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Abstract 

Background:  It must be admitted that the incidence of colorectal cancer (CRC) was on the rise all over the world, 
but the related treatment had not caught up. Further research on the underlying pathogenesis of CRC was conducive 
to improving the survival status of current CRC patients.

Methods:  Differentially expressed genes (DEGs) screening were conducted based on “limma” and “RobustRankAg-
greg” package of R software. Weighted gene co-expression network analysis (WGCNA) was performed in the inte-
grated DEGs that from The Cancer Genome Atlas (TCGA), and all samples of validation were from Gene Expression 
Omnlbus (GEO) dataset.

Results:  The terms obtained in the functional annotation for primary DEGs indicated that they were associated 
with CRC. The MEyellow stand out whereby showed the significant correlation with clinical feature (disease), and 4 
hub genes, including ABCC13, AMPD1, SCNN1B and TMIGD1, were identified in yellow module. Nine datasets from 
Gene Expression Omnibus database confirmed these four genes were significantly down-regulated and the survival 
estimates for the low-expression group of these genes were lower than for the high-expression group in Kaplan-
Meier survival analysis section. MEXPRESS suggested that down-regulation of some top hub genes may be caused by 
hypermethylation. Receiver operating characteristic curves indicated that these genes had certain diagnostic efficacy. 
Moreover, tumor-infiltrating immune cells and gene set enrichment analysis for hub genes suggested that there were 
some associations between these genes and the pathogenesis of CRC.

Conclusion:  This study identified modules that were significantly associated with CRC, four novel hub genes, and 
further analysis of these genes. This may provide a little new insights and directions into the potential pathogenesis of 
CRC.

Keywords:  Colorectal Cancer, Potential Pathogenesis, Robust Rank Aggregation, Weighted Gene Co-expression 
Network Analysis, Hub Gene
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Introduction
Colorectal cancer (CRC) with the second highest cancer-
related mortality rate, was the third most common cancer 
in men and the second most common in women world-
wide, caused approximate 881,000 deaths worldwide 

in 2018 [1]. Gene mutation, epigenetic changes includ-
ing cytosine guanine (CpG) island methylator pheno-
type (CIMP) [2] and environmental factors including 
diet, sedentary lifestyle and gut microbiota played a vital 
role in the progression of CRC [3]. It’s worth mention-
ing that obesity was an important factor, a meta-analysis 
showed that 33% increase in the risk for an obese per-
son compared with a person of normal weight, which 
may be mediated by insulin resistance [3]. 75–80% cases 
were sporadic, with hereditary factors contributing to 
20–25% of CRC [4]. Therefore, we could consider that 
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the complex interaction between susceptibility genes 
and environmental factors was the main reason for the 
occurrence and development of CRC. Early CRC symp-
toms were not obvious, most patients with significant 
symptoms were often advanced CRC. Metastases were 
common in advanced CRC, and the survival rate for 
patients with metastases is only about 14% [5]. Therefore, 
we need to make efforts to study the potential pathogen-
esis of CRC to find new screening and early detection 
methods. Numerous studies have focused on biomark-
ers associated with CRC including susceptibility genes 
and deoxyribonucleic acid (DNA) methylome. Bagheri 
et  al. [6] believed that tissue factor pathway inhibitor 2 
(TFPI2) and N-myc downregulated gene family (NDRG) 
4 with high enough sensitivity and specificity were nomi-
nated as the new CRC screening gene in peripheral blood 
mononuclear cells. In addition, Manoochehri’s study [7] 
revealed three-gene, including NGFR, FGF2, and PROM1 
genes, signatures as potential therapeutic targets and also 
candidate molecular markers in CRC chemoradioresist-
ance. In a prospective targeted sequencing involving 
1134 CRC samples, mutations in adenomatous polyposis 
coli (APC) and CTNNB1 genes were identified, which 
increased oncogenic WNT pathway changes to 96% of 
CRCs [8]. As a key driver of tissue stem cell types, WNT 
signaling pathway involved in both the development and 
homeostasis of tissues [9]. Mutations in WNT signaling 
pathway components lead to a variety of growth diseases 
and cancers, including CRC, and many researches about 
therapeutic approaches to target the WNT pathway 
(especially Wnt/β-catenin signaling pathway) and their 
clinical applications were reported. Deletion of CRC gene 
expression may be associated with hypermethylation of 
CpG islands in some susceptible genes [10], and CIMP in 
subtype of CRC was reported [2].

Current diagnostic methods of CRC are based on histo-
pathologic examination, while treatment plans and prog-
nostic predictions usually refer to the tumour, node and 
metastasis (TNM) stage, which was first mentioned in 
1968 [11]. It was well known that heterogeneous genomes 
of CRC patients can provide important prognostic infor-
mation. It was a future development trend to conduct 
individualized treatment for patients with heterogene-
ous genes, so it was necessary to further understand the 
underlying pathogenesis of CRC and establish specific 
CRC gene blueprint. Sun’s study [12] identified that seven 
key genes, including PPBP, CCL28, CXCL12, INSL5, 
CXCL3, CXCL10 and CXCL11, were identified as impor-
tant molecular markers, contributing to the screening, 
diagnosis, prognosis and new therapeutic targets of CRC. 
In addition, TIMP1, LZTS3, AXIN2, CXCL1, ITLN1, 
CPT2 and CLDN23 genes have also been confirmed to 
be related to the pathogenesis of CRC [13]. In terms of 

sensitive medicine screening, a study [14] confirmed 
that the combination of gefeitinib and regorafenib in the 
treatment of HCT116, CT26 and SW948 colorectal can-
cer cell lines may be a promising strategy for the treat-
ment of colorectal cancer. At present, a large number of 
key genes had been identified related to the pathogen-
esis of CRC, which also brings more possibilities for the 
gene identification and diagnosis of CRC. Based on the 
uncertain possibilities of mechanics for CRC, this study 
will conduct the identification of genes closely related to 
CRC, which might provide some new insights for future 
individualized and comprehensive therapy.

Materials and methods
Microarray detection and differential expression analysis
Nine eligible microarrays from GEO dataset, includ-
ing GSE4183 [15], GSE44076 [16, 17], GSE23878 [18], 
GSE32323 [19], GSE110223 [20], GSE110224 [20], 
GSE33113 [21, 22], GSE37364 [23], and GSE9348 [24], 
were enrolled in the study. The relevant information of 
the 9 datasets included in the study was list in Table  1. 
Screening of DEGs can identify the differences in gene 
expression levels between tumor tissues and matched 
normal tissues and identify the specific genes correlated 
with biological characteristics in tumors. We employed 
the edgeR package [25] of R software (Version 3.6.3) to 
analyze the differences between non-malignant sam-
ples and colon adenocarcinoma (COAD) tissues in the 
TCGA-COAD dataset. The statistical significance of 
genes between datasets was assessed by a linear model 
implemented in the “limma” package [26]. Differentially 
expressed genes (DEGs), including significantly down-
regulated and upregulated genes, were selected for fur-
ther study with the cut-off criteria of false discovery 
rate (FDR) < 0.05 and |log2 fold change (FC)| >1. P-value 
threshold <0.05 was set as statistically significant for 
DEGs among the genes. The process of DEGs sorting by 

Table 1  Characteristics of the data sets enrolled in the study

Dataset ID Number of 
carcinoma 
samples

Number 
of normal 
samples

Country GPL ID

GSE4183 15 8 Hungary GPL570

GSE44076 98 148 Spain GPL13667

GSE23878 35 20 Saudi Arabia GPL570

GSE32323 17 17 Japan GPL570

GSE110224 17 17 Greece GPL570

GSE110223 13 13 Greece GPL96

GSE33113 90 6 Netherlands GPL570

GSE37364 14 38 Hungary GPL570

GSE9348 70 12 Singapore GPL570



Page 3 of 15Luo et al. Hereditas          (2022) 159:11 	

P-value using robust rank aggregation (RRA) method 
[27] was carried out. The integrated DEGs were used for 
subsequent analysis.

Visualization of gene expression patterns 
and chromosome locations
In the section, top 100 DEGs including top 50 up-reg-
ulated genes and top 50 down-regulated genes were 
uploaded to the National Center for Biotechnology Infor-
mation Gene for chromosomal locations. Then, visu-
alization of the expression patterns and chromosomal 
locations were conducted in “OmicCircos” package [28].

Functional annotation and visualization
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis were 
performed for the top 300 DEGs found in the integrated 
DEGs with Database for Annotation, Visualization and 
Integrated Discovery (DAVID) [29]. Functional annota-
tion and enrichment pathways were visualized in “GOp-
lot” package [30].

Weighted gene co‑expression network analysis
Weighted gene co-expression network analysis 
(WGCNA) was performed in the integrated DEGs that 
from The Cancer Genome Atlas (TCGA). Nine samples 
were outliers with the threshold for identifying outlier 
sample was set as −0.25 (Supplemental Fig.  1). Cor-
relation matrix (gene expression matrix), which each 
row represents a different gene and each column repre-
sent a sample, was formed. The correlation matrix was 
transformed to an adjacency matrix based on proper 
soft-thresholding parameter β, which can enhance high 
correlations and weaken low correlations. Then, mod-
ules with the mini-size of module gene numbers set as 
30 were obtained after an average linkage hierarchical 
clustering was carried out based on topological over-
lap matrix (TOM) dissimilarity measure [31]. In current 
study, β = 9 was chosen to pledge a scale-free network 
(Supplemental Fig.  2). Module eigengene (ME) was the 
first principal component obtained from the principal 
component analysis of the expression matrix of each 
gene, and interesting module was identified by calculat-
ing the relevance between MEs and clinical features. Fur-
thermore, two parameters were calculated: the Pearson’s 
correlation between the ME of each module and clinical 
information was defined as module significance (MS), 
the log10 transformation of the P-value was defined as 
gene significance (GS). The functional annotation and 
enrichment analysis were restricted to KEGG and GO in 
DAVID [29].

Identification, validation and efficacy evaluation for hub 
genes
Hub genes were defined on genemodumemberships 
>0.80, and genetics significance >0.20. All samples of 
validation were from GEO dataset, including GSE4183 
[15], GSE44076 [16, 17], GSE23878 [18], GSE32323 [19], 
GSE110223 [20], GSE110224 [20], GSE33113 [21, 22], 
GSE37364 [23], and GSE9348 [24]. Evaluation of diag-
nostic efficacy was typically based on the summary index 
of receiver operating characteristic (ROC) curve and the 
area under curve (AUC). Therefore, ROC curve that as an 
effective method of evaluating the performance of diag-
nostic tests was plotted and AUC was calculated with 
“pROC” package [32] to evaluate the diagnostic perfor-
mance for hub genes.

Kaplan‑Meier survival analysis
In the section, patients were divided into two groups 
according to median expression value of each hub genes 
to plot survival curve. Survival curves constructed under 
the control of a single variable for a hub gene were com-
pared using log-rank test. Log-rank test could indicate 
that whether there was statistical significance between 
two groups. Survival analysis was conducted in Gene 
Expression Profiling Interactive Analysis (GEPIA) [33].

DNA methylation analysis of hub genes
DNA methylation, the addition of a methyl group to the 
carbon 5-position of cytosine within a CpG dinucleo-
tide, was a common and early event in cancer [34]. DNA 
methylation was increasingly being incorporated in bio-
marker studies because of its potential prognostic value. 
In current study, DNA methylation datum of hub genes 
obtained from the human disease methylation database 
version 2.0 [35]. Furthermore, the visualize DNA meth-
ylation, expression and clinical data (MEXPRESS) [36] 
guided the relationship between hub genes expression 
and their DNA methylation status.

Hub Genes and Tumor‑Infiltrating Immune Cells and Gene 
Set Enrichment Analysis (GSEA)
Hub genes were uploaded to the Tumor IMmune Esti-
mation Resource (TIMER) [37], which is a web server 
for comprehensive analysis of tumor-infiltrating 
immune cells, to study their interactions with tumor-
infiltrating immune cells (B cells, CD4+ T cells, CD8+ 
T cells, neutrophils, macrophages and dendritic cells). 
Moreover, samples were divided into high-risk and 
low-risk groups according to the median risk score for 
GSEA, which was a way used to analyse and interpret 
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coordinate pathway-level changes in transcriptomics 
experiments [38].

Results
Differential expression analysis
DEGs were identified according to the threshold of 
P-value <0.05 based on “limma” and RRA. The top 
20 down-regulated and up-regulated genes were 
listed based on Fig.  1. Dataset ID and 40 genes were 
displayed, and each gene was colored according to 
color key, the redder the gene, the more it was up-
regulated, and the bluer the gene, the more it was 
down-regulated.

Visualization of gene expression patterns 
and chromosome locations
Top 100 DEGs including top 50 up-regulated genes 
and top 50 down-regulated genes were preformed vis-
ualization of the expression patterns and chromosomal 
locations. Figure  2 illustrated that two DEGs located 
in chromosome X, and DEGs mainly located in chro-
mosome 1, 3, 5 and 16. The top 5 up-regulated genes 
ABCA8, CLDN1, CDH3, TSPAN7 and GRAMD3 
located in chromosomes 17, 3, 16, X, and 5, while 
top 5 down-regulated genes GRINA, PPM1H, SCD, 
GEMIN6 and SHMT2 located in chromosomes 8, 12, 
10, 2 and 12, respectively.

Functional annotation and visualization
The results of the top 300 DEGs enrichment pathway were 
visualized as chord patterns. In GO cellular components, 
GO terms including preribosome, small subunit precur-
sor, preribosome and apical part of cell were obtained 
(Fig. 3A). In GO biological processes, GO terms such as 
carboxylic acid biosynthetic process, organic acid biosyn-
thetic process and ribose phosphate biosynthetic process 
were enriched into (Fig.  3B). In GO molecular function, 
GO terms including oxidoreductase activity, acting on 
the CH − OH group of donors, NAD or NADP as accep-
tor, oxidoreductase activity, acting on CH − OH group of 
donors, DNA polymerase binding and hydro−lyase activ-
ity were obtained (Fig.  3C). For KEGG term, fatty acid 
degradation, fatty acid metabolism, pentose and glucuro-
nate interconversions and purine metabolism were shown 
in Fig. 3D.

Weighted gene co‑expression network analysis
After seven outliers were excluded (Supplemental Fig. 1), 
DEGs was used to construct a gene co-expression net-
work based on soft threshold β = 9 (Supplemental Fig. 2). 
Nine gene modules were identified based on TOM and 
average linkage hierarchical clustering (Supplemental 
Fig. 3). The module had a minimum capacity of 30 genes, 
and non-characteristic genes were assigned to the grey 
module. Yellow module was identified as the interesting 
module for the following parameters: Yellow was sig-
nificantly correlated with clinical characteristics, such 

Fig. 1  Estimation for soft-thresholding values (β). Note: Scale independence and mean connectivity varied with soft-thresholding values (β). The 
approximate scale-free can be attained at the soft-thresholding power of 9
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as MEyellow was significantly correlated with disease 
(r = −0.77, P = 3e−91) (Fig. 4); and the module member-
ship vs. gene significance (Supplemental Fig.  4) showed 
that the module was closely related to CRC (cor = 0.66, 
P = 1.7e−20). Genes in yellow module were uploaded 
in DAVID for functional annotations. Restricted to GO, 
terms such as bicarbonate transport, apical part of cell, 
brush border membrane and oxidoreductase activ-
ity, acting on CH − OH group of donors were obtained. 
Restricted to KEGG, genes were enriched in nitrogen 
metabolism, retinol metabolism and steroid hormone 
biosynthesis. The major enriched GO terms and KEGG 
terms associated with yellow module were illustrated in 
Fig. 5A-D.

Identification, validation and efficacy evaluation for hub 
genes
Twenty-two genes were identified when the threshold for 
hub genes was set as geneModuleMembership >0.80 and 
gene significance >0.20. In this study, we selected 4 genes 
less concerned by researchers as the top hub genes for 
further research. They were ABCC13, AMPD1, SCNN1B 
and TMIGD1, and all of these were down-regulated. The 
dataset GSE44076 was used for validation (Fig. 6), while 
the validation results for other eight datasets were tabu-
lated (Table 2). In addition, AUC = 0.5–0.7 indicated that 
the hub gene has some diagnostic value but may have not 
high diagnostic accuracy (Fig. 7).

Kaplan‑Meier survival analysis
All patients were divided into two groups (high versus low) 
according to the median expression value of 4 top hub 
genes and the Kaplan-Meier survival curves were plot-
ted. The two survival curves decreased gradually with the 
increase of time, indicating that the survival rate decreased 
in both the high-expression group and the low-expression 
group, but the overall survival rate decreased more signifi-
cantly in the low-expression group. P-value <0.05 was con-
sidered significant in log-rank test. Kaplan-Meier survival 
curves for 4 top hub genes were illustrated in Fig. 8A-D.

DNA methylation analysis of hub genes
DNA methylation analysis of 4 top hub genes was con-
ducted to expound potential mechanisms of abnormal 
down-regulation, and methylation of these 4 genes may 
be used as potential biomarkers for early detection, prog-
nosis and prediction to therapy of CRC. Supplemental 
Fig.  5A-D (colon adenocarcinoma) and Supplemental 
Fig. 6A-D (rectum adenocarcinoma) illustrated that 4 top 
hub genes were defined as differentially methylated genes 
(DMGs) with P-value <0.05. MEXPRESS suggests that 
down-regulation of some top hub genes may be caused 
by hypermethylation in Fig. 9A-D and Fig. 10A-D.

Hub genes, tumor‑infiltrating immune cells and GSEA
The relationships between 4 top hub genes and tumor-
infiltrating immune cells including B cells, CD4+ T 

Fig. 2  Chord plot for expression patterns and chromosomal locations of top 100 DEGs
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cells, CD8+ T cells, neutrophils, macrophages, and 
dendritic cells were carried out based on TIMER. Fig-
ure  11A-D illustrated that a relationship between top 
hub genes and tumor-infiltrating immune cells. The 
results of GESA for 4 top hub genes suggested that 
these pathways have a causal relationship with disease 
(Fig. 12A-D).

Discussion
In this study, nine CRC datasets from the GEO were 
used to identify hub genes closely related to CRC based 
on RRA and WGCNA. Top 100 DEGs including top 50 
up-regulated genes and top 50 down-regulated genes 
were mainly located in chromosome 1, 3, 5 and 16 
based on visualization of the expression patterns and 

a b

c d

Fig. 3  A-D Chord diagrams for GO and KEGG analysis of top 300 DEGs

Fig. 4  Relationships of ME and the traits such as age, gender, T, N, M, stage, disaese. Note: The X-axis showed the traits such as age, gender, T, N, 
M, stage, disease, the Y-axis displayed module names. Color key was displayed in the right. The rows are colored based on the correlation of the 
module to traits: red for positive correlation and green for negative correlation
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a b

c d

Fig. 5  A-D GO terms and KEGG terms for yellow module. Note: The dot varied according to according to the catalog

Fig. 6  The mRNA expression of 4 top hub genes in GSE44076. Note: 4 top genes significantly down-regulated in tumor (P < 0.001)
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chromosomal locations in “OmicCircos” of R package. 
Chord patterns for top 300 DEGs illustrated that terms 
such as fatty acid degradation, fatty acid metabolism, 
carboxylic acid biosynthetic process, apical part of cell, 
oxidoreductase activity, acting on the CH − OH group 
of donors, NAD or NADP as acceptor, small subunit 
precursor were obtained. The genes in fatty acid metab-
olism were down-regulated reported, which might lead 
abnormal fatty acid degradation. Yellow module was a 
prominent module in the co-expression network con-
structed from TCGA samples. The MEyellow was sig-
nificant correlation with disease. Restricted to GO and 
KEGG, genes in yellow module were mainly enriched 
into bicarbonate transport, apical part of cell, nitro-
gen metabolism and oxidoreductase activity, acting on 
CH − OH group of donors. These pathways suggested 
that these genes were involved in the development of 
CRC.

The more general role of DNA methylation in genome 
stability can be achieved by chromatin structure 

Table 2  Validation of 4 hub genes

Note: Since the GPL570, GPL13667 and GPL96 platforms do not have some 
hub genes, the verification results of some hub genes do not exist. P < 0.001 
indicated that these hub genes were also significantly down-regulated in these 
datasets

Dataset ID AMPD1 SCNN1B ABCC13 TMIGD1

GSE4183 P < 0.001 P = 0.305 P = 0.006 NA

GSE44076 P < 0.001 P < 0.001 P < 0.001 P < 0.001

GSE23878 P < 0.001 P < 0.001 P < 0.001 NA

GSE32323 P < 0.001 P < 0.001 P < 0.001 NA

GSE110223 P < 0.001 P < 0.001 NA NA

GSE110224 P < 0.001 P = 0.001 P < 0.001 NA

GSE33113 P < 0.001 P < 0.001 P = 0.006 NA

GSE37364 P < 0.001 P < 0.001 P < 0.001 NA

GSE9348 P < 0.001 P < 0.001 P < 0.001 NA

Fig. 7  AUC of 4 top hub genes. Note: Each of the genes has an AUC of more than 50%, suggesting that these four genes may have some diagnostic 
value, even if with limited accuracy. The relevant data and color card were in the lower right corner
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modeling, which is the main role of methyl groups [39]. 
Although the exact mechanism by which DNA meth-
ylation affects chromatin structure remains unclear, 
sequence independent methyl parts play a direct role in 
the production of closed chromatin structure [40]. DNA 
methylation may form chromatin and gene expression 
states through internal effects on nucleosome structure 
and/or by regulating other factors that replace nucle-
osomes [41]. The promoter CpG island of active genes in 
normal (or cancer) cells is characterized by open chro-
matin region, lack of DNA methylation, nucleosome 
deletion (detected by hypersensitive sites) and histone 
posttranslational modifications, which are typical fea-
tures of active genes [42]. Open chromatin structures 
that determine the expression status of active genes may 
increase the possibility of DNA damage and may dis-
rupt enzyme trading. Privitera’s study [43] disclosed that 

transcriptome comparisons among the 1,16-chromo-
groups for breast cancer, integrated with functional path-
way analysis, suggested the cooperation of overexpressed 
1q genes and underexpressed 16q genes in the genesis of 
both ductal and lobular carcinomas, thus highlighting the 
putative role of genes encoding gamma-secretase subu-
nits and WNT enhanceosome components in 1q, and the 
glycoprotein E-cadherin, the E3 ubiquitin-protein ligase 
WW domain-containing protein 2, the deubiquitinating 
enzyme CYLD, and the transcription factor core-binding 
factor subunit beta in 16q. The analysis of 1, 16-chromo-
groups is a strategy with far-reaching implications for 
the selection of cancer cell models and novel experimen-
tal therapies. Detection of complex cytogenetic abnor-
malities (3 abnormalities), hypodiploidy, monosomy 
13/del(13q) or monosomy 17/del(17p) on conventional 
cytogenetics in a patient with multiple myeloma should 

a b

c d

Fig. 8  A-D Survival curve for testing top hub genes in GEPIA. Note: Percent survival was showed on the Y-axis, survival time (months) on the X axis. 
Blue represented the low-expression group, and red represented the high-expression group. This graph suggested that survival was lower in the 
low-expression group
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be considered as indicative of a more adverse prognosis 
[44]. A better understanding of the significance of DNA 
methylation machinery and chromatin structure in main-
taining genome integrity will facilitate future investiga-
tions to target DNA methylation and its mediators for 
novel drugs and chemotherapeutic combinations.

Yellow module, which stood out because of its sig-
nificant correlation with clinical traits, participated in 
the follow-up analysis as a key module. 4 significantly 
down-regulated DEGs ABCC13, AMPD1, SCNN1B and 
TMIGD1 were identified as top hub genes in yellow mod-
ule. Nine data sets from GEO were used to validate the 

genes: the hub genes were almost all significantly down-
regulated in these nine data sets. In addition, to evaluate 
the efficacy of hub genes, the ROC curve was constructed 
and the AUC made a summary: the hub gene had some 
diagnostic value. Kaplan-Meier Survival Analysis of 
the four hub genes showed that the overall survival rate 
of the low-expression group was lower than the high-
expression group, suggesting that significant down-reg-
ulation of hub genes had an impact on the prognosis of 
CRC patients. There was a correlation between tumor-
infiltrating immune cells (B cells, CD4+ T cells, CD8+ T 
cells, neutrophils, macrophages, and dendritic cells) and 

Fig. 9  A-D The relationship between gene methylation and gene expression level based on colon adenocarcinoma (COAD)



Page 11 of 15Luo et al. Hereditas          (2022) 159:11 	

hub genes. GSEA suggested that these genes are closely 
associated with CRC progression.

SCNN1B (sodium channel epithelial 1 subunit beta), 
a methylation-related differentially expressed gene was 
mentioned in gastric cancer [45] and renal cell carcinoma 

(RCC) [46]. Based on the analysis of tissue chips and 
related studies, the gene with anti-tumor function was 
reported that it might be a potential survival marker 
for gastric cancer [47]. SCNN1B overexpression was 
sufficient to suppress multiple features of cancer cell 

Fig. 10  A-D The relationship between gene methylation and gene expression level based on rectum adenocarcinoma (READ)
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a
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c
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Fig. 11  A-D The relationships between 4 top hub genes and tumor-infiltrating immune cells including B cells, CD4+ T cells, CD8+ T cells, 
neutrophils, macrophages, and dendritic cells
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pathophysiology in vitro and in vivo Mechanistic inves-
tigations revealed that SCNN1B interacted with the 
endoplasmic reticulum chaperone, GRP78, and induced 
its degradation via polyubiquitination, triggering the 
unfolded protein response (UPR) via activation of PERK, 
ATF4, XBP1s, and C/EBP homologous protein and lead-
ing in turn to caspase-dependent apoptosis [47]. This 
gene was one of the genes with RCC-specific promoter 
methylation and down-regulation [48]. A comprehensive 
analysis of RCC molecular subtypes defined by specific 
promoter methylation (including SCNN1B) showed that 
dietary intakes are differentially associated with ccRCC 
risk [48]. Remarkably, MEXPRESS suggested that the 
significantly low expression of this gene may be related 
to hypermethylation in the study. However, the spe-
cific underlying mechanism of this gene in CRC is still 
unclear. The researchers paid less attention to the other 
three top hub genes than to this one. To our knowledge, 
the transmembrane and immunoglobulin domain con-
taining 1 (TMIGD1) may be associated with intestinal 

differentiation and was considered a tumor suppressor 
(TMIGD1 significantly down-regulated in renal can-
cer) [49]. In addition, the loss of TMIGD1 significantly 
impaired intestinal epithelium brush border membrane, 
junctional polarity, and maturation. Mechanistically, 
TMIGD1 inhibits tumor cell proliferation and cell migra-
tion, arrests cell cycle at the G2/M phase, and induces 
expression of p21CIP1 (cyclin-dependent kinase inhibitor 
1), and p27KIP1 (cyclin-dependent kinase inhibitor 1B) 
expression, key cell cycle inhibitor proteins involved in 
the regulation of the cell cycle [50]. Moreover, TMIGD1 
is shown to be progressively down-regulated in sporadic 
human CRC, and its downregulation correlates with poor 
overall survival. The findings herein identify TMIGD1 
as a novel tumor suppressor gene and provide new 
insights into the pathogenesis of colorectal cancer and a 
novel potential therapeutic target [50]. AMPD1 played 
an important role in the purine nucleotide cycle, and 
ABCC13 may be an important agent of drug resistance 
[51]. Related studies [52] had confirmed the expression 

c d
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Fig. 12  A-D GESA for 4 top hub genes
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level of AMPD gene in tumors and healthy livers. The 
explanation of the augmented activity of AMP-deaminase 
in the tumor tissue may be related with changed resist-
ance of the enzyme toward proteolytic action of intracel-
lular proteases. A quite opposite may be true in the case 
of AMP-deaminase isolated from cirrhotic liver [53]. 
Here, diminished resistance of the enzyme for intracel-
lular proteolysis has been suggested as a probable factor 
diminishing activity of AMP-deaminase [54]. However, 
no evidence has been reported on the role and mecha-
nism of ABCC13 gene in cancer. Further attention needs 
to be paid to the specific biological mechanism between 
the occurrence and development of CRC in these 4 top 
hub genes.

Conclusions
In summary, four DEGs were identified in the yellow 
module as top hub genes that strongly correlated with 
CRC, and that significantly low expression of hub genes 
led to poor prognosis. The significant down-regulation 
of some genes may be related to hypermethylation. In 
addition to the correlation between tumor-infiltrating 
immune cells and the degree of down-regulation of 
genes, there was a close relationship between hub genes 
and the progression of CRC. The study may provide a lit-
tle new insights and directions into the potential patho-
genesis of CRC.
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