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Abstract

Though survival rate following severe thermal injuries has improved, the incidence and treatment of scarring
have not improved at the same speed. This review discusses the formation of scars and in particular the
formation of hypertrophic scars. Further, though there is as yet no gold standard treatment for the
prevention or treatment of scarring, a brief overview is included. A number of natural therapeutics have
shown beneficial effects both in vivo and in vitro with the potential of becoming clinical therapeutics in the
future. These natural therapeutics include both plant-based products such as resveratrol, quercetin and
epigallocatechin gallate as examples and includes the non-plant-based therapeutic honey. The review also
includes potential mechanism of action for the therapeutics, any recorded adverse events and current
administration of the therapeutics used. This review discusses a number of potential ‘treatments’ that may
reduce or even prevent scarring particularly hypertrophic scarring, which is associated with thermal injuries
without compromising wound repair.
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Background
A burn is defined by the World Health Organisation
(WHO) as ‘an injury to the skin or other organic tissue
primarily caused by heat or due to radiation, radio-
activity, electricity, friction or contact with chemicals’
[1]. It has been estimated that annually, there are
486,000 burn injuries in the USA that required med-
ical attention with 40,000 requiring hospitalisation
[2], with a global incidence in 2004 of approximately
11 million burn injuries requiring medical attention
[3]. Non-fatal burns are one of the leading causes of
disability in low- to middle-income countries [3].
Advances in medical treatment means that survival
following extensive burns has improved over recent
years though the incidence, treatment and prevention
of scarring from thermal injuries has not improved
over the same time frame [4].

Review
Hypertrophic scars
Hypertrophic scars are defined as visible raised scars
which do not spread beyond the original injury margins.
Hypertrophic scars are characterised by proliferation of
the dermal tissue, excessive deposition of fibroblast-
derived extracellular matrix (ECM) over a prolonged
period of time and persistent inflammation and fibrosis
[5]. Hypertrophic scars primarily contain collagen type
III orientated parallel to the epidermal surface with
abundant collagen nodules [6]. This structural realign-
ment results in contracture, low tensile strength and
raised scars.
The incidence of hypertrophic scars after a burn re-

mains unclear, with estimates ranging from 26 % to 75 %
depending on age, ethnicity and if healing was spontan-
eous or through surgical means (for example, skin graft-
ing) [7–12].
Apart from the aesthetic problems, patients often

complain of itching, redness and hard nodular scar tis-
sue often with abnormal sensation. Hypertrophic scars
following thermal injury are often associated with
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contractures, which can result in functional loss espe-
cially over joints such as in the hand [13].

Scar formation
Wound healing is an inherent process which aims to
restore the integrity of the skin as rapidly as possible.
Wound healing is divided into four stages: haemostasis,
inflammation, proliferation and tissue remodelling. Within
these four stages, which often overlap, there are numerous
interactions between fibrotic and anti-fibrotic growth fac-
tors, cells, ECM components and numerous enzymes [14].
Fibroblasts derived from hypertrophic scars have dem-

onstrated an altered phenotype compared to fibroblasts
derived from normal scars and fibroblasts derived from
uninjured tissue [6, 15]. Fibroblasts derived from hyper-
trophic scars have demonstrated both an increased
expression of the pro-fibrotic cytokine, transforming
growth factor beta 1 (TGF-β1), and a prolonged expres-
sion of the associated TGF-β receptors (Fig. 1) [16, 17].

Further, there appears to be an alteration in TGF-β sig-
nalling (via increased phosphorylation of the receptor
Smad proteins) in hypertrophic-derived fibroblasts and a
decreased expression of the inhibitory Smad 7 in hyper-
trophic scar-derived fibroblasts [18]. Studies have indi-
cated that ectopic expression of Smad 7 prevents
collagen contraction in both normal and hypertrophic
scar-derived fibroblasts (FPCL: fibroblast-populated col-
lagen lattice: model for contraction) [19].
A mouse model which lacked the receptor Smad, Smad

3, showed improved wound healing [20]. Conversely,
exogenous Smad 3 (via an adenovirus-containing Smad 3
cDNA) in a rabbit dermal ulcer model showed increased
granulation tissue and re-epithelisation [21]. Sumiyoshi
and colleagues suggested that the differences in
outcome may be that the adenovirus-containing Smad
targeted mainly fibroblasts [21, 22], whereas in the
mouse model lacking Smad 3, the deficiency was found
in fibroblasts, keratinocytes and inflammatory cells.

Fig. 1 Summary of TGF-β signalling in hypertrophic scars (Reprinted from Penn JW, Grobbelaar AO, Rolfe KJ. The role of TGF-β family in wound
healing, burns and scarring: a review. Int J Burns Trauma. 2012;2:18–28. With permission). TGF-β1 transforming growth factor beta 1, HTS hypertrophic
scar, LAP latency-associated peptide, LTBP latebt transforming growth factor-beta-1 binding portein, CTGF connective tissue growth factor, TIMP-1 tissue
inhibitor of metalloproteinase-1
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Decorin, a proteoglycan found in the dermal ECM,
binds and regulates TGF-β1 and plays a role in collagen
fibrillinogenesis. Decorin has been shown to be dimin-
ished in hypertrophic scars [23]. Zhang and his col-
leagues demonstrated that decorin inhibited both basal
and TGF-β induced contraction in FPCL in normal and
hypertrophic derived fibroblasts [24].
Linge et al. demonstrated that fibroblasts derived from

hypertrophic scars failed to undergo apoptosis during
FPCL contraction unlike fibroblasts derived from normal
scars [25]. It was determined that the hypertrophic scar-
derived fibroblasts were resistant to breakdown by collage-
nase D and matrix metalloproteinase-2 (MMP-2) due to
excessive cross-linking of the FPCL. Linge and colleagues
further found that hypertrophic scar-derived fibroblasts
over-expressed tissue transglutaminase [25]. Reducing tis-
sue transglutaminase in hypertrophic FPCL induced apop-
tosis on gel contraction [25]. Differences have been
further identified in myofibroblasts, and these fibroblasts
express alpha smooth muscle actin and are associated
with wound contraction and maturation of the granula-
tion tissue [26]. Myofibroblasts derived from hypertrophic
scars appear to be less sensitive to apoptotic signals than
fibroblasts derived from normal scars and express differ-
ent levels of some apoptotic-related molecules [27].
Studies suggest that migrating fibrocytes, cells with

a distinct cytokine and chemokine profile, may play a
role in wound repair and therefore scarring [28].
Fibrocytes appear to be increased in number of heal-
ing burn wounds and were higher in hypertrophic
scar than in mature scar tissue [29]. Fibrocytes from
patients who have undergone thermal injury appear
to differ in their paracrine effects on dermal fibroblasts by
stimulating fibroblasts to proliferate, produce and contract
the ECM and stimulate production of TGF-β1 and its
downstream effector connective tissue growth factor
(CTGF/CCN2) [30].
Matrix metalloproteinases are involved in the break-

down of the ECM during a number of physiological
processes. MMP-1 is involved in the degradation of
interstitial collagens, type I, II and III. Hypertrophic-
derived fibroblasts appear to have reduced collagenase
(MMP-1) activity [31]. Though other studies have shown
an increase in expression of MMP-2 and low level of
MMP-9 [32], MMP-2 has been demonstrated to effect
matrix remodelling in late wound healing, degrading
denatured collagen, whereas MMP-9 appears to be
involved in early wound healing degrading collagen types
IV and V, fibronectin and elastin [33, 34].
Evidence suggests that the immune response may play

a role in scarring. Studies have suggested an abnormality
in the role of Th1/Th2 paradigm after a thermal injury
[30, 35]. Studies have implicated Toll-like receptors in
fibrosis with recent studies implicating increased

expression of toll-like receptor 4 (TLR4) mRNA and sur-
face receptors implicating the Toll receptor system in
potential activation of dermal fibroblast in hypertrophic
scars [36].

Treatment for scar
Numerous treatments are used to reduce or prevent
scarring [37, 38]. Identifying injuries, which if permitted
to heal spontaneously may result in pathological scar-
ring, is important to prevent unnecessary treatment as
few treatments are without side effects [39, 40]. Com-
pression therapy (pressure garments) has shown mixed
results with a meta-analysis showing no alteration in
scar scores [41], whereas a 12-year prospective study
showed an overall significant improvement in scar ap-
pearance [42]. The mechanism for pressure in the reduc-
tion of scarring remains unclear though in vitro studies
suggest a change in MMP, collagen and alpha smooth
muscle actin expression [43, 44]. Patient compliance is
often low due to discomfort which may affect the overall
clinical result, but further compression therapy has well-
recognised complications [45, 46].
Silicone gel is commonly used in the treatment or

prevention of pathological scars. Results for the use of
silicone gel either on its own or with compression
garments remain conflicting [47], but this may in part be
due to patient compliance [48]. The mechanism of
action for silicone gel remains unclear though a recent
study suggests that silicone gel alters the expression of
TGF-β1, platelet-derived growth factor (PDGF) and
basic fibroblast growth factor (bFGF) 4 months after
surgery for surgical scar revision though patient
numbers were small (n = 4) and the original injuries
were not discussed [49].
Intra-lesional corticosteroids have shown to be useful in

vivo through a number of mechanisms including reduc-
tion in the inflammatory process, decrease in collagen
production and fibroblast proliferation [50, 51]. Scar re-
sponse rates for triamcinolone acetonide (10 to 40 mg/
ml), the most common corticosteroid used for scar reduc-
tion, range from 50 % to 100 % with a recurrence rate of 9
%–53 % (reviewed in [50]). However, the use of corticoste-
roids is often associated with pain on injection and up to
50 % of patients report side effects [52].
Other treatments which are currently being studied

include laser therapy [53], bleomycin, interferon, 5-
fluorouracil, imiquimod, methotrexate and cryotherapy
[54]. However, to date, there is no effective ‘gold standard’
for the treatment or prevention of any scarring.

Plant-based products
A number of plants with medical properties have been
studied for their effectiveness in the prevention of scarring
[55]. The present review provides in vitro and/or in vivo
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evidence supporting plant-based products as potential
therapeutic agents.

Quercetin
Quercetin is a flavonoid found in plants, vegetables and
fruits including onions, apples and berries [56]. Quer-
cetin has been demonstrated in vitro to have a number
of biological properties including tumour suppression
and anti-inflammatory, anti-oxidant properties and is
anti-bacterial [57–60]. However, the metabolism of quer-
cetin in humans may reduce its biological effects [61].
Quercetin has been shown in vitro to reduce prolifera-

tion in fibroblasts derived from keloid scars and alter
intracellular signalling pathways and collagen synthesis
[62–64]. Phan and colleagues demonstrated that in fi-
broblasts derived from keloid and hypertrophic scars,
quercetin not only inhibited fibroblast proliferation by
inducing cell cycle arrest but also inhibited FPCL con-
traction, though both cell cycle arrest and FPCL could
be reversed and though resumption of contraction was
slowest in the quercetin treated group [65]. Saulis and
colleagues showed in a rabbit model that Mederma
(active compound allium cepa, a derivative of quer-
cetin) improved collagen organisation and therefore
may have an effect on the pathophysiology of hyper-
trophic scars [66].

Onion extract
Onion extract in in vitro studies suggest that it may have
anti-inflammatory and anti-proliferative properties on fi-
broblasts and mast cells and increase the expression of
MMP-1 [67, 68]. Quercetin and onion extract have both
been shown to induce the up-regulation of MMP-1 in
vitro and in vivo [68]. MMP-1 is known to play a role in
ECM remodelling and therefore quercetin and onion ex-
tract may play a role in anti-fibrotic processes.
A small (n = 16) randomised controlled split scar study

on Asian women undergoing a Pfannenstiel’s incision for
caesarean section demonstrated a statistically significant
reduction in scar height and symptoms at 4 and 12 weeks
post-surgery in an onion extract group. However, there
was no statistically significant reduction in redness or
pliability of the scar over the time studied [69]. Ho et al.
using a gel containing onion extract, heparin and alloto-
nin found the gel significantly reduced the risk of scar-
ring in 120 Chinese patients undergoing laser removal of
their tattoos [70]. Wananukul et al., in a paediatric group
(n = 39; mean age 4.3 years old) who underwent a me-
dian sternotomy in a split scar experimental study
(onion extract versus placebo), demonstrated that onion
extract in a silicone derivative gel significantly decreased
the incidence of hypertrophic scars, whereas there was
no significant difference in the incidence of keloid scars
[71]. Other authors have used a combination of a

silicone derivative plus onion extract in patients who
had undergone a median sternotomy (n = 60) over a
treatment period of 12 weeks. They found that itch and
pain was less for the treated group, there was also an im-
proved Vancouver Scar score in the treated group espe-
cially for pigmentation [72].
Beuth and colleagues compared hypertrophic scars

treated with Contractubex® (cepae extract, heparin, al-
lantoin; treatment group) for 28 days with one intra-
lesional corticosteroid application (control group) [73].
Contractubex® demonstrated a significant shorter time
for normalisation of the scar (erythema, pruritus and
consistency) compared to the corticosteroid group. Con-
tractubex® was further associated with less adverse
events than corticosteroid application [73].

Resveratrol
Resveratrol is a natural plant polyphenol and phyto-
oestrogen, present in grape skin, red wine, and peanuts
[74, 75]. Resveratrol is noted to have a number of bene-
ficial health effects including cardio-vascular, anti-
inflammatory and anti-oxidant properties [74–78].
Resveratrol has been shown to reduce fibroblast cell

proliferation through cell cycle arrest at G1 in fibroblasts
derived from hypertrophic scars and normal skin fibro-
blasts and induce apoptosis [79]. Resveratrol further de-
creased hydroxyproline levels and down-regulated the
expression of collagen type I and III mRNA [79].
Resveratrol has further shown beneficial effects in pre-

venting surgical adhesions in an animal model [80]. Ikeda
et al. demonstrated in vitro that resveratrol decreases
TGF-β1, type 1 collagen and alpha smooth muscle actin
in keloid-derived fibroblasts [81]. Further, resveratrol sup-
pressed keloid-derived fibroblast proliferation and induced
apoptosis. Interestingly, resveratrol did not have the same
effects on alpha smooth muscle actin or type 1 collagen in
fibroblasts derived from normal scars [81].

Epigallocatechin gallate (EGCG)
EGCG is a major catechin in green tea and has a num-
ber of biological properties; it has been shown to poten-
tially play a role in preventing fibrosis in a number of
organs [82].
EGCG has been shown in FPCL to abrogate contrac-

tion stimulated by PDGF and TGF-β1 [83, 84]. EGCG
binds directly to PDGF-BB preventing the PDGF ligand
binding to its receptor and therefore preventing both
proliferation and FPCL contraction [83, 85]. EGCG has
been shown to inhibit a number of intracellular signal-
ling pathways and reduce expression of pro-fibrotic
molecules (vascular endothelial growth factor (VEGF),
TGF-β1, CTGF) in a number of organs [86–88]. Inhib-
ition of TGF-β1 results in reduction of the synthesis of
the ECM [84]. Interestingly, EGCG has been
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demonstrated to improve re-epithelisation in a chronic
wound model and the structural stability of collagen was
shown to be enhanced with EGCG [89, 90].

Oleanolic acid (OA)
OA is a naturally occurring triterpenoid compound with
a number of biological properties including anti-
inflammatory and anti-tumour effects [91, 92]. In a
rabbit ear model of hypertrophic scarring where OA was
applied daily for 22 days, it was found to significantly in-
hibit hypertrophic scarring with a corresponding reduc-
tion in TGF-β1 and collagen type I and III and increase
levels of MMP-1 [93]. Zhang et al. also used the rabbit
ear model to study OA and repeated the observation
that OA reduced the incidence of hypertrophic type
scars [94]. They found that TGF-β1, MMP-1, TIMP-1
and collagen I and III were notably decreased though
the number of apoptotic cells and mRNA expression of
MMP-2, caspase-3 and caspase-9 were increased in the
scar tissue [94].

Curcumin
Curcumin, a polyphenol, has been shown to induce
apoptosis in a number of cell lines [95–97]. Curcumin
has been shown in a rat wound healing model to increase
contraction and reduce wound healing time [98]. The
wounds showed increased fibronectin and collagen
expression with increased collagen maturation and cross-
linking increasing the wounds tensile strength after treat-
ing with curcumin for 12 days (200 μl at a concentration
of 40 mg/kg body weight) [98].
Scharstuhl and colleagues showed that curcumin treat-

ment (>25 μM for 48 h) induced fibroblast apoptosis
and inhibited FPCL contraction via a reactive oxygen
species (ROS)-mediated process in human dermal fibro-
blasts in vitro [99]. They concluded that curcumin at
high concentrations may be a therapeutic strategy in the
reduction or prevention of hypertrophic scarring and
that the process can be regulated through the modula-
tion of heme oxygenase(HO) molecule activity or the
administration of HO effector molecules.

Shikonin
Shikonin is a natural naphthoquinone compound from
the Chinese herb Lithospermum erythrorhizon. Shikonin
has been demonstrated to have a number of molecular
targets, inducing apoptosis, necrosis and necroptosis in
cancer cells [100–102]. It has further been demonstrated
that shikonin selectively kills cancer cells while main-
taining normal cells [103]. Shikonin in cancer lines has
been shown to alter a number of intracellular signalling
pathways particularly those associated with apoptosis
[103–105]. Fan and colleagues demonstrated that Shikonin
keratinocytes did not respond to Shikonin unlike human

scar-derived fibroblasts which where stimulated to undergo
apoptosis [106]. Shikonin induced apoptosis by altering the
expression of capsase-3, B-cell lymphoma (BCL)-2, phos-
phorylation of ERK1/2 and p38 [107]. Further, Shikonin
down-regulates collagen (type I and III) and smooth muscle
actin gene expression in scar-derived fibroblasts [107].
Normal skin fibroblasts (n = 3) were demonstrated to

reduce TGF-β1 induced collagen production when
cultured with Shikonin. This was demonstrated to be
through alteration of the TGF-β1-SMAD intracellular
signalling pathway [108]. This pathway further prevented
FPCL by down-regulating alpha smooth muscle actin
[108].

Emodin
Emodin is a resin derived from the Himalayan rhubarb,
buckthorn and Japanese knotweed. It has been investi-
gated for a number of therapeutic effects including
asthma, arthritis and Alzheimer’s disease in a number of
animal models [109–112]. Emodin has been shown to
alter a number of intracellular signalling pathways in-
cluding nuclear factor-κB and phosphoinositide 3 kin-
ase/Akt [113], which plays a role in a number of cellular
processes including the cell cycle. In vitro and in vivo
studies have suggested that emodin may potentially play
a role in preventing fibrosis in a number of organs
[113–116].
Hypertrophic scars were developed through mechanical

stress in an animal model, and emodin was administered
intra peritoneally (10 mg/kg). Liu demonstrated that the
emodin-treated hypertrophic scar group had an improved
histopathological appearance compared to the control
group; however, on removal of emodin at day 14, histo-
pathology of the scar was only minimally improved at day
28 [113]. Emodin further inhibited the inflammatory re-
sponse in the hypertrophic scars (tumor necrosis factor
(TNF)-α monocyte chemoattractant protein (MCP)-1,
interleukin (IL)-6). Emodin was shown to reduce the acti-
vation of PI3K and Akt in the hypertrophic fibroblasts,
but this was not reciprocated in normal fibroblasts [113].

Non-plant-based therapeutics
Honey
Honey has been shown to have anti-bacterial properties
through the presence of inhibines which consist of
hydrogen peroxide, flavonoids, phenolic acids and other
as yet unidentified substances [117, 118]. Other non-
peroxide anti-microbial factors have been identified in
honey depending on the floral sources, origin and pro-
cessing [119–123]. However, studies have implicated that
it is not simply its anti-microbial properties that confer
its effectiveness in treating wounds [124]. Honey acti-
vates various components of the immune system in vitro
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Table 1 Natural therapeutics, where they originate from, their potential mechanism of action and known adverse events,
bioavailability and drug interactions

Natural therapeutic
agent

Origin Mechanism of action(s) Administered Known adverse effects or potential
issue with use

Quercetin Flavonoid found
in plants,
vegetables and
fruits

• Blocks TGF-β (inhibits receptor
expression and SMAD2/3 nuclear
translocation)—in turn alters
collagen expression [62]
• Alters IGF-1 signalling (through
reduction in receptor and
intracellular signalling)—in turn
affects keloid fibroblast
proliferation [63]
• Reduces collagen contraction
[65]

• In vitro [62, 63, 65] • Bioavailability is problematic
though studies have suggested
potential ways to improve its
availability [152]
• Adverse events appear mild
[153, 154]
• Interacts with some drugs, e.g.
fluoroquinolones, taxol/paciltaxel
[144, 145]

Onion extract
(kaempferol,
Mederma®,
Contractubex®,
Cybele®, Erasé gel,
Kaloidon gel)

Onion • Up-regulates MMP-1 [68] • In vitro (human skin fibroblasts)
[68]
• In vivo (hairless mice
administered with ointment) [68]

• No adverse events [69, 72]
• Moderate pruritus, all other
adverse events less than the
use of corticosteroids [73]

Resveratrol Grape skin, red
wine and
peanuts

• Inhibits fibroblast cell growth,
causes cell cycle arrest and
induces apoptosis which result in
reduced collagen expression [79]
• Reduced TGF-β1 protein in
keloid fibroblasts (n = 5), reduced
cell proliferation and induced
apoptosis but did not decrease
collagen type I, alpha smooth
muscle actin or heat shock
protein 47 in normal skin
fibroblasts (n = 1) [81]

• In vitro (hypertrophic-derived
fibroblasts, normal skin fibroblasts)
[79]
• In vitro (keloid fibroblasts) [81]

• In vitro appears to have no
genotoxic activity [155]
• Resveratrol (administered orally)
in a number of studies in humans
both symptomatic (e.g. Alzheimer’s
patients, obese patients) and
healthy showed minor adverse
events, the most common being
nausea, weight loss, diarrhoea and
skin rash [140, 156, 157]
• One individual showed elevated
hepatic ALT and AST (grade 4)
which returned to normal after
stopping the medication [140]
• Boocock et al. [149] suggested
oral administration may not be
sufficient for some therapeutic
roles of resveratrol

Epigallocatechin
gallate

Green tea • Prevents PDGF-BB binding to its
receptor and leads to prevention
of proliferation and collagen gel
contraction [83, 85]
• Known to inhibit a number of
intracellular signalling pathways
and thereby reducing pro-fibrotic
gene expression [86–88] and ECM
production [84]

• In vitro (neonatal fibroblasts)
[83]
• In vitro (human/rat vascular
smooth muscle cells) [85]
• In vitro (post-natal human
dermal fibroblasts [84]
• In vitro (rat cardiac fibroblasts)
[86]
• In vitro (human gingival
fibroblasts) [87]
• In vitro (human umbilical vein
endothelial cells) [88]

• EGCG appears well tolerated with
oral administration [158–160]
or used on the skin [161]
• Adverse events include mild
gastrointestinal issues and skin
rashes [158, 160, 161]
• Polyphenon E has been linked to
elevated liver function tests but
this appeared related to the LOT
[141] though a case study showed
a case of drug-induced hepatitis
[142] and other studies have
shown minor increase in liver
markers [162]
• Number of chemotherapy agents
[146]

Oleanolic acid Number of
foods, for
example, olive
oil, garlic, etc

• Decreased TGF-β1 and collagen I
and III and increased MMP-1 [93]
possibly through decreased
fibroblast proliferation, increased
apoptosis and degradation of
collagen types I and III through
enhanced MMP-2 activity [94]

• In vivo (rabbit ear model for
hypertrophic scars; applied as
an ointment) [93, 94]

• Animal model associated with
male infertility [163]
• Oral administration in an animal
model (dose, 22.5–135 mg/kg)
for 5 days. Liver injury observed at
doses of 90 mg/kg and above [138]
• Bardoxolone methyl—semi-
synthetic triterpenoid based on
the scaffold of oleanolic
acid—caused heart failure in
patients with stage 4 chronic
kidney disease [139]
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and in vivo which not only activates the immune
response but also tissue repair [125–129].
To date, there have been mixed results with the use of

honey on wounds. Nakajima and colleagues using a
mouse model and three forms of Japanese honey found
that the use of honey had little benefit in wound healing
[130]. Gupta and colleagues retrospectively compared
the hospital records of burns patients who had been
treated with either honey dressings or silver sulfadiazine
dressings over a period of 5 years [131]. They found that
honey enhanced healing, reduced contractures and had
better overall outcome compared to silver sulfadazine
[131]. Others have confirmed the beneficial effects of
honey and healing time when compared to other dress-
ings including silver sulfadazine-, film- and gauze-based
dressings [132, 133]. However, silver sulfadiazine has
been shown to delay healing and increase pain and in-
fection rates and may therefore have not been the best
comparator [134]. Honey’s anti-inflammatory effect is
proposed as the reason why honey reduces fibrosis and
scarring [135–137].

Adverse events, bioavailability interactions and
synergistic effects
Though considered ‘natural’, most of the products are
synthetically manufactured; further, even some ‘natural’
products have been identified as causing toxicities
(Table 1) [138, 139]. There have been limited toxicity
studies conducted on the natural therapeutics discussed
in this review, though those used in human studies ap-
pear to have mild adverse events recorded (such as
honey, onion extract, quercetin; Table 1). Though there
have been individuals who appear to have increased ad-
verse events, resveratrol saw one individual in a study
show grade 4 elevation of their liver function markers
after 3 months treatment of 1 g of resveratrol daily
[140]. The patient’s markers returned to normal after
discontinuing the medication. EGCG has also shown in
some individuals to elevate liver function tests though
one study concluded it was an issue with the lot [141],
though a case study did identify drug-induced hepatitis
with the use of a concentrated green tea extract [142].
Oleanolic acid in animal studies suggests that repeated

Table 1 Natural therapeutics, where they originate from, their potential mechanism of action and known adverse events,
bioavailability and drug interactions (Continued)

Curcumin Rhizome of
Curcuma longa
and related
species.

• Induced fibroblast apoptosis and
reduced collagen gel contraction
[99] via ROS mechanism

• In vitro (human fibroblasts) [99] • Poor bioavailability especially
after oral administration [164]
• Appears well tolerated up to
8 g/day up to 3 months [164, 165]
• Adverse effects may change with
adaptations that are used to
improve bioavailability
• Chelate iron suppresses hepcidin
therefore potentially causing iron
deficiency [166]
• Interacts with 5-fluorouracil and
vinorelbine [140, 147, 148, 156]

Shikonin Chinese
herbRadix
Arnebiae

• Induces apoptosis in fibroblasts
[106]
• Down-regulates collagen types
I and III and α smooth muscle
actin [107]
• Appears to induce apoptosis
by altering p-ERK 1/2, p-p38 and
caspase-3 [107]

• In vitro (human keratinocytes,
skin fibroblasts) [106]
• In vitro (human keratinocytes,
human skin fibroblasts,
hypertrophic scar-derived
fibroblasts) [107]

• Low bioavailability due to high
lipophilicity [167] altered through
the formation of a complex with
other proteins [150]
• Limited toxicity studies—one
animal study demonstrated that it
appeared safe up to
concentrations of 800 mg/kg for
180 days [168]

Emodin Derived from the
Himalayan
rhubarb,
buckthorn and
Japanese
knotweed

• Alters the intracellular pathway
of Pi3K and Akt but only in
hypertrophic scar-derived
fibroblasts [113] and this in turn
inhibited the inflammatory
response and improved the
histopathology appearance of
the scar [113]

• In vivo and in vitro (mice model
for hypertrophic scars, emodin was
administered intra-peritoneally;
mice derived hypertrophic scarring
fibroblasts and normal fibroblasts)
[113]

• Not known as yet

Honey • Accelerates wound healing due
to its anti- bacterial activity, anti-
oxidant activity, stimulator effects
and anti-inflammatory effects
[135–137]

• Human patients with
burns—honey-impregnated gauze
[135, 136]

• Stinging pain on administration,
local atopic reactions in paediatric
group [169]

TGF-β1 transforming growth factor beta 1, IGF-1 insulinlike growth factor-1, MMP matrix metalloproteinase, PDGF-BB platelet-derived growth factor-BB,
ECM extracellular matrix, RGCG epigallocatechin gallate, ROS reactive oxygen species
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oral administration can cause liver injury [138]. Oleano-
lic acid derivatives have been also shown to be related to
fluid overload which in some individuals resulted in
heart failure in patients with stage 4 chronic renal dis-
ease (8.8 % of the treated group compared to 5 % of the
placebo group) [139].
It has been well recognised that some herbal products

can interact with medicinal drugs and reduce or prevent
their effectiveness, e.g. St John’s wort (Hypericum per-
foratum), and in some cases, alter the efficacy of medi-
cinal drugs [143]. A number of the products discussed
in this paper have also been shown to interact with
other drugs including antibiotics (fluoroquinones) and
chemotherapy agents [144–148].
A number of the agents have been shown to have low

bioavailability (quercetin, curcumin, shikonin), and others
have been suggested that oral administration may not be
sufficient for therapeutic levels to be reached or indeed
maintained [149]. Further, those that have low bioavail-
ability which are then either manipulated or other pro-
teins added this structural alteration may affect both
adverse events and the actual therapeutic mechanisms
[150, 151]. To date, there remains a paucity of information
in regard to the safety of some of these agents in their use
as anti-scarring products.

Conclusions
In vitro and in vivo studies have shown that a number of
‘natural’ therapeutic agent and strategies may play a role
in the future treatment of scarring, particularly hyper-
trophic scarring which is so intrinsically linked with
burn injuries. There remains no gold standard in the
treatment or prevention of scarring. It remains problem-
atic comparing all products not just natural therapeutics
in part due to the number of methodologies used to
assess the effectiveness of anti-scarring therapeutics and
the number of models used. Further, those that do
undergo clinical trials, the variation in patients and out-
come measures is immense leading to problems in com-
paring agents and is often undertaken once the scar has
formed. There is a theoretical risk which agents that re-
duce or prevent scarring may in turn prevent or
lengthen the wound healing process, and this has yet to
be elucidated. However, it appears that there is a poten-
tial for a natural therapeutic as either a monotherapy or
as an adjunct to play a role in treating or even prevent-
ing hypertrophic scarring.
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