mean precision and recall of the
saliency map at various thresholds.

3.5.3 Implementation details
We follow the default setup of the MC procedure from
[27] for training the depth CNN using the caffe CNN
library [34]. For training the depth CNN using supervision
transfer, we copy the weights from the RGB CNN [27] that
was pre-trained on ImageNet Large-Scale Visual Recog-
nition Challenge (ILSVRC) 2014 [35] and fine-tuned for
saliency detection on theMSRA10K dataset [36] to initial-
ize this network, base the learning rate at 0.001 and step
it down by a factor of 10 every 1000 iterations, except that
we fine-tune all the layers. We randomly select 600 depth
images Ib

d for training and 100 for validation from Db.
From each depth image, we select an average 200 of super-
pixels, and in total, approximately 120 thousand input
windows for training and 20 thousand for validation are

Table 2 3D saliency situation in terms of the NLPR dataset

Dataset Colour-depth saliency Colour saliency Depth saliency

NLPR 76.7% 20.8% 2.5%

generated. We label a patch as salient if 50% of the pix-
els in this patch are salient; otherwise, it is labelled as
non-salient. Training of the depth CNN for 10 thousand
iterations costs 60 h without a GPU.

3.5.4 Parameter settings
A summary of the parameters in this paper is shown in
Table 3. To evaluate the quality of the proposed approach,
we divided the datasets into two subsets according to
their CMI values, and we kept 20% of the data for testing
purposes and trained on the remaining 80% whose CMI
values are less than the CMI threshold τ . As shown in
Fig. 5, we compute the CMI for all of the RGB-D images,
and the parameter τ is set to 0.2, which is a heuristically
determined value.
We initialize the model parameters using all data points

and their labels in the training set in Algorithm 1. In par-
ticular, we use themean and standard deviation of the data
points in each class to initialize � and the ratio of data
points in different classes to initialize αi.

3.5.5 The effect of the parameters
The parameter C in Algorithm 1 is set according to the
training set based on DPMM, as shown in Fig. 6. The
appropriate number of mixture components to use in
the DMNB model for saliency estimation is generally
unknown, and DPMM provides an attractive alternative

Table 3 The parameters and their settings in this paper

Name Range Description

τ (0,1) A CMI threshold

α (0, 40] The parameter of a Dirichlet distribution

θ (0,1) The parameter of a multinomial distribution

η (− 2.0,2.0) The parameter of a Bernoulli distribution

� ((0,1),(0,0.2)) The parameter of a Gaussian distribution

C > 2 The number of components of DMNB
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a b c

Fig. 5 Visual result for class-conditional mutual information between deep features of RGB images and depth images on the NLPR dataset, where
blue star denotes the CMI value and red rectangle denotes the CMI histogram. The 3D saliency situation in RGB-D images is defined as colour-depth
saliency, colour saliency, and depth saliency. a Colour-depth saliency. b Colour saliency. c Depth saliency

to current methods. In practice, we find the initial number
of components C using the DPMM based on 90% of the
training set, and then we perform a cross validation with
a range of C by holding out 10% of the training data as the
validation data.
We use 10-fold cross-validation with the parameter C

for DMNBmodels. In a 10-fold cross-validation, we divide
the dataset evenly into 10 parts, one of which is selected
as the validation set, and the remaining 9 parts are used
as the training set. The process is repeated 10 times, with
each part used once as the validation set. We use perplex-
ity as the measurement for comparison. The generative
models are capable of assigning a log-likelihood log p(xi)
to each observed data point xi. Based on the log-likelihood
scores, we compute the perplexity of the entire dataset
as perplexity = exp

(
− ∑M

i=1
log p(xi)

M

)
, where M is the

number of data points. The perplexity is a monotonically
decreasing function of the log-likelihood, implying that
a lower perplexity is better (particularly on the test set)

since the model can explain the data better. We calculate
the perplexity for results on the validation set and train-
ing set, as shown in Fig. 7. Finally, for all the experiments
described below, the parameter C was fixed at 24, and no
user fine-tuning was performed.

3.5.6 Comparedmethods
Let us compare our saliency model (BFSD) with a number
of existing state-of-the-art methods, including graph-
based manifold ranking (GMR)[7]; multi-context deep
learning (MC)[27]; multiscale deep CNN (MDF)[28];
anisotropic centre-surround difference (ACSD)[10];
saliency detection at low-level, mid-level, and high-level
stages (LMH)[19]; and exploiting global priors (GP)[20],
among which GMR, MC and MDF are developed for
RGB images, LMH and GP for RGB-D images, and ACSD
for depth images. All of the results are produced using
the public codes that are offered by the authors of the
previously mentioned literature reports.
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Fig. 6 Visual result for the number of components C in the DMNB model: generative clusters vs DPMM clustering. a Generative clusters for NLPR
image datasets, where green and red denote the distributions of salient and non-salient features, respectively. b DPMM clustering for NLPR image
datasets, where the number of colours and shapes of the points denote the number of components C. The appropriate number of mixture
components to use in the DMNB model for saliency estimation is generally unknown, and DPMM provides an attractive alternative to current
methods. We find that C = 24 using DPMM on the NLPR dataset
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Fig. 7 Cross validation. We use 10-fold cross-validation with the parameter C for DMNB models. The C found using DPMM was adjusted over a wide
range in a 10-fold cross-validation

3.6 Qualitative experiment
3.6.1 Colour-depth saliency
In this case, both RGB images and depth images are
salient. The comparison of the state-of-the-art approaches
is presented in Fig. 8. As shown in the first and seventh

rows of Fig. 8, the salient object has a high colour contrast
with the background; thus, RGB saliency methods are able
to correctly detect salient objects. GMR fails to detect
many pixels on the prominent objects because it does not
define the pseudo-background accurately, e.g. the third

a b c d e f g h i j
Fig. 8 Visual comparison of the saliency detection in the colour-depth saliency situation in terms of the NLPR dataset. a RGB.b Depth. c Ground
truth. d ACSD. e GMR. fMC. gMDF. h LMH. i GP. j BFSD
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row in Fig. 8. As shown, the proposed method can accu-
rately locate the salient objects and produce nearly equal
saliency values for the pixels within the target objects.

3.6.2 Colour saliency
In this case, only RGB images are salient. The comparison
of the state-of-the-art approaches is presented in Fig. 9.
ACSD works on depth images on the assumption that
salient objects tend to stand out from the surrounding
background, which takes relative depth into considera-
tion. ACSD performs worse when the salient object lies
in the same plane as the background, e.g. the third row
in Fig. 9. It is challenging because most of the salient
objects share similar depth as the background. Conse-
quently, depth saliency methods perform relatively worse
than RGB saliency methods in terms of precision. Ren
et al. proposed two priors, which are the normalized depth
prior and the global-context surface orientation prior [20].
Because their approach uses the two priors, it has prob-
lems when such priors are invalid, e.g. the first row in
Fig. 9. Figure 9 shows that the proposed method consis-
tently outperforms all the other saliency methods.

3.6.3 Depth saliency
In this case, only depth images are salient. The compar-
ison of the state-of-the-art approaches is presented in
Fig. 10. When a salient object shares a similar colour with
the background, it is difficult for existing RGB models
to extract saliency. With the help of depth information,
a salient object can easily be detected by the proposed
RGB-D method. In particular, when the salient object
shares similar object categories, e.g. the first row in Fig. 10,
MC andMDF generate unsatisfying results without depth
cues. ACSD is not designed for such complex scenes but

rather single dominant-object depth images. By providing
an accurate depth map, the LMH and GP methods per-
form well in both precision and recall. LMH uses a simple
fusion framework that takes advantage of both depth and
appearance cues from the low, mid, and high levels. The
background is nicely excluded; however, many pixels on
the salient object are not detected as salient, e.g. the sec-
ond row in Fig. 10. Figure 10 also shows that the proposed
method consistently outperforms all the other saliency
methods.

3.7 Quantitative evaluation
Our algorithm is implemented in MATLAB v7.12 and
tested on an Intel Core(TM) i5-6400 CPU with 8 GB of
RAM. A simple computational comparison is shown in
Table 4 in terms of the NLPR dataset without a GPU. The
run time of ACSD is for per depth image; GMR, MC and
MDF are for per RGB image; and LMH, GP and BFSD are
for per RGB-D image pair. Note that there are many works
left for computational optimization, including optimiza-
tion of prior parameters and algorithm optimization for
variable inference during the prediction process.
The quantitative comparisons on the NLPR dataset

are shown in Figs. 11 and 12. As shown in Fig. 11a, b,
although the PR curves are very similar in the colour-
depth saliency situation and the colour saliency situation,
Fig. 11c shows that the proposed method is superior com-
pared toMC andMDF in the depth saliency situation. The
LMH method, which uses Bayesian fusion to fuse depth
and RGB saliency by simple multiplication, has lower per-
formance compared to the GP method, which uses the
Markov random field model as a fusion strategy, as shown
in Fig. 11b, c. LMH and GP achieve better performances
than ACSD by using fusion strategies, as shown in Fig. 11.

a b c d e f g h i j
Fig. 9 Visual comparison of the saliency detection in the colour saliency situation in terms of the NLPR dataset. a RGB. b Depth. c Ground truth. d
ACSD. e GMR. fMC. gMDF. h LMH. i GP. j BFSD
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a b c d e f g h i j
Fig. 10 Visual comparison of the saliency detection in the depth saliency situation in terms of the NLPR dataset. a RGB. b Depth. c Ground truth. d
ACSD. e GMR. fMC. gMDF. h LMH. i GP. j BFSD

LMH and GP achieve better performances than GMR by
using fusion strategies in the depth saliency situation, as
shown in Fig. 11c; however, LMH and GP achieve lower
performances in the colour saliency situation, as shown
in Fig. 11b. The PR curves demonstrate that the proposed
3D saliency detection model performs better than do the
compared methods overall, as shown in Fig. 11d. We also
provide the F-measure values for several compared meth-
ods in Table 5, which shows that the proposed RGB-D
method is superior to the existing methods in terms of
F-measure values. This result is mainly because the deep
features of RGB-D images extracted by CNNs enhance the
consistency and compactness of salient patches.
As shown in Fig. 12c, in the depth saliency situa-

tion, the RGB saliency methods perform relatively worse
than the RGB-D saliency methods in terms of precision.
However, in the colour saliency situation, the ACSD and
LMH methods do not perform well in both precision and
recall. Although the simple late fusion strategy achieves
improvements in the depth saliency situation, as shown in
Fig. 12c, it still suffers from inconsistency in the homoge-
neous foreground regions in the colour saliency situation,
as shown in Fig. 12b, which may be attributed to treat-
ing the appearance and depth correspondence cues in an
independent manner. In the colour-depth saliency situa-
tion, due to the capability of learning high-level semantic
features, MC and MDF perform relatively better than the
LMH and GP methods in terms of F-measure. Although
the recall values are very similar, Fig. 12b, c show that the
proposed method improves the precision and F-measure
when compared to MC and MDF. Our approach consis-
tently detects the pixels on the dominant objects within a
Bayesian framework with higher accuracy to resolve the

Table 4 Comparison of the average run time (seconds) on the
NLPR dataset

Dataset ACSD GMR MC MDF LMH GP BFSD

NLPR 0.2 s 2.9 s 72.7 s 2.1 × 103 s 2.8 s 38.9 s 80.1 s

issue. Figure 12 shows that the proposedmethod performs
favourably against the existing algorithm with higher pre-
cision, recall values, and F-measure scores on the NLPR
dataset.

3.7.1 Supervision transfer vs fine-tuning
This section investigates the effectiveness of different
depth CNN learning strategies. It was demonstrated that
fine-tuning a deep CNN model for image classification
with the target task (e.g. object detection) data can signif-
icantly improve the performance of the target task [37].
Supervision transfer enables learning of rich representa-
tions from a large labelled modality as a supervisory signal
for training representations for a new unlabelled paired
modality and can be used as a pre-training procedure
for new modalities with limited labelled data. However,
the fine-tuning task and the supervision transfer task
have disparity in the following aspects. (1) Input data.
The fine-tuning task takes the labelled depth images as
inputs, while the supervision transfer task requires the
paired RGB and depth images. The fine-tuning solve the
problem of domain adaptation within the same modality.
In contrast, supervision transfer here tackles the prob-
lem of domain adaptation across different modalities. (2)
The adapted layer. The fine-tuning task adapts the last
soft-max layer to the same modality data, while the super-
vision transfer happens at the arbitrary internal layer for
a new image modality. Particularly, deep model struc-
tures at the fine-tuning stage are only different in the last
fully connected layer for predicting labels. Supervision
transfer here allows for transfer of supervision at arbi-
trary semantic levels. Due to the “data-hungry” nature of
CNNs, the existing training data is insufficient for train-
ing; therefore, we employed supervision transfer to resolve
this issue.
We evaluate the performance of the Depth CNN model

with different training strategies on the NLPR dataset. We
randomly select 600 depth images Ib

d for training and 100
for validation from Db. We show detailed experimental
results for supervision transfer from RGB to depth images
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Fig. 11 The PR curves of different saliency detection models in terms of the NLPR dataset. a Colour-depth saliency. b Colour saliency. c Depth
saliency. d The overall

compared with fine-tuning with depth images, as shown
in Fig. 13. We use the Clarifai that has been trained on
labelled images in the ImageNet dataset, and use the mid-
level representation learned by the CNN as a supervisory
signal to train a CNN on depth images. Note that the out-
put of the penultimate layer of Depth CNN is indeed a
feature vector for saliency detection. The technique for
transferring supervision results in improvements in per-
formance for the end task of saliency detection on NLPR
dataset, where we improve from 1.5 to 1.9% when using
both RGB and depth images together, compared with
the fine-tuning when using just the depth images. From
the results on NLPR dataset in Fig. 13, we can conclude
that supervision transfer outperforms the conventional
fine-tuning method, which validates the effectiveness of
the proposed supervision transfer approach for saliency
detection.

3.7.2 Fusion strategy comparison
Despite the demonstrated success of deep features
extracted from RGB images and Depth images, no single
feature is effective for all scenarios as they define saliency
from different perspectives. The combination of differ-
ent features might be a good solution to visual saliency
detection for RGB-D images. However, manually design-
ing an interaction mechanism for integrating inherently
different saliency features is a challenging problem. The

qualitative comparisons and quantitative comparisons of
the different fusion strategies using the deep CNN fea-
tures are shown in Figs. 14, 15, and 16, respectively.
CSM means colour saliency map, which is produced by
deep features of the colour CNN. DSM means depth
saliency map, which is produced by deep features of the
depth CNN. We add and multiple the CSM with the
DSM, and these results are denoted CSM+CSM and
CSM×DSM. As shown in Fig. 14, neither simple lin-
ear fusion nor weighting method is subsequently able to
recover the salient object. Both simple linear fusion and
weighting method suffer from inconsistency in the homo-
geneous foreground regions and lacks precision around
object boundaries, which may be ascribed to treating the
colour and depth correspondence cues in an indepen-
dent manner. Our approach consistently detects the pixels
on the dominant objects within a Bayesian framework
with higher accuracy to resolve the issue. Figure 15 shows
that the Bayesian fusion performs favourably compared
with the linear fusion and the weighting method, with
higher precision and recall on theNLPR dataset. Although
the simple late fusion strategy achieves improvements,
it still suffers from inconsistency due to ignore the
strong complementarities between appearance and depth
correspondence cues. We adopt a good integration
method developed to address this problem by training a
generative model.

ACSD GMR MC MDF LMH GP BFSD
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall
Precison
F-Measure

ACSD GMR MC MDF LMH GP BFSD
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall
Precison
F-Measure

ACSD GMR MC MDF LMH GP BFSD
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
Precison
F-Measure

ACSD GMR MC MDF LMH GP BFSD
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Recall
Precison
F-Measure

a b c d
Fig. 12 The F-measures of different saliency detection models when used on the NLPR dataset. a Colour-depth saliency. b Colour saliency. c Depth
saliency. d The overall
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Table 5 Comparison of the F-measure on the NLPR dataset

3D saliency situation ACSD GMR MC MDF LMH GP BFSD

Colour-depth saliency 0.5548 0.6540 0.7381 0.6983 0.6109 0.6891 0.7793

Colour saliency 0.5195 0.6612 0.6684 0.6630 0.5645 0.6480 0.7658

Depth saliency 0.5635 0.7032 0.7711 0.7689 0.7744 0.8095 0.9044

Overall 0.5510 0.6652 0.7366 0.7058 0.6317 0.7082 0.8092

The best results are shown in Italics
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Fig. 13 Evaluation of the depth CNN learned using different training strategies on the NLPR dataset. a F-measure scores on the NLPR dataset for
evaluation of the supervision transfer (ST) strategy and the fine-tuning (FT) strategy. b–f Qualitative comparison between the ST strategy and the FT
strategy for 10k iterations

a b c d e f g h
Fig. 14 Visual comparison of different fusion strategies in terms of the NLPR dataset. a RGB. b Depth. c Ground truth. d CSM. e DSM. f CSM + DSM. g
CSM × DSM. h BFSD. The symbol “+” indicates a linear combination strategy, and the symbol “×” indicates a weighting method based on
multiplication
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Fig. 15 The PR curves of different fusion strategies in terms of the NLPR dataset. a Colour-depth saliency. b Colour saliency. c Depth saliency. d The
overall. The symbol “+” indicates a linear combination strategy, and the symbol “×” indicates a weighting method based on multiplication

3.8 Cross-dataset generalization
In this section, we evaluate the generalization perfor-
mance of BFSD. To test how well the performance of
our proposed method generalizes to a different dataset
for detecting salient object in RGB-D images, we eval-
uate it on the NJU-DS400[10]. As discussed in experi-
ment setting, the images of the NJU-DS400 are collected
in different scenarios. We directly test the performance
on the NJU-DS400 dataset with the model learned on
NLPR dataset. The results are shown in Figs. 17 and 18.
In the NJU-DS400 dataset, we do not have experimen-
tal results for the LMH and GP methods due to the
lack of depth information, which is required by their
codes. Although the model is trained on the NLPR
dataset, it outperforms all other previous methods based
on the F-measure scores and PR curves. This clearly
demonstrates the generalization performance of our pro-
posed method and robustness to dataset biases. Our
model explores high-level information of RGB-D images
to investigate semantics-driven attention to 3D content,
and has much stronger generalization capability. Though
Gaussian distributions of the DMNB model provide bet-
ter performance than compared methods in terms of
NJU-DS400 dataset, different numbers of mixture com-
ponent would impair the generalization capability of this

mixture model, especially in the case of multiple scene
types.

3.8.1 Failure cases
Figure 19 presents more visual results and some failure
cases of our proposed method on NLPR dataset. By com-
paring these images, we find that semantic information is
more helpful when the salient object shares a very sim-
ilar colour and depth information with the background.
Figure 20 presents additional visual results and a fail-
ure case of our proposed method on NJU-DS400 dataset.
We find that although our method is able to highlight
the overall salient objects, the generated coarse maps
may confuse some of small foreground or background
regions if they have similar appearance. Our method may
fail when the salient object shares a very similar colour
and depth information with the background in a global
context.

3.8.2 Limitations
Because our approach requires training on large datasets
to adapt to specific environments, it has the problem that
properly tuning the parameters for specific new tasks is
important to the performance of the DMNB model. The
DMNB model performs classification in one shot via a
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Fig. 16 The F-measure scores of different fusion strategies in terms of the NLPR dataset. a Colour-depth saliency. b Colour saliency. c Depth saliency.
d The overall. The symbol “+” indicates a linear combination strategy, and the symbol “×” indicates a weighting method based on multiplication
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a b c d e f g h
Fig. 17 Visual comparison of the saliency detection in terms of the NJU-DS400 dataset. a RGB. b Depth. c Ground truth. d ACSD. e GMR. fMC. g
MDF. h BFSD
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Fig. 18 Experimental results on the NJU-DS400 dataset compared with previous works. a The F-measure scores. b The PR curves. F-measure scores
and PR curves show superior generalization ability of a BFSD framework

combination of mixed-membership models and logistic
regression, where the results may depend on different
choices of C. The learned parameters will clearly have
good performances on the specific stimuli but not nec-
essarily on the new testing set. Thus, the weakness of
the proposed method is that to obtain reasonable perfor-
mances, we train our saliency model on the training set
for specific C. This problem could be addressed by using
Dirichlet process mixture models to find a proper C for
new datasets.

4 Conclusion
In this study, we propose a learning-based 3D saliency
detection model for RGB-D images that considers the
deep features of RGB images and depth images within
a Bayesian framework. To better detect semantically

salient objects, we employ a deep CNN to model saliency
of objects in RGB images and depth images. Rather
than simply combining a depth map with 2D saliency
maps as in previous studies, we propose a compu-
tational saliency detection model for RGB-D images
based on the DMNB model. The experiments verify
that the deep features of depth images can serve as
a helpful complement to the deep features of RGB
images within a Bayesian framework. Compared with
other competing 3D models, the experimental results
from a public RGB-D saliency datasets demonstrate
the improved performance of the proposed model over
other strategies.
As a future work, we are considering to improve

the feature representation of the depth images. We
are considering to represent the depth image by three

a b c d
Fig. 19 Some failure cases in terms of NLPR dataset. a RGB. b Depth. c Ground truth. d BFSD
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a b c d
Fig. 20 Some failure casesin terms of NJU-DS400 dataset. a RGB. b Depth. c Ground truth. d BFSD

channels (horizontal disparity, height above ground,
and angle with gravity) [38] for saliency detection
because this representation allows the CNN to learn
stronger features than by using disparity alone. We are
also considering the application of our 3D saliency detec-
tion model in RGB-D object detection problems, e.g. 3D
object proposals.

Endnotes
1 http://sites.google.com/site/rgbdsaliency
2 http://mcg.nju.edu.cn/en/resource.html
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