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Abstract

Background: Kidney renal clear cell carcinoma (KIRC) is a potentially fatal urogenital disease. It is a major cause of
renal cell carcinoma and is often associated with late diagnosis and poor treatment outcomes. More evidence is
emerging that genetic models can be used to predict the prognosis of KIRC. This study aimed to develop a model
for predicting the overall survival of KIRC patients.

Results: We identified 333 differentially expressed genes (DEGs) between KIRC and normal tissues from the Gene
Expression Omnibus (GEO) database. We randomly divided 591 cases from The Cancer Genome Atlas (TCGA) into
training and internal testing sets. In the training set, we used univariate Cox regression analysis to retrieve the
survival-related DEGs and futher used multivariate Cox regression with the LASSO penalty to identify potential
prognostic genes. A seven-gene signature was identified that included APOLD1, C9orf66, G6PC, PPP1R1A, CNN1G,
TIMP1, and TUBB2B. The seven-gene signature was evaluated in the training set, internal testing set, and external
validation using data from the ICGC database. The Kaplan-Meier analysis showed that the high risk group had a
significantly shorter overall survival time than the low risk group in the training, testing, and ICGC datasets. ROC
analysis showed that the model had a high performance with an AUC of 0.738 in the training set, 0.706 in the
internal testing set, and 0.656 in the ICGC external validation set.

Conclusion: Our findings show that a seven-gene signature can serve as an independent biomarker for predicting
prognosis in KIRC patients.
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Background
Kidney renal clear cell carcinoma (KIRC) is a type of
renal cortical tumour characterized by a growth pattern
of the cytoplasm that is associated with malignant epi-
thelial cells and accounts for 80–90% of renal cell car-
cinomas. In addition, KIRC tends to be resistant to
radiation and chemotherapy, which makes surgery the
primary treatment [1]. However, 30% of patients who
undergo surgery still experience metastasis [2]. Early

identification of risk in KIRC patients can help with
more accurate clinical treatment. Therefore, there is a
strong demand to discover new and reliable markers to
predict patient prognosis.
Many studies show that predictive models of gene ex-

pression have great significance in clinical prognosis ap-
plications. For example, Fatai et al. built a model to
demonstrate that a 35-gene signature can discriminate
between rapidly and slowly progressing glioblastoma
multiforme and predict survival in known subtypes of
cancer [3]. Long et al. constructed a prognostic model
for patients with hepatocellular carcinoma based on
RNA sequencing data [4]. For KIRC, Zhan et al. found
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that the expression of the five-gene model was related to
the prognosis of patients with KIRC by Cox regression
analysis [5]. Han et al. analysed reversed-phase protein
array (RPPA) data for the protein expression signature
of survival time in KIRC [6]. However, the studies of
multigene models to predict the prognosis of KIRC pa-
tients are still insufficient, and we sought here to use a
variety of methods to find more potentially relevant
genes.
In terms of survival analysis, Cox proportional hazards

regression is currently the most widely used method.
However, it is not the most suitable method for high-
dimensional microarray data because overfitting is a
common shortcoming of modelling using high-
dimensional microarray data to identify prognostic genes
[7]. The LASSO method can eliminate this limitation
and it was applied in our analysis for feature selection
[8]. In this study, we sought to identify DEGs associated
with OS based on genome-wide expression profiles of
KIRC patients [9]. We developed a seven-gene signature
by multivariate Cox proportional hazard regression with
LASSO penalty [10, 11]. The prognostic model involving
these seven DEGs effectively divided KIRC patients into
high- and low-risk groups; OS was significantly poorer
in the high-risk group than in the low-risk group among
the training, testing and ICGC sets. OS was regarded as
the endpoint for evaluating the prognostic model and
the ultimate measure of treatment benefits [12, 13]. In
conclusion, this study may add literature to existing
prognostic models of KIRC to identify patients with a
higher risk of mortality.

Results
Screening for DEGs and GO enrichment analysis
After GEO data filtering, quality assessment, and
data processing, we performed differential expression
analysis by using the limma R package and identified
333 DEGs from the GEO cohort.. These DEGs com-
prised 218 upregulated genes and 115 downregulated
genes, using the criteria of logFC > 2 or logFC< (− 2)
with adjusted P < 0.05 (Fig. 1a). The heatmap in Fig.
1b shows that the 333 DEGs were enriched in 4
nodes. GO analysis revealed that the DEGs were
enriched in renal system development, kidney epithe-
lium development, renal tubule development, and
kidney development.

Construction of a prognostic model in the training set
DEGs that mediate tumour initiation, progression, and
proliferation are potential prognostic biomarkers. To
identify potential prognostic DEGs, the TCGA cohort
was randomly divided into a training set (n = 300) and
an internal testing dataset (n = 291) with an approximate
ratio of 1:1. Consequently, a univariate Cox regression

was first performed to filter out the DEGs that were not
related to OS, and then 315 survival-related DEGs were
identified. Based on the 315 survival-related DEGs, the
relative regression coefficients were calculated by multi-
variate Cox regression with LASSO penalty. Using this
method, we obtained seven potential prognostic genes,
including APOLD1, C9orf66, G6PC, PPP1R1A, CNN1G,
TIMP1, and TUBB2B (Fig. 2a; Table 1).
A risk score (RS) was calculated for each patient in the

TCGA training set by combining the relative expression
of the DEGs in the prognostic model and the LASSO co-
efficients. Patients with an RS ≥0.323 (median cutoff)
were classified as high risk and the remaining patients
were classified as low risk, as shown in Fig. 2b. To inves-
tigate the relationship between RS and KIRC patients’
OS, a Kaplan–Meier analysis and log-rank test were per-
formed using the training set. We found that high-risk
patients had a worse prognosis than low-risk patients
(Fig. 2c). The area under the curve (AUC) value was
0.738, as shown in the time-dependent receiver operat-
ing characteristic (ROC) curve assessing prognosis in
Fig. 2d.

Validation of the prognostic model using the TCGA and
ICGC datasets
To further explore the relationship between RS and
KIRC patients’ OS, a Kaplan–Meier analysis and log-
rank test were performed on the TCGA and ICGC valid-
ation sets. In the TCGA validation set, we used the same
prognostic model; patients with an RS ≥0.365 were clas-
sified as high risk and the remaining patients were classi-
fied as low risk by using the median of all risk scores
(Fig. 3a). It is clear that the OS was significantly lower
for patients with a higher RS than for patients with a
lower RS (P < 0.0001; Fig. 3b). As most events occurred
within 5 years, we used a time-dependent ROC curve to
assess prognosis (Fig. 3c); the AUC value was 0.706. To
verify that our prognostic model can be applied uni-
versally, we further applied the seven-gene signature
to ICGC data. A total of 159 samples were obtained
from the ICGC database, and after batch effect, 157
samples remained. Using the median cutoff of RS =
0.644 (Fig. 3d), the prognostic model successfully sub-
divided the patients into a high-risk group or a low-
risk group, and the OS was significantly different.
The five-year survival rate of patients in the high-risk
group was low (Fig. 3e). The time-dependent ROC
curve demonstrated an AUC of 0.656 (Fig. 3f), which
showed better prediction performance. Moreover, we
demonstrated the universal prognostic value of the
seven-gene signature in the TCGA cohort despite the
pathological stage, especially for stages I, III and IV
(all P < 0.05, Table 2).
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Developing and validating a predictive nomogram based
on the seven-gene prognostic model
To establish a survival prediction method for KIRC pa-
tients, a nomogram was used to predict the probability
of three- and five-year OS in the TCGA cohort. The pre-
dictors in the nomogram included four independent
prognostic factors (age, gender, tumour stage, and race
(Fig. 4a) [14]. The calibration curve illustrated that the
predictions and actual observations matched well, which
indicated an accurate prediction via the nomogram
(Fig. 4b) [15].

Discussion
There is growing evidence that, despite the importance
of individual molecules, tumorigenesis and prognosis are
strictly controlled by interactions between a large num-
ber of cellular components including DNA, RNA, pro-
teins, and small molecules [16]. However, the number of

specific biomarkers with prognostic significance is still
small [17], and the identification of prognostic factors is
important for the optimal treatment of KIRC patients.
Therefore, to reduce mortality and improve the progno-
sis of KIRC, molecular screening of KIRC biomarkers is
urgently needed. In this study, we identified 333 DEGs
by analysing GEO data. We then conducted a GO en-
richment analysis, showing that the 333 DEGs are pri-
marily involved in renal system development, kidney
epithelium development, renal tubule development, and
kidney development. After multivariate Cox regression
with LASSO penalty, seven DEGs were identified, and
two validation analyses were performed using independ-
ent datasets, showing good reproducibility.
The biological functions of the seven identified DEGs

have been reported in previous studies. However, only a
few of the DEGs have been investigated in KIRC.
APOLD1 (Apolipoprotein L Domain Containing 1) is an

Fig. 1 DEGs in KIRC vs adjacent normal tissues. a. Volcano plot visualizing the DEGs screened using limma. The red and green points represent
the significantly upregulated and downregulated DEGs, respectively (logFC> 2 or logFC<(− 2) with adjusted P < 0.05). Features selected by the
LASSO penalty are also marked. b. Heatmap showing that the 333 DEGs are involved in renal system development, kidney epithelium
development, renal tubule development, and kidney development
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endothelial cell early response protein that may play an
important role in the regulation of endothelial signalling
pathways and vascular function. C9orf66 (Chromosome
9 Open Reading Frame 66) is a protein-coding gene.
G6PC (Glucose-6-Phosphatase Catalytic Subunit) is also
a protein-coding gene. Any defects in this gene abrogate
G6Pase function [18–20], which is associated with in-
creased glycogen accumulation in gluconeogenic organs,
especially in the kidneys, where it promotes progressive
nephromegaly [21]. Poor metabolic control often results
in long term complications such as renal dysfunction,
pancreatitis, and hypertriglyceridemia, impairing kidney
function and increasing the probability of KIRC [21].
PPP1R1A (Protein Phosphatase 1 Regulatory Inhibitor
Subunit 1A) is a protein-coding gene [22]. TIMP1

(TIMP Metallopeptidase Inhibitor 1) is also a protein-
coding gene [23]. The proteins encoded by this gene
family are natural inhibitors of matrix metalloproteinases
(MMPs). In addition to its inhibitory role against most
of the known MMPs, TIMP1 promotes cell proliferation
in a wide range of cell types and may also have an anti-
apoptotic function. TUBB2B (Tubulin Beta 2B Class IIb)
is a protein-coding gene. TUBB2B mutation leads to
tubulin heterodimerization impairment, decreased ability
to incorporate into the cytoskeleton, and alteration of
microtubule dynamics, with an accelerated rate of
depolymerization, which causes renal disease and an in-
crease in the incidence of KIRC [24].
Compared to previous research, our study had some

differences [25, 26]. First, our risk score (RS) strategy

Table 1 Details of features selected by multivariate Cox proportional hazard regression model with LASSO penalty

Gene Name Description LASSO coefficient

APOLD1 Apolipoprotein L Domain Containing 1 −0.09978

C9orf66 Chromosome 9 Open Reading Frame 66 −0.01573

G6PC Glucose-6-Phosphatase Catalytic Subunit −0.06969

PPP1R1A Protein Phosphatase 1 Regulatory Inhibitor Subunit 1A 0.02551

SCNN1G Sodium Channel Epithelial 1 Subunit Gamma 0.01383

TIMP1 TIMP Metallopeptidase Inhibitor 1 0.13582

TUBB2B Tubulin Beta 2B Class IIb 0.02215

Fig. 2 Construction of the KIRC-specific gene risk score system A. LASSO coefficient of the 7 survival-related genes. B-C. Prognostic classifier
analysis of the patients in the internal testing set. The distribution of risk score and patients survival time and status, and the lower one is heat
map of the genes in prognostic classifier. D. ROC curve for the survival of high- and low-risk groups
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involved LASSO penalized regression which can analyse
all independent variables as well as the most influential
variables. When dealing with large datasets such as gene
expression profiles, this method is much more accurate
than the stepwise regression method of multivariate Cox
regression models. Moreover, we used data from
GSE8050, GSE12606, GSE14762, GSE36895, and
GSE46699 KIRC expression profiling chips to identify
DEGs and TCGA data for validation, and we then used
ICGC data for external validation. We also acknowledge
the limitations of this study. First, before clinical applica-
tion, PCR-based sample validation should be conducted.

Second, the functional phenotypes and mechanisms of
the seven genes deserve further investigation. Third, a
treatment effect that would influence patients’ prognosis
was ignored when developing a prognostic model due to
incomplete medical records.

Conclusion
In summary, we developed a seven-gene signature that is
associated with OS in KIRC patients. Our findings sug-
gest that the seven-gene signature can serve as an inde-
pendent biomarker for predicting survival prognosis, and
we are poised for further investigation and eagerly

Table 2 Prognostic value of 7-gene signature in different pathological stages of KIRC in the TCGA cohort

Number of samples Number of Death (%) Hazard Ratio 95% CI P Value

Stage I 214 35 (16) 5.16 2.07–12.87 0.0004

Stage II 42 7 (17) 1.15 0.11–11.54 0.908

Stage III 116 46 (40) 2.12 1.05–4.27 0.037

Stage IV 71 56 (79) 3.73 1.67–8.32 0.001

Fig. 3 The distribution of RS, ROC curves and Kaplan-Meier survival in the testing and ICGC sets. a-c. Internal testing cohort. d-f. ICGC
validation cohort
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anticipate the verification of our findings in a larger co-
hort of patients to assess whether the seven genes are
likely to become new drug treatment targets.

Methods
KIRC sample sources
The following five KIRC expression profiling chip data-
sets, based on the GPL570 platform, were downloaded
from the Gene Expression Omnibus (GEO) database:
GSE8050, GSE12606, GSE14762, GSE36895, and
GSE46699 with a total of 218 KIRC and normal kidney
tissue samples. After removal of the samples with inad-
equate clinical information, 99 KIRC and 74 normal
control samples were selected for this analysis. KIRC
clinical and gene expression data (605 cases) were down-
loaded from the TCGA database, and a total of 591 cases
ware obtained after removing the batch effect. This
study strictly followed the published guidelines issued by
TCGA. The TCGA data were randomly divided and
used as a prognostic model training set and an internal
testing set, and the ICGC data were used as an external
validation set.

Screening for differentially expressed genes (DEGs)
Differentially expressed genes (DEGs) were identified by
R software and the screening criteria were absolute log-
FoldChange > 2 with adjusted P < 0.05. A total of 333
DEGs were identified between 99 KIRC and 74 normal
control samples. These genes were then mapped to the
TCGA and International Cancer Genome Consortium

(ICGC) databases using the ID database. Excluding un-
matched genes, 315 genes were available for analysis.

Gene ontology (GO) enrichment analysis of DEGs
The biological significance of the DEGs was explored
using a GO term enrichment analysis of biological pro-
cesses, cellular components, and molecular functions.
The search tool for recurring instances of neighbouring
genes (STRING) [27] was used by inputting the gene
name of each DEG and exporting the results [28].

Screening for KIRC survival-related genes
We randomly divided the 591 TCGA samples with ap-
proximate ratio of 1:1 and 300 samples were set as the
training set and 291 samples were set as the internal
testing set. In the training group, multivariate Cox pro-
portional hazard regression analysis was performed on
315 DEGs [29, 30], followed by LASSO penalty to fur-
ther screen out a group of independent prognostic can-
didate genes with the strongest predictive power [31].

Survival analysis
All statistical analyses were conducted by R3.6.2.
Kaplan-Meier curves were generated for survival rates of
patients, with difference detection based on log-rank
testing. A Cox proportional hazard regression model
was used to calculate the hazard ratios (HRs) and 95%
confidence intervals (CIs) regarding OS [13]. Specifically,
survival curves were established in the training set, in-
ternal testing set and ICGC set. The predictive perform-
ance of the nomogram was evaluated by a calibration

Fig. 4 Nomogram for predicting 3- and 5-year OS. a. We added up the points identified on the points scale for each variable that can be
projected onto the scales to indicate the probability of 3- and 5-year OS. b. Calibration plot showing the prediction of OS. The nomogram-
predicted probability of OS is plotted on the x-axis; actual OS is plotted on the y-axis
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curve [15]. For all statistical analyses, a two-tailed P
value less than 0.05 was considered statistically
significant.
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