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regulatory challenges in adoption of this technology.
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Burns are a significant cause of trauma, and over the years, the focus of patient care has shifted from just survival to
facilitation of improved functional outcomes. Typically, burn treatment, especially in the case of extensive burn
injuries, involves surgical excision of injured skin and reconstruction of the burn injury with the aid of skin
substitutes. Conventional skin substitutes do not contain all skin cell types and do not facilitate recapitulation of
native skin physiology. Three-dimensional (3D) bioprinting for reconstruction of burn injuries involves layer-by-layer
deposition of cells along with scaffolding materials over the injured areas. Skin bioprinting can be done either in
situ or in vitro. Both these approaches are similar except for the site of printing and tissue maturation. There are
technological and regulatory challenges that need to be overcome for clinical translation of bioprinted skin for
burn reconstruction. However, the use of bioprinting for skin reconstruction following burns is promising;
bioprinting will enable accurate placement of cell types and precise and reproducible fabrication of constructs to
replace the injured or damaged sites. Overall, 3D bioprinting is a very transformative technology, and its use for
wound reconstruction will lead to a paradigm shift in patient outcomes. In this review, we aim to introduce
bioprinting, the different stages involved, in vitro and in vivo skin bioprinting, and the various clinical and

Background

Burns are amongst the most common types of trauma
worldwide. More than 11 million people require burn-
related medical attention each year [1]. Most burn injur-
ies occur in a domestic setting in low- and middle-in-
come countries, but industrial accidents and armed
conflicts also contribute to the high incidence of burns
[2]. Since the twentieth century, the number of serious
burns has decreased dramatically due to increased
prevention [3]. Advances in burn injury knowledge,
multidisciplinary and better burn critical care, and phar
macological developments in the last few decades have
resulted in a shift in attention from mortality to the
functional recovery following burns [4, 5]. The focus of
patient care has shifted from merely survival to acceler-
ated wound closure, improved scar quality, and func-
tional outcomes [4].
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Reconstructive surgery for burn treatment

There are several surgical procedures to treat burn wounds
including primary closure, burn wound excision with sub-
sequent skin grafts, and skin substitutes. Currently, most
burn patients survive their injuries. Following the initial re-
suscitation and stabilization of the burn patient [6, 7], surgi-
cal wound closure and reconstructive surgery are typically
performed to improve the functional and esthetic outcomes
of burn wounds.

Primary closure of burn wounds involves direct wound
closure following excision of the devitalized tissue. It is
usually performed in small- to moderate-sized burn scars
and takes into account Langer’s lines of skin tension for
an optimal esthetic outcome [8]. Recently, primary closure
has also been performed in larger burn wounds in com-
bination with skin-stretching devices [9-12].

When primary closure of a burn wound is not an
option, additional surgery is required. A combination of
excision and grafting is the preferred approach for the
treatment of deeper dermal burns. The main goal of
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early excision is to remove devitalized tissue and prepare
the wound for skin grafting; layers of burned tissue are ex-
cised until a viable wound bed is reached for grafting [3].
Early excision has been shown to be cost effective and re-
duce mortality and the length of hospital stay [13, 14].
Covering the excised burn wound with autologous skin
grafts harvested from an uninjured donor site on the pa-
tient is considered as the gold standard for repair of burn
injuries. These autologous skin grafts can either be partial
(split-thickness skin grafts (STSGs)) or full-thickness skin
grafts (FTSGs), depending on the thickness of the ob-
tained graft. STSGs consist mostly of the epidermis, while
FTSGs consist of both epidermis and dermis. Although
STSGs are the gold standard for autografts in burn sur-
gery because of their versatility and self-regenerating cap-
acity, FTSGs are often preferred over STSGs since they
tend to give better esthetic results with less contraction
[15]. However, a recent study reported that FTSGs also
show significant long-term surface area reduction [16].
For smaller injuries, hand and facial burns, and burns in
children, STSGs are preferred [6]. Functional outcome is
often related to the availability of donor skin for recon-
struction and the prevention of extensive scarring and
skin contracture. The preferred initial treatment of deeper
dermal burns includes early excision and grafting. Despite
the advantages and disadvantages of both STSGs and
FTSGs, donor skin is often limited in patients with severe
burns [17, 18]. Although repeated harvesting of a donor
site over time can be an option, it can cause scarring and
pigmentation disorders [19, 20]. Another option is to in-
crease the surface area of skin grafts by graft expansion.
Graft expansions can be prepared using mesh techniques
[21-23] or the (modified) Meek technique [24—27]. How-
ever, in the case of extensive skin loss such as cases where
skin loss exceeds 60% of the total body surface area of the
patient, the availability of donor sites for harvesting is se-
verely limited [28—30]. In addition, autografting generates
donor sites which are not only painful during healing but
may also develop scar and cause long-term morbidity.
Other types of skin grafts such as allogeneic skin trans-
plants from non-genetically identical individuals or ca-
daver skin and xenogeneic skin transplants from different
species serve only as temporary treatment measures for
full-thickness wounds [31]. They require resurfacing with
an autogenous epidermal layer because of immunologic
rejection or rejection due to host immune response elic-
ited by antigens present in the donor tissue.
Tissue-engineered skin substitutes are a promising alter-
native. They typically consist of allogeneic cells that pro-
vide temporary protection to the wounds or autologous
epidermal keratinocytes and dermal fibroblasts applied as
cell sprays or as cultured tissue constructs to facilitate
wound closure and healing. Skin substitutes such as Inte-
gra®, Biobrane®, Dermagraft®, and Apligraf’ are already
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employed in the clinic, with or without complementation
of autologous STSGs[31]. These substitutes have been
shown to effectively close full-thickness burn wounds and
enable survival after life-threatening burn injuries.

There are currently a wide range of different skin substi-
tutes available for clinical applications [19, 32], the majority
of which are biosynthetic skin substitutes (e.g., Matriderm®,
Integra®, Dermagraft®, and OrCel®) [33-37]. Even though
the use of skin substitutes is still investigational, many burn
clinics use skin substitutes for the treatment of burns. For
example, the application of Integra®, a biosynthetic dermal
scaffold consisting of bovine type I collagen and chondroi-
tin-6-sulfate, may result in improved scar appearance and
elasticity and less donor site morbidity [38—40]. In addition,
Matriderm®, an intact matrix of bovine type I collagen and
elastin, was shown effective in pilot trials and resorbs as the
wound healing process advances [33]. Despite good clinical
results, there are still many challenges regarding skin substi-
tutes. For example, the majority of skin substitutes consist
of allogeneic skin which can be highly immunogenic and
contain cellular remnants that may cause rejection of the
skin substitute [41]. In addition, methods to sterilize skin
substitutes may be insufficient to eliminate the transmission
of unknown or prion disease(s) from animal material [42].
Furthermore, human-derived skin is limited by its supply,
and the structure is a lot more complex than biosynthetic
substitutes. Finally, although most skin substitutes perform
relatively well in the clinic, these substitutes do not include
hair and pigment, which are both important for the normal
functions of the skin [43].

Disruptive technology in burn care

Conventional tissue-engineered skin substitutes are made
by seeding cells on biodegradable scaffolds and allowed to
mature, following which they are used for transplantation
or in vitro testing. These skin substitutes have several limi-
tations, they contain at most only two cell types, and since
they are based on post-natal wound healing physiology,
they do not stimulate regeneration of vasculature, nerves,
sweat and sebaceous glands, hair follicles, and pigmenta-
tion. All these structures are essential to restore the
complete anatomy and physiology of native skin; hence,
there is an immense need to develop next generation
tissue-engineered skin substitutes. Recent work from our
group demonstrates that bioprinting could be successfully
used to close large full-thickness wounds [44]. Further, we
have also shown that bioprinting could be very effectively
used to precisely fabricate both soft and hard tissues with
complex structures in an automated manner [45]. Bioprint-
ing could revolutionize the field of burn care by replacing
current off-the-shelf cellular or acellular skin products and
providing highly automated process of fabricating complex
skin constructs to enhance functional outcome of burns. In
this review, we discuss current developments in skin
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bioprinting for burn reconstruction and highlight the chal-
lenges that need to be addressed in the coming years.

Three-dimensional (3D) bioprinting

3D printing involves sequential delivery of thin layers of
materials and bonding them together to form a solid 3D
structure [46]. First developed by Charles W. Hull in 1986
and originally called “stereolithography”, 3D printing is an
additive manufacturing technique [46]. 3D printing can
automate tissue engineering and facilitate cost-effective
large-scale manufacturing. 3D bioprinting, a variant of 3D
printing, is a computer-aided manufacturing process that
deposits living cells together with hydrogel-based scaffolds
(also called “bioink”) and allows for patterning of individual
components of the tissue or organ, thereby facilitating for-
mation of complex tissue architecture [47]. Fabrication of
biological constructs by 3D bioprinting typically involves
layer-by-layer addition of material on a supporting scaffold
to build 3D tissue with input from a computer-aided de-
sign (CAD) file [48]. Bioprinting enables tailor fabrication
of tissue constructs by suitably altering the CAD file prior
to printing [49]. Generally, the process of 3D bioprinting
involves five different steps: (1) imaging/scanning of the
target tissue is performed; (2) using the imaging input, the
model is developed with CAD-CAM (computer-aided
manufacture) softwares; (3) depending on the tissue to be
printed, the biomaterial scaffolds and cells are carefully
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chosen, one or more cell types could be used; (4) the tissue
is printed using a bioprinter; and (5) the bioprinted tissue
is allowed to mature. Bioprinting can be done in vitro or in
sity; if it is done in vitro, following tissue maturation, the
bioprinted tissue constructs are used either for implant-
ation or in vitro testing [46, 50] (Fig. 1a and b). Broadly,
the bioprinting process proceeds in three different stages:
the tissue pre-bioprinting, bioprinting, and post-
bioprinting maturation stages.

The main technological systems for bioprinting include
inkjet-, microextrusion- and laser-based bioprinting [46]
(Fig. 2). Inkjet-based bioprinting utilizes thermal-, piezo-,
or acoustic-driven mechanisms to deposit droplets of cell
suspension in a high-throughput manner [46]. While
there are many advantages to the inkjet bioprinting tech-
nology, a downside is the risk of exposing cells and mate-
rials to thermal and mechanical stress, and in the case of
acoustic printers, the use of high frequencies may affect
cell viability. Inkjet bioprinters are also limited by the vis-
cosity of the bioink used; the more viscous the bioink the
greater the force required to eject the droplet from the
printer nozzle [46]. Further, the cell density that can be
used for printing may be lower than physiologically rele-
vant numbers due to the possible nozzle clogging issues.

Microextrusion bioprinting uses mechanical or pneu-
matic dispensing systems to extrude continuous beads of
materials that consist of cells mixed with hydrogels [46].
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Fig. 1 The bioprinting process. a Different steps and stages that lead to the production of bioprinted constructs for implantation or in vitro
testing. b The process of bioprinting using the integrated tissue and organ printer illustrated using ear cartilage bioprinting. This figure was
adapted from the original article of Kang et al. [45] (Copyright 2016 Nature America, Inc.). Data from the medical imaging input is used to
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Fig. 2 Components of inkjet, microextrusion, and laser-assisted bioprinters. This figure was adapted from the original article of Murphy et
al. [46] (Copyright 2014 Nature America, Inc.). a In thermal inkjet printers, the print head is electrically heated to produce air-pressure pulses that
force droplets from the nozzle, while acoustic printers use pulses formed by piezoelectric or ultrasound pressure. b Microextrusion printers use
pneumatic or mechanical dispensing systems to extrude continuous beads of material and/or cells. ¢ Laser-assisted printers use lasers focused on

an absorbing substrate to generate pressures that propel cell-containing materials onto a collector substrate
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Structures are printed with hydrogel, and the material
is then solidified either physically or chemically such
that the structures can be combined to create 3D
shapes. Microextrusion printers allow for a wider se-
lection of biomaterials since more viscous materials
can be printed. Another advantage is that these
printers can deposit very high cell densities. Although
cell viability may be lower than that obtained with
inkjet printers, it is in the range of 40 to 86%, de-
pending on the size of nozzle and pressure of extru-
sion used [51].

Laser-assisted bioprinting is another type of printing
system which is based on the principles of laser-induced
forward transfer. This involves the use of a pulsed laser
beam, a focusing system and a “ribbon” that has a donor
transport support, a layer of biological material, and a
receiving substrate facing the ribbon [48, 52]. Focused
laser pulses are used to generate a high-pressure bub-
ble that propels cell-containing materials toward the
collector substrate. Since laser bioprinting does not
use nozzles, there are no cell clogging issues. Another
advantage is the ability to print with high cell dens-
ities without affecting cell viability [53, 54]. The main
disadvantages however are the reduced overall flow
rate as a result of the high resolution and also the
possibility of metallic residues in the final construct
[48, 55].

In addition to laser-assisted bioprinting, other light-based
3D bioprinting techniques include digital light processing
(DLP) and two-photon polymerization (TPP)-based 3D
bioprinting. DLP uses a digital micro-mirror device to pro-
ject a patterned mask of ultraviolet (UV)/visible range light
onto a polymer solution, which in turn results in photopo-
lymerization of the polymer in contact [56, 57]. DLP can
achieve high resolution with rapid printing speed regardless
of the layer’s complexity and area. In this method of 3D
bioprinting, the dynamics of the polymerization can be

regulated by modulating the power of the light source, the
printing rate, and the type and concentrations of the photo-
initiators used. TPP, on the other hand, utilizes a focused
near-infrared femtosecond laser of wavelength 800 nm to
induce polymerization of the monomer solution [56]. TPP
can provide a very high resolution beyond the light diffrac-
tion limit since two-photon absorption only happens in the
center region of the laser focal spot where the energy is
above the threshold to trigger two-photon absorption [56].
The recent development of the integrated tissue and
organ printer (ITOP) by our group allows for bioprinting
of human scale tissues of any shape [45]. The ITOP facili-
tates bioprinting with very high precision; it has a reso-
lution of 50 um for cells and 2 pm for scaffolding materials.
This enables recapitulation of heterocellular tissue biology
and allows for fabrication of functional tissues. The ITOP
is configured to deliver the bioink within a stronger
water-soluble gel, Pluronic F-127, that helps the printed
cells to maintain their shape during the printing process.
Thereafter, the Pluronic F-127 scaffolding is simply washed
away from the bioprinted tissue. To ensure adequate oxy-
gen diffusion into the bioprinted tissue, microchannels are
created with the biodegradable polymer, polycaprolactone
(PCL). Stable human-scale ear cartilage, bone, and skeletal
muscle structures were printed with the ITOP, which when
implanted in animal models, matured into functional tissue
and developed a network of blood vessels and nerves [45].
In addition to the use of materials such as Pluronic F-127
and PCL for support scaffolds, other strategies for improv-
ing structural integrity of the 3D bioprinted constructs
include the use of suitable thickening agents such as
hydroxyapatite particles, nanocellulose, and Xanthan and
gellan gum. Further, the use of hydrogel mixtures instead
of a single hydrogel is a helpful strategy. For example, the
use of gelatin-methacrylamide (GelMA)/hyaluronic acid
(HA) mixture instead of GelMA alone shows enhanced
printability since HA improves the viscosity of mixture
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while crosslinking of GelMA retains post-printing struc-
tural integrity [58].

Skin bioprinting—in situ and in vitro

To date, several studies have investigated skin bioprinting
as a novel approach to reconstruct functional skin tissue
[44, 59-67]. Some of the advantages of fabrication of skin
constructs using bioprinting compared to other conven-
tional tissue engineering strategies are the automation and
standardization for clinical application and precision in de-
position of cells. Although conventional tissue engineering
strategies (i.e., culturing cells on a scaffold and maturation
in a bioreactor) might currently achieve similar results to
bioprinting, there are still many aspects that require im-
provements in the production process of the skin, including
the long production times to obtain large surfaces required
to cover the entire burn wounds [67]. There are two differ-
ent approaches to skin bioprinting: (1) in situ bioprinting
and (2) in vitro bioprinting. Both these approaches are
similar except for the site of printing and tissue maturation.
In situ bioprinting involves direct printing of pre-cultured
cells onto the site of injury for wound closure allowing for
skin maturation at the wound site. The use of in situ bio-
printing for burn wound reconstruction provides several
advantages, including precise deposition of cells on the
wound, elimination of the need for expensive and time-
consuming in vitro differentiation, and the need for mul-
tiple surgeries [68]. In the case of in vitro bioprinting, print-
ing is done in vitro and the bioprinted skin is allowed to
mature in a bioreactor, after which it is transplanted to the
wound site. Our group is working on developing ap-
proaches for in situ bioprinting [69]. An inkjet-based bio-
printing system was developed to print primary human
keratinocytes and fibroblasts on dorsal full-thickness (3
c¢m x 2.5 cm) wounds in athymic nude mice. First, fibro-
blasts (1.0 x 10° cells/cm?) incorporated into fibrinogen/
collagen hydrogels were printed on the wounds, followed
by a layer of keratinocytes (1.0 x 107 cells/cm?) above the
fibroblast layer [69]. Complete re-epithelialization was
achieved in these relatively large wounds after 8 weeks. This
bioprinting system involves the use of a novel cartridge-
based delivery system for deposition of cells at the site of
injury. A laser scanner scans the wound and creates a map
of the missing skin, and fibroblasts and keratinocytes are
printed directly on to this area. These cells then form the
dermis and epidermis, respectively. This was further vali-
dated in a pig wound model, wherein larger wounds (10
cm x 10 cm) were treated by printing a layer of fibroblasts
followed by keratinocytes (10 million cells each) [69].
Wound healing and complete re-epithelialization were ob-
served by 8 weeks. This pivotal work shows the potential of
using in situ bioprinting approaches for wound healing and
skin regeneration. Clinical studies are currently in progress
with this in situ bioprinting system. In another study,
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amniotic fluid-derived stem cells (AFSCs) were bioprinted
directly onto full-thickness dorsal skin wounds (2 cm x 2
cm) of nu/nu mice using a pressure-driven, computer-con
trolled bioprinting device [44]. AFSCs and bone
marrow-derived mesenchymal stem cells were suspended
in fibrin-collagen gel, mixed with thrombin solution (a
crosslinking agent), and then printed onto the wound site.
Two layers of fibrin-collagen gel and thrombin were
printed on the wounds. Bioprinting enabled effective
wound closure and re-epithelialization likely through a
growth factor-mediated mechanism by the stem cells.
These studies indicate the potential of using in situ bio-
printing for treatment of large wounds and burns.

There are a few reports of in vitro skin printing from
other groups. Laser-assisted bioprinting was used to print
fibroblasts and keratinocytes embedded in collagen and fab-
ricate simple skin equivalent structures [64]. The cells were
shown to adhere together through the formation of gap
junctions. In a similar study, fibroblasts and keratinocytes
were printed in vitro on Matriderm® stabilizing matrix [63].
These skin constructs were subsequently tested in vivo,
using a dorsal skin fold chamber model in nude mice. On
full-thickness wounds, a multilayer epidermis with stratum
corneum was observed in the explanted tissue after 11 days.
Also, at this time, some blood vessels were found to be aris-
ing from the wound bed. In another report, dermal/epider-
mal-like distinctive layers were printed using an extrusion
printer with primary adult human dermal fibroblasts and
epidermal keratinocytes in a 3D collagen hydrogel. Epider-
mal and dermal structures were observed in these con-
structs; however, they did not show establishment of
intercellular junctions [70]. More recently, Cubo et al.
printed a human plasma-derived skin construct with fibro-
blasts and keratinocytes [67]. The printed skin was analyzed
in vitro and in vivo in an immunodeficient mouse model.
The printed skin had a structure similar to native skin with
identifiable stratum basale, stratum granulosum, and
stratum corneum suggesting a functional epidermal layer
and neovascular network formation [67]. In order to regen-
erate fully functional skin using bioprinting, other struc-
tures such as skin appendages (e.g., hair follicles, sweat
glands, melanocytes, endothelial cells, and sebaceous
glands) should be co-printed in the skin. Some recent stud-
ies have evaluated printing of melanocytes [62] and sweat
glands [71, 72] with varying results. Min and colleagues
[62] co-printed melanocytes and keratinocytes on top of a
dermal layer and showed terminal differentiation of kerati-
nocytes and freckle-like pigmentations without the use of
UV light or chemical stimuli. Huang and colleagues [72]
bioprinted sweat glands using epidermal progenitor cells in
a composite hydrogel based on gelatin and sodium alginate.
They showed that the bioprinted 3D extracellular matrix
(ECM) resulted in functional restoration of sweat glands in
burned mice.
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Stages of skin bioprinting

The process of skin bioprinting can be divided into three
stages: (1) skin pre-printing, (2) bioprinting, and (3) skin
maturation. Pre-printing involves isolation of cells from
the skin biopsy, expansion of cells, differentiation of
cells, and preparation of the bioink, which is made of
cells and biomaterial support materials. In the case of
healthy skin, primary cells could be isolated, expanded,
and used; however, in the case of injured skin, stem cells
may need to be differentiated into epidermal and mesen-
chymal cells. Stem cells can be obtained from different
sources including adipose, mesenchymal, perinatal, and
induced pluripotent stem cells. For bioprinting, the print
files that contain accurate surface information of com-
plex 3D geometries are converted to the STereoLithog-
raphy (STL) file format with coordinates for the print
head path [47, 73]. These files contain accurate surface
information required to reconstruct the complex 3D
model and can be designed using CAD-CAM graphic
user interfaces or created from clinical images with input
from magnetic resonance imaging (MRI) and computed
tomography (CT) imaging [74, 75]. The paths for the
print heads are created by slicing the STL model into
layers and creating bioprinter toolpaths that trace out
the perimeter and interior features of each slice. The
thickness of each of these slices determines the reso-
lution of the printer and is usually in the 100-500 pm
range. Resolution is specific to the printer used; the
smaller the resolution the better the quality but longer
the print time. The bioprinter reads the STL files and
layer-by-layer deposits the bioink to build the 3D tissue
or organ from the series of 2D slices. High-quality image
acquisition is essential for high-fidelity bioprinting. Clin-
ical images can provide information regarding the in
vivo cell distribution, and image processing tools can be
used to determine anatomically realistic skin geometry.
The final stage of bioprinting is the maturation stage.
This is especially critical in case of in vitro bioprinting,
and immediately following printing, the skin constructs
are fragile and need to be matured in a bioreactor for a
few days prior to use for transplantation. When the skin
is in situ bioprinted, maturation occurs on the body at
the site of injury.

Bioink—the essential element for bioprinting

Bioinks form the delivery medium that encapsulates the
cells, minimize cell injury during the printing process, and
provide a supportive microenvironment for maturation of
the bioprinted skin. The choice of bioink is a critical aspect
of bioprinting essential for the different cells to be depos-
ited in specific patterns of the CAD models and is chosen
with the desired biomechanical characteristics in mind. An
appropriate choice of bioink is essential to provide the
chemical and physical cues that facilitate necessary
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cell-ECM interactions; bioink properties not only affect cell
growth, proliferation, and differentiation but also structure
and function of the bioprinted skin. It is essential that the
chosen bioink be biocompatible and cell supportive and fa-
cilitate functional differentiation of the cells into the skin
[76]. Typically, the bioinks could physically serve as
cell-laden hydrogels or sacrificial support materials that are
removed immediately after printing or as mechanical sup-
port materials that provide specific mechanical characteris-
tics to the tissue. Bioinks can be fully natural materials
such as collagen, fibrin, HA, and alginate, which could be
used in the form of hydrogels for the cells or synthetic ma-
terials such as PCL, polylactide (PLA), polyglycolide
(PGA), poly(lactic-co-glycolic acid) (PLGA), and poly-
ethylene glycol (PEG) polymers or hybrid biomaterials
that contain a combination of natural and synthetic
materials, which could provide mechanical support
[77]. Other bioinks that are typically used also include
agarose-, silk-, cellulose-, and GelMA)-based bioinks.
Materials such as Pluronic F-127 could be used as sac-
rificial support materials that keep the cells together
while printing and could be simply washed away follow-
ing printing of the tissue construct [45].

Features of bioink

Printability of the bioink indicates the ease with which it
could be printed with good resolution and its ability to
maintain its structure for post-printing skin maturation.
The bioink formulation should be stable enough to pro-
vide architectural stability to the skin construct. Shape
fidelity and printing resolution are important consider-
ations when assessing the printability of the bioink [78].
Other important bioink properties to consider include
gelation kinetics, rheological characteristics, and material
properties. Ideally, the viscosity of the bioink should be
such that it is not only supportive for cell growth and
differentiation but also suitable for printing, but in real-
ity viscosities appropriate for bioprinting may not be
supportive of cell viability. So, to achieve good printabil-
ity and at the same time to ensure high cell viability, the
printing conditions and bioink consistency need to be
optimized. The biomechanical and structural character-
istics of the skin are also important considerations for
choice of bioink. As we advance in our ability to bioprint
and potentially attempt to bioprint composite tissue that
may contain a mix of soft and hard tissue such as the
skin, skeletal muscle, and bone, we will need to develop
some sort of standard or universal bioink that could
support different tissue types without compromising
functionality. Another important factor that should be
considered is how quickly the material will degrade in
the body; the cells should be able to degrade the scaffold
at a rate that will match their ECM production and
remodeling activity. For recent advances in the area of
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bioinks, we refer readers to recent reviews about the
subject [79, 80].

Considerations for bioprinting skin

The skin is a complex organ with a well-defined structure
consisting of multiple layers and appendages and is made
of several cell types (Fig. 3). Therefore, to bioprint such a
structure requires multiple cell types and biomaterials. The
most superficial layer of the skin, the epidermis, is mainly
composed of keratinocytes with varying degrees of differ-
entiation and intertwined melanocytes near the lower layer
of the epidermis. The epidermis is relatively thin (0.1-0.2
mm in depth) and attached to the underlying dermis via a
highly specialized basement membrane [81]. Due to the
relatively thin epidermis, laser-assisted bioprinting technol-
ogy may be used to explore epidermal bioprinting [82].
Utilizing this technology, one may be able to recapitulate
the epidermal morphology by printing consecutive layers
of keratinocytes and melanocytes. The bioprinting technol-
ogy could potentially be used to produce uniform pigmen-
tation in patients [83]. The basement membrane is a thin,
fibrous tissue composed of two layers, the basal lamina
and the reticular connective tissue, which are connected
with collagen type VII anchoring fibrils and fibrillin micro-
fibrils [84]. The structure of the basement membrane
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becomes more complex deeper in the skin, where the tis-
sue becomes several nanometers thick with many ECM
components including collagen type IV, laminin, and vari-
ous integrins and proteoglycans [84]. Bioprinting such a
complex layer is a challenging and complex task, and
therefore many researchers tend to rely on tissue
self-assembly after printing [85, 86].

The dermal layer can be found directly underneath the
basement membrane in the skin and is composed of fibro-
blasts embedded in a complex ECM [28]. This layer also
contains many different structures including all skin
appendages, blood vessels, and nerves, which serve the
epidermis. The reticular or deep dermis contains many
ECM components including collagen and elastin; these
elastic and reticular fibers give the skin its high elasticity
and strength. In addition, the organization of these fibers
also creates Langer’s lines [8]. Therefore, this structure
may be very important for the mechanical stability of bio-
printed skin. Because this layer is thicker than the overly-
ing epidermis, extrusion-based technology may be a good
option as it can combine multiple cell types and biomate-
rials. The use of bioprinting will enable incorporation of
other cell types in the dermis including hair follicles and
sweat and sebaceous glands. This will enable regeneration
of the skin tissue with structure and cellular composition
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resembling native tissue. In addition, bioprinting will
enable control of the microarchitecture of the dermal tis-
sue components, which may have a role in the formation
of scar during the wound repair and healing process
following injury [87].

Tailoring the microenvironment to facilitate tissue regen-
eration over repair may have some benefits in terms of bet-
ter functional outcomes during the scar remodeling process
[87]. The hypodermis lies directly below the dermis and
consists mainly of adipose tissue that provides heat
insulation, energy storage, protective padding [88], and a
sliding system [89, 90]. This last function has only recently
become important in burn surgery because restoring the
burned hypodermis with autologous fat injection has
shown a remarkable improvement in scar pliability [90].

Technological challenges

To enable clinical translation of bioprinting technology,
several technological limitations at the pre-printing, bio-
printing, and maturation stages of the bioprinting
process need to be overcome [91].

Very large numbers of cells are required for printing
transplant-ready skin; to bioprint skin with physiologically-
equivalent cell numbers, billions of cells will be needed.
Current cell expansion technologies facilitate cell expansion
in the range of millions, so innovative cell expansion tech-
nologies need to be developed [79]. Further, development
of superior bioinks that allow for reproducible bioprinting
of the skin with appropriate biomechanical properties is
critical for clinical translation of the technology.

For composite tissue that contains different tissue types,
the printing resolution will need to be improved to dupli-
cate the intricate inner microarchitecture. The ability to
print microscale features is necessary for optimal cellular
function. Better control over the microarchitecture will
enable fabrication of the skin capable of recapitulating the
native form and function. Increasing the printing speed is
another challenge; current approaches that facilitate higher
printing speed such as extrusion bioprinting can comprom-
ise the integrity of cells and cause significant loss in their
viability. CAD-CAM can also be used to predict the feasi-
bility of the fabrication process by simulating relevant phys-
ical models using both classical formula calculations and
finite element methods. Currently, the most widely used
physical model for bioprinting is laminar multi-phase flow;
although it is an oversimplified model and ignores issues
related to inclusion of cells, the simulations are useful for
checking and optimizing the feasibility of specific designs.

Building a functional vasculature is one of the most
fundamental challenges in tissue engineering. The ability
to 3D bioprint vasculature will enable fabrication of a
preformed microvascular network that can better anas-
tomose to the host circulation and achieve functional
perfusion within the tissue-engineered skin construct
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[92, 93]. The use of sacrificial inks to create 3D intercon-
necting networks, which can be removed after printing
the entire construct, leaving hollow channels for the per-
fusion of endothelial cells and formation of blood vessel
network is a promising approach. Miller et al. have
shown how 3D extrusion printing and cast molding
could be combined to create a 3D-interconnected perfu-
sable vasculature [94]. However, this molding technique
is limited to the construction of simple block tissue ar-
chitectures [94]. Recently, a bioprinting approach that
enables the simultaneous printing of the vasculature
structure and the surrounding cells for heterogeneous
cell-laden tissue constructs has been reported by the re-
search group of Prof. Lewis [95]. They have developed a
method that involves the use of Pluronic F-127 as a fugi-
tive bioink, which can be printed and dissolved under
mild conditions, enabling printing of heterogeneous
cell-laden tissue constructs with interconnecting vascu-
lature networks [95].

There have also been attempts to bioprint the vascular
network directly; Zhang et al. recently reported about direct
bioprinting of vessel-like cellular microfluidic channels with
hydrogels, such as alginate and chitosan, using a coaxial
nozzle [96]. In very recently reported work from Prof.
Lewis’ lab, they have demonstrated bioprinting of 3D
cell-laden, vascularized tissues that exceed 1cm in thick-
ness and can be perfused on chip for greater than 6 weeks
[97]. They integrated parenchyma, stroma, and endothe-
lium into a single thick tissue by co-printing multiple inks
composed of human mesenchymal stem cells and human
neonatal dermal fibroblasts within a customized fibrin-gel-
atin matrix alongside embedded vasculature, which was
subsequently lined with human umbilical vein endothelial
cells. This may open newer avenues for printing of pre-vas
cularized skin tissue.

To print vascularized skin models with complexity and
resolution matching in vivo structures, print resolution
needs to be improved and printing time reduced. The
ability to bioprint hierarchical vascular networks while
building complex tissues and the ability to recapitulate
vascular flow in vitro [98] are critical for fabrication of
transplantable organs.

Native skin has different cell types, each of them require
different nutritional and metabolic support. Development
of a standard or universal growth media for cells will be
beneficial for growth and maturation of composite tissue
constructs prior to transplantation. The cells also are in
dynamic reciprocity with their microenvironment, which
includes the ECM in which they are embedded in. The cells
secrete proteins, proteases, and other metabolites onto the
ECM, which facilitate dynamic homeostatic phase of tissue
remodeling. Inclusion of native ECM in the bioink will
ensure the presence of natural ligands and thus facilitate a
suitable growth environment for the cells [79]. Also, the
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development of novel bioreactors to facilitate dynamic cul-
ture would facilitate physiologic-like environment for the
maturation of tissues that incorporate printed vasculatures
[79].

In the future, better analytical and computational ap-
proaches to effectively study the development and matur-
ation of the bioprinted tissue prior to transplantation need
to be developed [79]. There has been a lot of effort to
model bioprinted tissue with the corresponding printing
parameters. For extrusion printing, relationships between
dispensing pressure, printing time, and nozzle diameter
have been tested and modeled [89]. In inkjet printers, cell
settling that occurs during printing and is known to cause
clogging of the nozzles has been modeled by both analyt-
ical and finite element methods [92—94]. For laser printing,
the effects of laser energy, substrate film thickness, and
hydrogel viscosity on cell viability [95] as well as droplet
size [54, 94], cell differentiation [96], and cell proliferation
[96] have been studied. Researchers have also done
post-printing modeling of cellular dynamics [97, 98], fusion
[98], deformation, and stiffness [99].

Clinical and regulatory requirements

Efficient and cost-effective advanced manufacturing
techniques need to be developed and optimized to facili-
tate the use of bioprinted skin for clinical burn recon-
struction. Bioprinted human physiologically relevant
skin for burn reconstruction should include different cell
types. Active monitoring of cell yields and maintenance
of quality parameters such as purity, potency, and viabil-
ity for the different cell types during production is crit-
ical for clinical translation of bioprinted skin [76]. Also,
since the bioinks contain ECM scaffold components, the
quality of the scaffolds and potential for causing contam-
ination and disease transmission will need to be checked
along with real-time monitoring. Non-invasive release
testing procedures will need to be established before the
delivery of the bioprinted tissues to the patient [99].
Also, to successfully translate organ bioprinting to the
clinic, robust automated protocols and procedures need
to be established.

To ensure effective use of bioprinted skin for burn re-
construction standards for quality assurance of bioinks,
bioprinters and bioprinted products are essential. A com-
prehensive regulatory framework involving quality control
standards for every step of the process—design of the
model, selection of bioinks, bioprinting process, validation
of the printing, post-printing maturation, and product
quality assessment prior to transplantation—is essential.
The Food and Drug Administration (FDA) recently issued
a guidance document on “Technical Considerations for
Additive Manufactured Devices” for production of
medical devices [100]. All criteria applicable to engineered
tissue will apply to bioprinted skin [91].
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Tissue-engineered skin is typically considered as a
combination product. Combination products include
pharmaceuticals, medical devices, biologics, and their
use involves the application of surgical procedures. New
surgical procedures are not regulated by the FDA but by
the Department of Health and Human Services and can
be used on an “as needed” basis at the discretion of the
concerned surgeon. However, surgically implantable
engineered tissues, depending on their composition, are
regulated by the FDA either as devices or biologics and
need to be tested in clinical trials before a surgeon is
allowed to use them. Currently, products that use stem
cells or are derived from stem cells are treated by the
FDA as somatic cellular therapies and are regulated as “bi-
ologics” under Section 351 of the Public Health Act [91].
As cellular therapies, they are also subject to FDA guide-
lines for the manufacture of human cells, tissues, and cellu-
lar- and tissue-based products found in part 1271 of the
same act. Part 1271 establishes the requirements for donor
eligibility procedures not found in the current Good
Manufacturing Practices (GMP) guidelines of parts 210
and 211 [91]. These guidelines regulate the way stem cells
are isolated, handled, and labeled. Also, engineered tissues
typically used in research do not require FDA approval
during animal and in vitro testing if they are not intended
for use on humans. However, Title 21 of the Federal Code
of Regulations defines certain restrictions with regard to
shipping and disposal of these products.

Conclusions

Skin bioprinting technology has huge potential to facili-
tate fabrication of physiologically-relevant tissue and en-
able better and more consistent functional outcomes in
burn patients. The use of bioprinting for skin recon-
struction following burns is promising, and bioprinting
will enable accurate placement of all the different native
skin cell types and precise and reproducible fabrication
of constructs to replace injured or wounded skin. The
use of 3D bioprinting for wound healing will facilitate
faster wound closure, which is critical in the case of ex-
tensive burn injuries. Earlier intervention will reduce the
potential for infections and contribute to faster healing,
reduced scarring, and better cosmetic outcomes. This
will also contribute to a reduction in the number of sur-
geries required and the length of stay in the hospital for
patients. To facilitate successful clinical translation and
use of bioprinting for wound reconstruction, the devel-
oped wound product should be simple and able to seam-
lessly integrate into the surgical workflow and operative
process. Further advances in terms of development of
standardized clinical grade 3D bioprinters and biocom-
patible bioinks will enable wider use of this technology
in the clinic. Also, establishment of GMP-compliant
cell manufacturing centers allied to medical facilities
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will facilitate wider adoption of this technology for
wound reconstruction. This will also significantly aid in
logistics and application of the technology. Overall, 3D
bioprinting is a very transformative technology, and its
use for wound reconstruction will lead to a paradigm
shift in patient outcomes.
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