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Abstract

Background: Food flavors are relatively low molecular weight chemicals with unique odor-related functional
groups that may also be associated with mutagenicity. These chemicals are often difficult to test for mutagenicity
by the Ames test because of their low production and peculiar odor. Therefore, application of the quantitative
structure–activity relationship (QSAR) approach is being considered. We used the StarDrop™ Auto-Modeller™ to
develop a new QSAR model.

Results: In the first step, we developed a new robust Ames database of 406 food flavor chemicals consisting of
existing Ames flavor chemical data and newly acquired Ames test data. Ames results for some existing flavor
chemicals have been revised by expert reviews. We also collected 428 Ames test datasets for industrial chemicals
from other databases that are structurally similar to flavor chemicals. A total of 834 chemicals’ Ames test datasets
were used to develop the new QSAR models. We repeated the development and verification of prototypes by
selecting appropriate modeling methods and descriptors and developed a local QSAR model. A new QSAR model
“StarDrop NIHS 834_67” showed excellent performance (sensitivity: 79.5%, specificity: 96.4%, accuracy: 94.6%) for
predicting Ames mutagenicity of 406 food flavors and was better than other commercial QSAR tools.

Conclusions: A local QSAR model, StarDrop NIHS 834_67, was customized to predict the Ames mutagenicity of
food flavor chemicals and other low molecular weight chemicals. The model can be used to assess the
mutagenicity of food flavors without actual testing.

Keywords: Quantitative structure–activity relationship (QSAR), Food flavors, Mutagenicity Ames test, StarDrop™
auto-Modeller™, Machine learning
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Introduction
Food flavor chemicals are used and/or present in foods
at very low level. Human exposure to these flavor chemi-
cals through foods is too low to raise concerns about
general toxicity. Regarding mutagenicity, however, there
are health concerns even with trace amounts because
there is no threshold for mutagenicity, and even very
low levels of exposure of mutagenic chemicals do not re-
sult in zero carcinogenic risk [1]. Therefore, the pres-
ence or absence of mutagenicity is an important point
for risk assessment of flavor chemicals.
The bacterial reverse mutation test (Ames test) is an

important mutagenicity test, but it requires approxi-
mately 2 g of sample for a dose-finding study and main
study [2]. On the other hand, the amount of flavor pro-
duced industrially is extremely small, which often means
that testing is impossible. Additionally, the peculiar odor
of some flavors sometimes makes it difficult to perform
the test in the laboratory. Recently, quantitative struc-
ture–activity relationship (QSAR) approaches instead of
the Ames test have been frequently used for assessing
the mutagenicity of chemicals [3]. Ono et al. assessed
the viability of QSAR tools by using three QSAR tools to
calculate the Ames mutagenicity of 367 flavor chemicals
(for which Ames test results were available) [4]. Conse-
quently, the highest sensitivity (the ability of a QSAR
tool to detect Ames positives chemicals correctly) was
38.9% with the single tool and 47.2% even with the com-
bination of three tools, which indicated that application
of QSAR tools to assess the Ames mutagenicity of flavor
chemicals was still premature. Therefore, it is necessary
to improve or develop QSAR tools for predicting Ames
mutagenicity of flavor chemicals.
Flavor chemicals are relatively low molecular weight

chemical substances mainly composed of carbon, hydro-
gen, oxygen, nitrogen, and sulfur that often have specific
functional groups. In Japan, most food flavors are classi-
fied into 18 types according to their chemical structure
[5]. Therefore, with a focus on their characteristic chem-
ical space, we thought that there was potential to in-
crease the predictive performance by developing a local
QSAR model customized for flavor chemicals. In recent
years, computational software has been provided to as-
sist with development of QSAR models by machine
learning. We have tried to develop a QSAR model spe-
cialized for flavor chemicals using StarDrop™ software,
which has a module (Auto-Modeller™) that can generate
predictive models automatically.
Before developing the QSAR model, we developed a

new robust Ames database of 406 food flavor chemicals
that is based on Ono’s database [4]. We re-evaluated
ambiguous data judged as “equivocal” in Ono’s database
via literature review and incorporated Ames test data of
flavor chemicals from other publicly available databases.

In parallel, we performed the Ames test with key flavor
chemicals of which Ames data is unknown and incorpo-
rated their results into the new database. This bench-
mark food flavor chemical database is useful for
development of QSAR models and evaluation of QSAR
model performance.

Materials & methods
Ames test database of food flavor chemicals
We utilized the Ames test database of food flavor chemi-
cals reported by Ono et al. [4], but because the database
includes 14 “equivocal” judgments (Table 1), we re-
evaluated by reviewing the reference literature and re-
classified them as positive, negative, or inconclusive.
Ames test data of the “inconclusive” chemicals were ex-
cluded from the database. If there were any other flavor
chemicals from publicly available Ames test database
(Hansen database [6]), they were also added.

Ames test
Ames tests were performed for 45 flavor chemicals. The
purities and suppliers of the test chemicals are shown in
Table 2. The Ames tests were conducted by contract re-
search organizations following Good Laboratory Practice
compliance according to the Industrial Safety and Health
Act test guideline with preincubation method [7]. The
test guideline requires five strains (Salmonella thyphi-
murium TA100, TA98, TA1535, TA1537, and Escheri-
chia coli WP2 uvrA) under both the presence and
absence of metabolic activation (rat S9 mix prepared
from phenobarbital and 5,6-benzoflavone-induced rat
liver), which is similar to the Organization of Economic
Co-operation and Development guideline TG471 [8].
The positive criterion is when the number of revertant
colonies increased more than twice as much as the con-
trol in at least one Ames test strain in the presence or
absence of S9 mix. Dose dependency and reproducibility
were also considered in the final judgment. The relative
activity value (RAV), which is defined as the number of
induced revertant colonies per mg, was calculated for
the positive result.

Commercial QSAR tools
DEREK Nexus™ is a knowledge-based commercial soft-
ware developed by Lhasa Limited, UK [9, 10]. The soft-
ware includes knowledge rules created by considering
insights related to structural alert, chemical compound
examples, and metabolic activations and mechanisms.
We used DEREK Nexus™ version 6.1.0 in this study.
DEREK Nexus™ ranks the possibility of mutagenicity
(certain, probable, plausible, equivocal, doubted, improb-
able, impossible, open, contradicted, nothing to report)
by applying a “reasoning rule.” When it is “certain,”
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“probable,” “plausible,” or “equivocal,” the query chem-
ical is predicted to be positive in the Ames test.
CASE Ultra is a QSAR-based toxicity prediction soft-

ware developed by MultiCASE Inc. (USA). CASE Ultra
uses a statistical method to automatically extract alerts
based on training data by using machine learning tech-
nology [11, 12]. The structural characteristics of the alert
surroundings are called the “modulator,” and these are
also learned automatically from the training data. In this

algorithm, to construct a QSAR model with continuous
toxicity endpoints, various physical chemistry parame-
ters and descriptors are used. We used CASE Ultra ver-
sion 1.8.0.2 with the GT1_BMUT module in this study.
The prediction result of each module is ranked as
“known positive,” “positive,” “negative,” “known negative,
” “inconclusive,” or “out of domain.” A query chemical
ranked “known positive,” “positive” or “inconclusive” is
predicted to be positive in the Ames test.

Table 1 Re-evaluation of Ames test data, which were categorized as “equivocal” by Ono et al. [4]
No. JECFA

No.
Chemical Name CAS No. Judgement after

review
Key
reference*

Comments

1 252 isobutanal 78–84-2 Negative [13] The study condition did not
meet current standard. Other
available data indicative of negative.

2 690 phenol 108–95-2 Negative [14] Only one positive report of which
response was weak. Other
available data indicative of negative.

3 738 furfuryl alcohol 98–00-0 Negative [15] Only one report was positive among
6 reports reviewed in the key reference.
Although no detail was available,
the study conditon is unlikely
meet current standard.

4 744 furfural 98–01-1 Negative [15] Among 14 reports reviewed in
the key reference, 4 reports
indicative of positive were questionable.
Other 10 reports were negative.

5 836 2-hydroxy-1,2-diphenylethanone 119–53-9 Inconclusive [16] Weak positive. Other available data
are a mixture of positives/negatives.
No conclusion drawn.

6 1168 3-propylidenephthalide 17,369–
59-4

Inconclusive [17] One positive report reviewed in
the key reference raised a question
about purity. Other available data
were also unclear.

7 1172 6-methylcoumarin 92–48-8 Negative [18] Ambiguous response. Other
available data indicative of negative.

8 1342 delta-3-carene 13,466–
78-9

Inconclusive [19] Positve though not meeting current
standard. Recent other data
(Saverni, 2012) indicative of negative.
No conclusion drawn.

9 1450 4-hydroxy-5-methyl-3(2H)-furanone 19,322–
27-1

Positive [20] Confirmed positive response.
No other data negate the
conclusion was available.

10 1481 ethyl maltol 4940-11-8 Inconclusive [21] Two conflicting reports reviewed
in the key reference.
No conclusion drawn.

11 1560 allyl isothiocyanate 57–06-7 Positive [22] Weak positive. Other available
data are a mixture of
positives/negatives.
“Isothiocyanate” structure
adopted as “positve alert”
in representative QSAR tools.

12 1561 butyl isothiocyanate 592–82-5 Positive [23] Confirmed positive response.
No other data negate
the conclusion was available.

13 1563 phenethyl isothiocyanate 2257–09-
2

Positive [22] Weak positive. Other available
data also indicate positive.

14 1776 ethyl 2-[(5-methyl-2-propan-2-yl
cyclohexanecarbonyl)amino]acetate

68,489–
14-5

Negative [15] Since the study report indicative
of weak positive reviewed in
the key reference was unpublished,
no reliability confirmed. Recent
GLP data submitted to MHLW under
ANEI-HOU was negative (undisclosed).

* Reference that was considered as a basis to draw a conclusion of “equivocal”.
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Software for developing a new QSAR model
StarDrop™ developed by Optibrium Ltd. (UK) is an inte-
grated software for drug discovery that includes the
statistics-based QSAR model generation tool, Auto-
Modeller™. Using multiple modeling techniques and a
suite of built-in descriptors, Auto-Modeller™ automatic-
ally generates tailored predictive models based on the
study dataset for the domain that needs to be predicted.

Analysis of QSAR tool performance
Because the Ames test results are binary, positive, or
negative, their predictive power can be objectively quan-
tified and assessed from their coincidence from the
QSAR calculation results. The 2 × 2 prediction matrix
comprising true positive (TP), false positive (FP), false
negative (FN), and true negative (TN) is given in Table 3.
Sensitivity (ability to detect positive substances) is calcu-
lated as TP / (TP + FN), specificity (ability to detect
negative substances) is calculated as TN / (TN + FP),
and accuracy (prediction rate of positive and negative) is
calculated as (TP + TN) / (TP + TN + FP + FN). Applic-
ability is provided by (TP + TN + FP + FN) / total
number.

Results
Development of a new Ames test database of food flavor
chemicals
We developed a new Ames test database consisting of
406 food flavor chemicals (Table 4). The data source is
described as follows.
Ono et al. reported an Ames test database consisting

of 367 food flavor chemicals (positive: 24, equivocal: 12,
negative: 331) [4]. However, it actually contained 369
chemicals (positive: 24, equivocal: 14, negative: 331).
Table 1 shows the 14 equivocal chemicals. We reviewed
key references that led to “equivocal” and re-evaluated
to determine if there was evidence of positivity or nega-
tivity in view of current testing criteria. Our final judg-
ment and the supporting reasons are described in Table
1 [13–23]. If there was insufficient evidence or no de-
tailed information available for the judgment, we con-
cluded that they were “inconclusive.” Among 14
equivocal flavoring chemicals, four were positive, six
were negative, and four were inconclusive. In total, 365
flavor chemicals (positive: 28, negative: 337), excluding

four inconclusive chemicals, were added to the new
database.
Two flavor chemicals, quinoline (91–22–5) and 4-

methylquinoline (491–35–0) have been added to the
new database. Their Ames test data were found in the
Hansen data set [6].
We newly performed Ames tests for 45 flavor chemi-

cals. The information of tested samples and the Ames
test results are shown in Table 2. Ten of the 45 Ames
test results were previously reported [24]. The raw Ames
test data are available in the Additional files. Among 45
flavor chemicals, 15 were positive and 30 were negative.
Six chemicals, indole (120–72–9), 5-methylfurfural
(620–02–0), 2,3-pentanedione (600–14–6), allyl isothio-
cyanate (57–06–7), skatole (83–34–1), and gamma-
terpinene (p-Mentha-1,4-diene) (99–85–4), are also
present in Ono’s database. In Ono’s database [4], 2,3-
pentanedione was judged as negative, but it clearly in-
creased the mutant frequency in TA100 in the absence
of S9 mix (Additional file (6)). The results of these Ames
tests are reflected in the new database. Finally, 39 new
food flavor chemicals were added to the database.

Development of a new QSAR model for predicting Ames
mutagenicity
We developed a new QSAR model for predicting Ames
mutagenicity by using StarDrop™ Auto-Modeller™. To
develop the QSAR model, the available Ames test study
dataset is essential. We used 406 datasets of flavor che-
micals in the new Ames test database to develop the
model. To further increase the size of the dataset (espe-
cially positive data), we added Ames test data of chemi-
cals structurally similar to flavor chemicals. We
previously developed a large Ames test database consist-
ing of > 12,000 industrial chemicals [25]. We selected
428 chemicals (positive: 255; negative: 173) from the
database that have molecular weights < 500 and possess
a characteristic substructure of flavor chemicals defined
in the Food Sanitation Law in Japan [5]. The Ames test
data of 834 chemicals (positive: 299, negative: 535) were
integrated as the study dataset for the development of
the QSAR model.
Prototypes of predictive models were built by using an

automatic process. The study dataset was divided into
training (70%) and validation (30%) data by using the
cluster method, which uses an unsupervised non-
hierarchical clustering algorithm developed by Butina
[26]. Auto-Modeller™ has three modeling methods
(Gaussian process, random forest, and decision tree) for
the category model. In a pretest, the random forest
model gave the best performance for our target. The de-
scriptors were automatically generated, including whole
molecule descriptors (e.g., molecular weight, logP, and
polar surface area) and 2D structural descriptors from

Table 3 2 × 2 contingency matrix for Ames mutagenicity
classification

QSAR prediction

Ames test result positive negative

positive true positive (TP) false negative (FN)

negative false positve (FP) true negative (TN)
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Table 4 406 food flavor chemicals assessed by Ames test and QSARs
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Table 4 406 food flavor chemicals assessed by Ames test and QSARs (Continued)
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Table 4 406 food flavor chemicals assessed by Ames test and QSARs (Continued)
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Table 4 406 food flavor chemicals assessed by Ames test and QSARs (Continued)
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Table 4 406 food flavor chemicals assessed by Ames test and QSARs (Continued)
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the training set. Because the accuracy of the prototype
depends on the training data set and the data splitting
process is not replicable, 80 prototypes were built to
search for the best model. The prototypes that earned
favorable prediction scores were selected for further per-
formance evaluation by using the Ames test data of fla-
voring chemicals, and their performances were
compared with those of the benchmarks. Finally, a new

QSAR model “StarDrop NIHS 834_67” was developed.
The prediction result is ranked as “positive” or
“negative.”

Performance of the QSAR model
We evaluated the performance of StarDrop NIHS834_67
to predict the Ames mutagenicity. We calculated the
Ames mutagenicity of 406 food flavors listed in the new

Table 4 406 food flavor chemicals assessed by Ames test and QSARs (Continued)

Table 5 Results of QSAR calculation of 406 flavor chemicals in 2X2 contingency matrix

StarDrop NIHS 834_67 Derek Nexus 6.1.0 CASE Ultra 1.8.0.2 GT1_BMUT

P N P N P N OOD

Ames test result P 35 9 31 13 31 12 1

N 13 349 14 348 28 327 7

P positive, N negative, OOD out of domain
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Table 6 Performance of three QSARs for predicting Ames mutagenicity of 406 flavor chemicals

Sensitivity (%) Specificity (%) Accuracy (%) Applicability (%)

StarDrop NIHS 834_67 79.5 96.4 94.6 100.0

Derek Nexus 6.1.0 70.5 96.1 93.3 100.0

CASE Ultra 1.8.0.2 GT1_BMUT 70.5 90.3 88.2 98.0

Table 7 Ames positive chemicals, but predicted as negative by StarDrop NIHS 834_67 (False negative)

No. JECFA No. Chemical Name CAS No. Structure Substructure Class Note

1 429 menthone 89–80-5 Ketones DEREK: INACTIVE
CASE Ultra: Known Negative

2 656 trans-cinnamaldehyde 104–55-2 Aromatic aldehydes DEREK: PLAUSIBLE
CASE Ultra: Known Positive

3 728 raspberry ketone 5471-51-2 Ketones DEREK: INACTIVE
CASE Ultra: Negative

4 767 2,6-dimethylpyrazine 108–50-9 Newly designated flavors DEREK: INACTIVE
CASE Ultra: Known Positive

5 820 4-phenyl-3-buten-2-one 122–57-6 Ketones DEREK: INACTIVE
CASE Ultra: Known Positive

6 1208 4-methyl-2-pentenal 5362-56-1 Aliphatic higher aldehydes DEREK: PLAUSIBLE
CASE Ultra: Positive

7 1346 cadinene (mixture of isomers) 29,350–73-0 Terpene hydrocarbons DEREK: INACTIVE
CASE Ultra: Known Negative

8 1503 2-Furyl methyl ketone 1192–62-7 Ketones DEREK: EQUIVOCAL
CASE Ultra: Known Positive

9 – S-methyl methanethiosulfonate 2949-92-0 Esters DEREK: INACTIVE
CASE Ultra: Out of Domain
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Table 8 Ames negative chemicals, but predicted as positive by StarDrop NIHS 834_67 (False positive)

No. JECFA
No.

Chemical Name CAS No. Structure Substructure
Class

Note

1 413 3,4-hexanedione 4437-51-
8

Ketones DEREK: PLAUSIBLE
CASE Ultra: Known
Positive

2 595 ethyl acetoacetate 141–97-9 Esters DEREK: INACTIVE
CASE Ultra: Known
Negative

3 736 phenyl salicylate 118–55-8 Esters DEREK: INACTIVE
CASE Ultra: Known
Negative

4 938 ethyl pyruvate 617–35-6 Esters DEREK: INACTIVE
CASE Ultra: Known
Negative

5 1124 3-penten-2-one 625–33-2 Ketones DEREK: INACTIVE
CASE Ultra: Negative

6 1303 isoquinoline 119–65-3 Newly designated
flavors

DEREK: INACTIVE
CASE Ultra: Known
Negative

7 1445 tetrahydrofurfuryl
propionate

637–65-0 Esters DEREK: INACTIVE
CASE Ultra: Negative

8 1513 ethyl 3-(2-furyl)propanoate 10,031–
90-0

Esters DEREK: INACTIVE
CASE Ultra: Negative

9 1526 O-ethyl S-(2-
furylmethyl)thiocarbonate

376,595–
42-5

Esters DEREK: INACTIVE
CASE Ultra: Negative

10 1592 acetamide 60–35-5 Not classified DEREK: INACTIVE
CASE Ultra: Known
Negative

11 1716 dihydroxyacetone dimer 62,147–
49-3

Ketones DEREK: INACTIVE
CASE Ultra: Known
Positive

12 1772 N-gluconyl ethanolamine 686,298–
93-1

Not classified DEREK: INACTIVE
CASE Ultra: Negative
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Ames test database by using StarDrop NIHS 834_67,
DEREK Nexus™, and CASE Ultra. Table 4 shows the re-
sults of the QSAR calculation. Table 5 is a 2 × 2 predic-
tion matrix, and Table 6 shows the performance
(sensitivity, specificity, accuracy, and applicability) of the
three (Q) SARs. StarDrop NIHS 834_67 showed the best
performance. Table 7 shows nine FN chemicals that
were positive in the Ames test but were negatively pre-
dicted by NIHS834_67. Table 8 shows 13 FP chemicals
that were negative in the Ames test but were positively
predicted by NIHS834_67.

Discussion
We have developed new Ames database consisting of
406 types of food flavor chemicals. This benchmark food
flavor chemicals database is open to the public and use-
ful for risk assessment of food additives and developing
QSAR models for predicting Ames mutagenicity of food
flavor chemicals and other low molecular weight chemi-
cals. The main body of the database is derived from the
database reported by Ono et al. [4]. We re-assessed 14
“equivocal” chemicals and classified them as negative,
positive, or inconclusive. However, the positive and
negative chemicals remaining in Ono’s database were
not re-assessed. Some of these chemicals may also be
misjudged. In fact, 2,3-pentanedione (600–14–6), which
was negative in Ono’s database, was clearly positive in
the present Ames test (Additional file (6)). To ensure
database robustness, it is necessary to re-assess the test
results reported as positive and negative. As will be de-
scribed later, especially, the results of the Ames test that
differ from the QSAR prediction results could be
questioned.
In 2012, Ono et al. reported the performance of three

commercial QSAR tools (Derek for Windows, Multi-
CASE, and ADMEWorks) for predicting Ames mutage-
nicity of 367 food flavor chemicals [4]. Derek for
Windows and MultiCASE are earlier models of DEREK
Nexus™ and CASE Ultra, respectively. As a result, the
sensitivity, specificity, and accuracy were 38.9, 93.4, and
88.0% (Derek for Windows), 25.0, 94.3, and 87.5% (Mul-
tiCASE), respectively. In this study, we evaluated the
performance of DEREK Nexus™ and CASE Ultra for 406
food flavors in the new Ames database. As a result, the
sensitivity, specificity, and accuracy were 70.5, 96.1, and
93.3% (DEREK Nexus™) and 70.5, 90.3, and 88.2% (CASE
Ultra), respectively. These results indicate that the

performance of the QSAR prediction has improved sig-
nificantly over the last decade. The improvement in sen-
sitivity was particularly remarkable. Improvement of the
QSAR models and accumulation of newly acquired
Ames test training data may have contributed to the
high performance. In particular, the NIHS-sponsored
Ames/QSAR International Challenge Project has con-
tributed significantly to improving the performance of
commercial QSAR tools, such as DEREK Nexus™ and
CASE Ultra, which have acquired over 12,000 unique
chemical Ames datasets [24]. The newly developed Star-
Drop NIHS 834_67 outperformed DEREK Nexus™ and
CASE Ultra. StarDrop NIHS 834_67 also acquired 428
chemicals (positive: 255, negative: 173) selected from the
12,000 unique chemical Ames datasets. Despite incorp-
orating the same training data, StarDrop NIHS 834_67
provided higher prediction, probably due to differences
in the target chemical space. Flavor chemicals are rela-
tively low molecular weight and have unique functional
groups that allow them to focus on the chemical space
of interest and develop highly predictable models with
relatively small size training data. Our attempt to de-
velop a local QSAR model that focused on flavor chemi-
cals has been somewhat successful. However, it is not
surprising that that StarDrop NIHS 834_67 showed
higher performance than other QSAR tools. It may be
because StarDrop NIHS 834_67 used the results of 39
new flavor chemical datasets and revised existing flavor
chemical data for training and validation data.
Considering that the estimated interlaboratory repro-

ducibility of the Ames test has been reported to be ap-
proximately 85% [27, 28], the performance of the
prediction may be approaching the upper limit. None-
theless, FN and FP analysis points to improvements in
the database and QSAR models. Of the nine FN flavor
chemicals by StarDrop NIHS 834_67, menthone (89–
80–5), raspberry ketone (54–51–2), and cadinene
(29350–73–0) were also predicted as negative by DEREK
Nexus™ and CASE Ultra (Table 7). The Ames mutage-
nicity of these chemicals, which were predicted to be
negative by the three QSARs, may actually be negative
chemicals. We need to perform actual Ames tests to
confirm.
In this study, we examined the Ames tests for rasp-

berry ketone (54–51–2) and the result was positive
(Table 4). However, the mutagenic activity was very
weak (RAV: 10) (Additional file (12)). Structural features

Table 8 Ames negative chemicals, but predicted as positive by StarDrop NIHS 834_67 (False positive) (Continued)

No. JECFA
No.

Chemical Name CAS No. Structure Substructure
Class

Note

13 – 2-butoxyethyl acetate 112–07-2 Esters DEREK: INACTIVE
CASE Ultra: Negative
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found in FN chemicals include the α, β-unsaturated car-
bonyl structures, trans-cinnamaldehyde (104–55–2), 4-
phenyl-3-buten-2-one (122–57–6), 4-methyl-2-pentenal
(5362–56–1), and 2- furyl methyl ketone (1192–62–7),
which were predicted to be positive by DEREK Nexus™
and/or CASE Ultra. The α, β-unsaturated carbonyl
structure is a typical alert for Ames mutagenicity [29–
31]. These predictions indicate that the alert is incorpo-
rated in DEREK Nexus™ and CASE Ultra but not in Star-
Drop NIHS 834_67. By incorporating α and β-
unsaturated carbonyl chemicals as training data, it is ex-
pected that the FN rate of StarDrop NIHS 834_67 will
be reduced and the predictability will be improved.
On the other hand, of the 13 FP chemicals, 3,4-hexa-

nedione (4437–51–8) was also predicted as positive by
DEREK Nexus™ and CASE Ultra. The Ames mutagenic-
ity of this chemical may actually be positive. Interest-
ingly, 12 other FP flavor chemicals were correctly
predicted as negative by DEREK Nexus™ and CASE
Ultra, which highlights the different characteristics be-
tween StarDrop NIHS 834_67 and other QSAR tools
and indicates the potential for further improvement.

Conclusions
We developed a new Ames database of 406 food flavor
chemicals. Using this database and other Ames datasets
of chemicals that are structurally similar to flavor chemi-
cals, we also developed a new QSAR model for predict-
ing Ames mutagenicity. The local QSAR model,
StarDrop NIHS 834_67, is customized to efficiently pre-
dict the mutagenicity of food flavors and other low mo-
lecular weight chemicals, delivering performance
superior to that of other commercial QSAR tools. By
further improving the model, it can be used to assess the
mutagenicity of food flavors without actual testing.
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