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Abstract

proposed method.

We propose a new method for segmenting feature point trajectories tracked through a video sequence without
assuming a number of independent motions. Our method realizes motion segmentation of feature point trajectories
by hierarchically separating the trajectories into two affine spaces in a situation that we do not know the number of
independently moving objects. We judge that input trajectories should be separated by comparing the likelihoods
computed from those trajectories before/after separation. We also consider integration of the resulting separated
trajectories for avoiding too much segmentations. By using real video images, we confirmed the efficiency of our

1 Introduction

Separating independently moving objects in a video
sequence is one of the important tasks in computer vision
applications. Costeira and Kanade [1] proposed a segmen-
tation algorithm based on the shape interaction matrix.
Sugaya and Kanatani [3] proposed a multi-stage learn-
ing strategy using multiple models. Yan and Pollefeys [8]
proposed a new local subspace fitting scheme. Vidal et
al. [7] proposed a segmentation algorithm based on gen-
eralized principal component analysis (GPCA) [6]. By
introducing GPCA for computing an initial segmenta-
tion, Sugaya and Kanatani [4] improved the multi-stage
learning.

However, all these methods assume the number of
moving objects. Kanatani and Matsunaga [2] proposed a
method for estimating the number of independently mov-
ing objects based on the rank estimation of the affine
space using the geometric minimum description length
(MDL). However, estimating the number of independently
moving objects based on the rank of the affine space is
very difficult for real image sequences. For example, if an
object motion is planar, the dimension of an affine space
which includes its trajectories degenerates from 3-D to
2-D. Moreover, if two objects merely translate without
rotation, the two 2-D affine spaces are parallel to each
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other. This means that a 3-D affine space which includes
those 2-D affine spaces exists.

For this problem, we propose a new method for seg-
menting feature point trajectories without assuming the
number of objects. Based on the fact that trajectories of a
rigidly moving object is constrained to a 2-D or 3-D affine
space, we hierarchically separate input trajectories into
two affine spaces until all the trajectories are divided into
2-D or 3-D affine spaces. In order to judge whether input
trajectories should be divided or not, we compare the
likelihoods before/after separation. After the separation
process, we also check whether the separated trajectories
should be integrated by comparing the likelihoods to avoid
that the trajectories which belong to the same object are
separated into different groups.

2 Proposed method

From the fact that trajectories of a rigidly moving object is
constrained to a 2-D or 3-D affine space, we can separate
independently moving objects by hierarchically separating
input trajectories into two affine spaces until all the trajec-
tories are divided into 2-D or 3-D affine spaces. In order
to realize the above separation, we need to overcome
two problems. One problem is to properly estimate the
dimension of the affine space which includes input trajec-
tories. The other problem is that we need to judge whether
input trajectories should be divided to stop hierarchical
separation.
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For the first problem, we can regard the rank of the
moment matrix of the input trajectory vectors. The rank
of the moment matrix can be obtained as the number of
positive eigenvalues of the matrix. However, in the pres-
ence of noise, all eigenvalues are non-zero in general.
Hence, we need to truncate small eigenvalues, but it is
difficult to determine a proper threshold. We compute
the rank of the moment matrix by using the geometric
MDL [2].

For the second problem, we compare the average like-
lihoods of the trajectories for the affine spaces which are
fitted to all the trajectories and the divided ones. We
compute the average likelihoods before/after division and
divide those trajectories if the likelihood after division is
larger than that before division.

We summarize the algorithm of our proposed method
as follows:

1. Fit an affine space to the input trajectories, and
compute its dimension d by using the geometric
MDL.

2. Ifd < 2, then we stop the division process for the
target trajectories.

3. Divide the trajectories into two affine spaces.

(a) Convert the trajectory vectors into 3-D
vectors.
Please refer to [4] for the detail computation.

(b) Fit two planes to those 3-D vectors by the
Taubin method.

(c) Convert the trajectory vectors into d-D
vectors.

(d) Separate the d-D vectors into two affine
spaces by the EM algorithm of Sugaya and
Kanatani (3, 4].

4. Compute the average likelihoods P and P’ of the
trajectories before/after separation and accept the
separation, and go to step 1 if the following inequality
is satisfied.

|logyP'] — Llog}o P) > 0, (1)

where |-] is the floor function. In our experience, if

we compared the average likelihoods directly, the

separation judgement was not stable. Thus, we

compare the exponent part of the average likelihood.
5. Else, reject the separation.

We hierarchically iterate the above procedures until all
the input trajectories are not separated.

3 Rank estimation of the affine space
We compute the eigenvalues of the moment matrix of the
2M-D trajectory vectors p,, [4],« = 1,..., N and estimate
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its rank by using the geometric MDL. M is the number of
the image frame.

(1) Define the 2M x 2M moment matrix M by

N N

1

M= upu 20" pe= T
a=1 a=1

(2)

(2) Compute the eigenvalues of M, and let
A1 > -+ > Aoy be the sorted eigenvalues.

(3) Compute the residuals Jy, r = 2, ..., 2M, for the fitted
r-D affine space by

2M
Jr= ) ks (3)

B=r+1

(4) Compute the geometric MDLs [2] for each rank by

G-MDL(r) = Jr— (rN+ (r+ 1)(2M—r)>e2 log(%)zf
(4)

where € is the standard deviation of feature point
tracking accuracy, which we call this noise level, and
L is a reference length, for which we can use an
arbitrary value whose order is approximately the
same as the data, say the image size.

(5) Estimate the rank 7 of the affine space which includes
the input trajectories as

7 = arg min G-MDL(r) (5)
r

4 Separation of the trajectories

We separate the input trajectories by using the EM algo-
rithm of Sugaya and Kanatani [3, 4] and can compute the
likelihood P(x|k) of the «-th point for the fitted affine
space k in the separation process. The likelihood P(«|k)
can be computed in the form

e Pa—PE VO py—pl) /2
Vdet V0

where pg() and V® are the centroid and the covariance
matrix of class k, respectively.

We compute the likelihoods P(«¢) and P'(@) of p,, for the
affine spaces before/after separation and then compute
the average likelihoods P and P’ by

P(alk) = (6)

1 1 o
P = N;P(O{)r P/ZN;P/(O[)' (7)
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(b) Separation result of the first stage.

Fig. 1 Separation process of our method

(¢) Separation result of the second stage.

(a) The input video sequence of 30 frames, which are the first, 8th, 15th, 23th, and 30th frame respectivelly. Red points are the tracked

feature points.

(d) Final result.

5 Integration of the separated trajectories

After separation, we check whether the separated tra-
jectories should be integrated by comparing the average
likelihoods to avoid that the trajectories which belong to
the same object are separated into different groups.

For all the separated trajectory groups, we integrate the
two groups of the separated trajectories if the average like-
lihood Q before integration and Q' after integration satisfy
the following inequality:

Llogm Q/J - Llogm Q] >0, (8)

where Q and Q' are computed from Egs. (6) and (7) for
each affine space.

6 Real image experiments

By using real video images, we tested our method
and computed the separation accuracy with RANSAC
and LSA of Yan and Pollefeys [8] and GPCA of Vidal
etal. [7].

6.1 Separation process
Figure 1 shows a separation process of our method.
Figure 1a shows the five decimated images of the input
video sequence. The red points are the tracked feature
points by the KLT tracker. We explain this separation
process by showing tree expression of our separation in
Fig. 2.

First, we estimated the dimension of the affine space
which includes all the input trajectories and obtained that
its dimension was 4. Since the resulting dimension was

larger than 2, then we separated those input trajecto-
ries. We show the separation result in Fig. 1b. For this
result, we computed the average likelihoods for the affine
spaces before/after separation and obtained the results
5.63 x 1077 and 8.11 x 107>, respectively. Since these
values satisfied the inequality in Eq. (1), we accepted the
separation.

In the second stage, we estimated the dimensions of
the affine spaces for the separated trajectories shown in
Fig. 1b of green and blue points. The resulting dimension
of the blue points was 2 and stopped separation. Since the
estimated dimension of the green points was 3, we sepa-
rated those trajectories. The result is shown in Fig. 1c. For
this separation, the computed average likelihoods satisfied
Eq. (1), and then, we accepted the separation. In the third
stage, we estimated the dimensions of the affine spaces
for the separated trajectories shown in Fig. 1c of red and
green points. The resulting dimension of the red points

l Dim(4), (5.63)(10'7 ,8.1'I>(10'5 ) O ‘

‘ Dim(3), (1.95x1 0° , 3.77x10" )O l | Dim(2)

‘ Dim(2) ‘ Dim(3), (1.30x10™ , 2.89x10° ) x

Fig. 2 Tree expression of the separation for Fig. 1. Dim (-) indicates
the estimated dimension of the affine space which includes input
trajectories. (-, -) is paired likelihoods for the affine spaces before/after
separation. The symbols circle and multiplication mean that the input
trajectories should be separated or not. Blue, red, and green rectangles
correspond to the boxes in Fig. 1d
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[Dim(&), 7.97x10™", 819:10°) O |

Dim(4), (5.09x10° , 6.77x107 ) O ‘

| Dim(4), (8.55x10"°, 4.35x10° ) O |

DIm(3) N(p) <4 X ‘ | DIm(3) N(p)<4 X

‘ | Dim(4), (1.75x10 ,4.81x10’7)0|

Dim(3) N(p)<4 X

|Dim(3), (7.80x10” , 481x10° ) x | ‘ Dim(2) ‘

DIm(2)

‘ ‘ Dim(2)

separated affine space

Fig. 3 Tree expression of the separation for Fig. 4. The tree is created in the same manner of Fig. 2. N(p) indicates the number of points in the

was 2 and stopped separation. The estimated dimension
of the green points was 3, but the average likelihoods
before/after separation did not satisfy Eq. (1). Hence, we
stop separation. We show the final separation result in
Fig. 1d. In this sequence, the number of independently
moving objects, which includes background points, is 3
and our method correctly separates the input trajectories
into three groups.

6.2 Integrating process
We show another result in Fig. 4. Figure 4a shows the
five decimated images of the input video sequence. We

also show the separation process in Fig. 3 and show the
results in each separation process in Fig. 4b—f. Figure 4g
is the final separation result. From this result, we can see
that miss-separation exists in Fig. 4e and the points which
belong to the same object are separated into three groups,
which are the blue, green, and orange points in Fig. 4g.

For all the pairs of the separated groups, we computed
the average likelihoods before/after integration and check
whether the separated groups should be integrated or not.
Table 1 shows the computed average likelihoods. From
this, the blue, green, and orange points are integrated.
Figure 4g shows the integrated result.

Fig. 4 Separation and integration process. a The input video sequence of 30 frames. Red points are the tracked feature points. b—f Results of the
hierarchical separation process. g Separation result. h Integration result
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Table 1 Comparison of the likelihoods before/after integration
of Fig. 4f. The top and middle rows in each cell show the average
likelihoods before/after integration. The bottom row in each cell
shows whether Eq. (8) is satisfied or not

Cyan Green Orange Magenta

489x 1077 876 x1077  376x107% 881 x 107/

Red 840x 10710 573x107°  465x10™°  615x 1077
X X X X

105%x 1077 103x 1070 312x 10710 293 x 1077

Blue 173x107%  603x 1077  552x107°  168x 1078
X o o X

163x107° 748 x 1077 707 x 1078

Cyan 224x107%  302x1077 357 x107°
X X X

152x107% 426 x 1078

Green 658 x 107 915 x 1077
X X

6.3 Accuracy comparison

We compared the accuracy of our method with RANSAC
and LSA of Yan and Pollefeys [8] and GPCA of Vidal
et al. [7]. We used the T-Hopkins database [5] and orig-
inal data and computed the separation accuracy for each
method. Table 2 shows the result. The accuracy is com-
puted by (number of correctly separated points)/(number
of input points). As we can see, our method is superior to
the compared existing methods.

7 Conclusions

In this paper, we propose a new method for segment-
ing feature point trajectories without assuming the num-
ber of objects. Based on the fact that trajectories of a

Table 2 Accuracy comparison

Our method (%)  RANSAC (%)  LSA (%)  GPCA (%)
Datal 100 92.50 9343 89.31
Data2 98.16 57.60 7742 62.21
Data3 100 84.82 96.43 8125
Data4 99.52 80.95 9048 80.95
Data5 100 80.30 92.75 80.30
Data6 99.06 68.40 99.53 6840
Data7 100 4549 96.99 4549
Data8 90.82 78.31 89.54 Not converge
Data9 100 7222 96.43 90.87
Datal0 100 91.03 93.40 92.08
Datall 9961 92.87 76.11 85.55
Datal2  99.63 85.56 94.44 80.00
Datal3 100 90.26 56.06 7767
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rigidly moving object is constrained to a 2-D or 3-D affine
space, we hierarchically separate input trajectories into
two affine spaces until all the trajectories are divided into
2-D or 3-D affine spaces. In order to judge whether input
trajectories should be divided or not, we compare the
likelihoods before/after separation. After the separation
process, we also check whether the separated trajectories
should be integrated by comparing the likelihoods to avoid
that the trajectories which belong to the same object are
separated into different groups.

By using real video sequences, we checked the separa-
tion and integration processes of our method and con-
firmed the accuracy of our method by comparing existing
methods.
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