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Mutations induced by 8-hydroxyguanine
(8-oxo-7,8-dihydroguanine), a representative
oxidized base, in mammalian cells
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Abstract

Guanine oxidation occurs in both DNA and the cellular nucleotide pool, and one of the major products is
8-hydroxyguanine (8-oxo-7,8-dihydroguanine). The mutagenic potentials of this oxidized base have been examined
in various experimental systems. In this review, we summarize the mutagenicity of the base in mammalian cells. We
also describe the effects of specialized DNA polymerases, DNA repair proteins, and nucleotide pool sanitization
enzymes.
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Background
DNA oxidation by reactive oxygen species has been studied
for decades, due to the pivotal role of damaged DNA in
processes such as mutagenesis, carcinogenesis, aging, and
neurodegeneration [1–3]. Moreover, oxidized DNA precur-
sors (2’-deoxyribonucleoside 5’-triphosphates) formed in
the cellular nucleotide pool also participate in these events.
Reactive oxygen species are formed endogenously and are
also produced by many environmental mutagens and car-
cinogens. Cancer involves multiple mutations in oncogenes
and tumor suppressor genes, and thus oxidized DNA and
DNA precursors might contribute to an extremely high
percentage of carcinogenic events.
Kasai et al. reported the formation of 8-hydroxyguanine

(GO, 8-oxo-7,8-dihydroguanine) by the oxidation of guanine
in DNA and nucleosides [4–6]. Moreover, many research
groups observed its generation under various experimental
conditions in vitro, in living cells, and in vivo (e.g. [7–11]).
GO is now recognized as one of the most important DNA
lesions and has been used as a marker for DNA oxidation
[12, 13], due to its prevalence in DNA and its high mutage-
nicity in mammalian cells. In this review, we summarize the
mutagenic properties of the GO damage in mammalian cells,
based on results obtained in various experimental systems.

Targeted mutations induced by GO

One of us (HK) constructed synthetic c-Ha-ras proto-
oncogenes containing an GO:C pair in hotspots (codons
12 and 61). The modified bases were introduced into the
first and second positions of codon 12 in the sense strand
(5’-GGC-3’), and into the first position of codon 61 in the
antisense strand (5’-CAA-3’, antisense strand 5’-TTG-3’)
of the gene. Since most amino acid alterations in these
hotspots activate the gene [14, 15], most base substitution
mutations at the GO sites induce the transformation of
mouse NIH3T3 cells. Thus, the type of mutation induced
by the damaged base was determined by an analysis of the
gene present in focus-forming cells, after transfection into
NIH3T3 cells [16, 17]. The numbers of foci formed upon
the transfection of the c-Ha-ras genes with GO were ~1 %,
as compared to those formed by the activated c-Ha-ras
genes (Val/Asp-12 and Lys/His-61).
Sequence analysis of the c-Ha-ras gene present in the

transformed cells indicated that the major mutation in-
duced by GO is a G➔T transversion [16, 17]. This was the
first report on the mutation spectrum of this modified base
in mammalian cells. This result was in good agreement
with dATP incorporation opposite GO by DNA polymer-
ases (pols) in vitro [18, 19] (Fig. 1) and GO-induced muta-
tions in Escherichia coli [20–23]. The oxidized guanine at
the second position of codon 12 (5’-GGOC-3’) also induced
a G➔A transition. The finding that the G➔A mutation was
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induced suggested that dTTP is also misinserted opposite
GO in a sequence-dependent manner, during DNA replica-
tion in NIH3T3 cells. The remarkably high thermodynamic
stability (small ΔG0 value) of the GO:T pair near the 5’-end
(mimicking the nucleotide incorporation step) in the 5’-
GGOC-3’ sequence may be related to the observed G➔A
mutation [24]. Moreover, mutations at the 5’-adjacent posi-
tions were found, when GO was incorporated into the sec-
ond position of codon 12 and the first position of codon 61.
Note that transformation occurs when an activated onco-
gene is present in the chromosomal DNA. The results ob-
served in these studies are interpreted as the consequences
of the integration of GO into the chromosomal DNA and
the subsequent replication of the modified chromosome(s).
The relative transforming activities of the c-Ha-ras genes
with GO (~1 %) would reflect the mutation frequencies of
the base in a semi-quantitative manner.
The mutagenicity of GO in double-stranded (ds) plasmid

DNA has been examined. Le Page et al. constructed a
shuttle plasmid containing an GO:C pair in the sequence
corresponding to codon 12 of the human c-Ha-ras gene
(5’-GGOC-3’), and introduced it into simian COS-7 and
human MRC5V1 cells [25]. The vector has the SV40 ori-
gin and can replicate in these cell lines. The replicated
plasmid DNA was recovered and introduced into bacterial
cells. The plasmid DNAs isolated from colonies were
analyzed by a restriction enzyme that cleaves the plasmid
without the targeted mutations and by sequencing. Among
the 101 bacterial colonies analyzed, none had the mutated
sequence in the COS-7 experiment. Moreover, only one
colony among the 125 colonies obtained in the MRC5V1
experiment had the targeted G➔T transversion. Thus, the
mutation frequency of GO was less than 1 % in their
experiments.
Our research group also performed similar experiments,

using a shuttle vector containing the oxidized base in the

supF gene and the SV40 origin [26–30]. The base was
incorporated into the 5’-GGOT-3’ sequence of the gene.
The GO plasmid was transfected into human 293T and
U2OS cells, and the replicated plasmid was introduced
into the indicator bacterial cells (KS40/pOF105). Muta-
tions in the supF gene are detectable using this strain,
since most mutations in the gene confer nalidixic acid and
streptomycin resistance to the cells. The frequencies of
base substitution mutations at the GO site were 3–6 and
~1 × 10-3 in 293T and U2OS cells, respectively. The major
mutation was a G➔T transversion, but G➔A and G➔C
mutations were also observed at lower frequencies. Semi-
targeted mutations at the 5’-flanking positions were also
detected.
Sunaga et al. and Yamane et al. incorporated an GO:C

pair into the 5’-AGOG-3’ sequence in the supF gene, and
introduced the ds supF shuttle plasmid into NCI-H1299
cells [31, 32]. In contrast to the experiments by Le Page
et al. and our research group, the G➔T mutations were
induced with frequencies of 2-4 %.
Yasui et al. developed a system for the site-specific intro-

duction of DNA lesions into human genomic DNA [33].
They used lymphoblastoid TSCER122 cells heterozygous
for the thymidine kinase gene. The cells display a TK-/-
phenotype, since one allele contains a mutation in exon 4
and the other has an I-Sce I site and a 356-bp deletion in
exon 5. Linear 6.1-kbp DNA containing the wild-type
exon 5 and an GO residue (in an intron) was introduced
into the cells, together with the I-Sce I expression DNA.
The correct targeting restored the wild-type phenotype
for thymidine kinase. Sequence analysis of the genomic
DNA of revertant clones (TK+/-) indicated that the modi-
fied base induced G➔T, G➔C, and G➔A targeted muta-
tions, with G➔T mutation frequencies of 5-8 %.
In addition to the approaches using ds DNA, the muta-

genicity of GO in single-stranded shuttle plasmid (phage-
mid) DNAs has been examined in simian cells [34–36].
GO induced mutations with a frequency of 4–7 %, and the
major mutation was the G➔T transversion. Moreover,
G➔A and G➔C mutations were detected. Recently, Pande
et al. examined the mutagenic properties of GO in the 5’-
TGON-3’ (N =A, G, C, and T) sequence in human 293T
cells [37]. The frequencies of G➔T targeted mutations
were 5–11 %, and G➔A and 2-base deletion mutations
were also induced. In particular, the G➔A mutation was
observed as frequently as the G➔T mutation, in the case
of the 5’-TGOG-3’ sequence. In addition to the mutations
in the modified position, semi-targeted mutations at the
neighboring positions were found.

Roles of specialized DNA pols
We knocked-down DNA pols η, ι, ζ, and REV1 by their
respective siRNAs in human 293T cells, and introduced
the ds supF shuttle plasmid into the knockdown cells

Fig. 1 Mutation induction by dATP incorporation opposite GO in
template DNA. When the syn-oriented GO base forms a Hoogsteen-type
base pair with the A base of dATP in the active site of a DNA polymerase,
this pairing causes the G➔T mutations. represents a phosphate group
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[26]. The knockdowns of DNA pols η and ζ enhanced
the G➔T mutation by an GO:C pair in the plasmid, but
those of pol ι and REV1 had no effect [26]. These results
indicated that DNA pols η and ζ are involved in error-free
bypass of the GO base during the replication of ds
DNA (Table 1). In contrast, the G ➔T mutation induced
by the oxidized base in the ds shuttle plasmid decreased
in the DNA pol κ-knockdown human U2OS cells [28].
This result suggested that DNA pol κ bypasses the GO

base in an error-prone manner.
Interestingly, the knockdown of DNA pol λ increased

the 2-base deletion mutations induced by GO in single-
stranded DNA [37]. This result suggested that DNA pol λ
is involved in the error-free bypass of GO, by preventing
the 2-base deletion.

Roles of DNA glycosylases
Overexpression of nuclear OGG1 or MUTYH, which are
the major DNA glycosylases involved in the base excision
repair of GO [38], suppressed the G➔T mutation frequency
in a ds supF shuttle plasmid containing an GO:C pair [31,
32]. Yasui et al. also reported that the G➔T mutation,
caused by GO site-specifically introduced into genomic
DNA, was reduced in MUTYH-overexpressing cells [33].
In accordance with these observations, we found that the
knockdowns of the OGG1 and MUTYH DNA glycosylases
in human cells significantly increased the frequencies of
G➔T transversion caused by GO:C in the supF shuttle plas-
mid [27]. Surprisingly, the G➔T mutation was also en-
hanced when the levels of other DNA glycosylases, NTH1
and NEIL1, were decreased. These results indicated that all
of these DNA glycosylases suppress the G➔T mutations
caused by GO:C pairs generated in DNA (Table 1).

Untargeted mutations induced by GO

Our research group introduced the ds supF plasmid
containing GO:C into human U2OS cells, in which the
Werner syndrome protein (WRN) was knocked-down.
The total supF mutant frequency was 1.6-fold higher in
the knockdown cells, as compared to the control cells
[29]. Sequence analysis indicated that the targeted G➔T
mutation frequency was increased only slightly by the WRN
knockdown. Instead, the knockdown promoted base substi-
tution mutations at untargeted G (or G:C) sites with statis-
tical significance. These “action-at-a-distance mutations”
seemed to be broadly distributed throughout the supF gene.
As discussed in the original report, there are many possible
explanations for these types of mutations at this time.
Similar “action-at-a-distance mutations” were observed

when the GO:C plasmid was transfected into cells with
knocked-down DNA pol λ, one of the specialized DNA
pols [30]. The untargeted mutations at the G sites were
significantly increased, but the frequency of untargeted
mutations at G:C pairs was not significant (P = 0.10). The

cause(s) of the untargeted mutations remain unknown,
but they could be the same as those observed in the
WRN knockdown cells, since DNA pol λ interacts with
WRN [39].
As mentioned above, substitution mutations were found

at the 5’-adjacent positions of GO [16, 17]. Interestingly,
Nishimura and his colleagues found that human DNA pol
η misincorporated deoxyribonucleotides opposite G at the
5’-flanking site of GO in the 5’-GGOC-3’ sequence in vitro
[40]. The 5’-flanking mutations observed in mammalian
cells may involve some similar events.

Mutations induced by 8-OH-dGTP in mammalian cells
The ability of GO to form base pairs with A and C also
causes mutations when dGTP is oxidized to produce 8-
hydroxy-dGTP (dGOTP, 8-oxo-7,8-dihydro-dGTP). Shuttle
plasmid DNA containing the supF gene was first trans-
fected, and then dGOTP was introduced into simian COS-
7 and human 293T cells to examine its mutagenicity in
mammalian cells. The oxidized dGTP caused A:T➔C:G
transversion mutations [41, 42]. These results are consist-
ent with observations that dGOTP was incorporated op-
posite A by DNA pols in vitro, and that the same types of
substitutions were induced in E. coli upon treatment with
the oxidized deoxyribonucleotide [43, 44]. This mutation
spectrum is explained by the misincorporation of dGOTP
opposite A, and the insertion of dCTP opposite GO in
DNA during the second round of replication (Fig. 2). The
removal of the A bases opposite GO by MUTYH and the
subsequent dCTP insertion by repair DNA pols would
promote the A:T➔C:G mutations induced by the incorp-
oration of dGOTP (Fig. 2) (see below).

Roles of specialized DNA pols in mutagenesis by dGOTP
The A:T➔C:G substitution mutations were decreased
upon the knockdowns of DNA pols η and ζ, and REV1
by siRNAs in human 293T cells [42]. Thus, these
specialized DNA pols seem to be involved in the muta-
tion pathway(s) of the oxidized dGTP. To determine
whether these DNA pols contribute to the incorpor-
ation of dGOTP and/or the insertion of dCTP opposite
GO, plasmid DNA containing an GO:A pair, an inter-
mediate in the mutagenic process of dGOTP, was trans-
fected into 293T cells with knocked-down specialized
DNA pols. The reduction of DNA pol η decreased the
mutations induced by the GO:A pair by ~8 %, in agree-
ment with the observation that dCTP is preferentially
incorporated opposite GO by this DNA pol [40, 45].
However, the decrease was much smaller as compared
to the case of dGOTP-induced mutations (~32 %).
Thus, the decreased A:T➔C:G mutations by dGOTP in the
pol η-knockdown cells would be mainly due to reduced
dGOTP incorporation into the nascent strand (Table 2).
This interpretation agrees with the observation that this
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DNA pol incorporates dGOTP opposite A in a highly erro-
neous manner in vitro [46, 47].
Meanwhile, no obvious effects were observed when

plasmid DNA containing GO:A was transfected into
DNA pol ζ- and REV1-knockdown cells. Thus, the two
DNA pols are likely to play important roles in the in-
corporation of dGOTP, but not in the insertion of dCTP
opposite GO (Table 2).

Mutation enhancement by MUTYH DNA glycosylase
The MUTYH DNA glycosylase removes A paired with GO,
thus preventing G➔T mutations [38]. However, this activity
may promote the A:T➔C:G transversions induced by
dGOTP. We examined this possibility by the knockdown of
the enzyme and the subsequent introduction of dGOTP or a
supF plasmid containing an GO:A pair into the cells [27]. The
A:T➔C:G mutation frequency of the shuttle plasmid contain-
ing A paired with GO was decreased in the MUTYH-
knockdown cells. The knockdown of MUTYH also reduced
the mutation frequency induced by the introduction of
dGOTP into cells [27]. These results suggested that MUTYH
promotes A:T➔C:G mutations by dGOTP in the nucleotide
pool, although it suppresses G➔T mutations induced by GO

formed by the direct oxidation of DNA (Fig. 2 and Table 2).
No effects were observed when dGOTP or a supF plas-

mid containing GO:A was introduced into the cells in
which the OGG1, NTH1, and NEIL1 glycosylases were
knocked-down [27].

Nucleotide pool sanitization enzymes
Nucleotide pool sanitization, the specific hydrolysis of dam-
aged DNA precursors, is an important means by which or-
ganisms prevent mutations [48, 49]. In mammalian cells, the
MTH1 (NUDT1), MTH2 (NUDT15), and NUDT5 proteins
catalyze the hydrolysis of dGOTP and/or its diphosphate de-
rivative to produce the monophosphate compound [50–53].
Both the supF plasmid DNA and dGOTP were introduced
into cells in which the expression of each protein was
knocked-down. The A:T➔C:G substitution mutations in-
duced by dGOTP were higher in the knockdown cells than
in control cells [54]. The increase in the induced mutation
was more evident in the triple knockdown cells. These re-
sults indicated that all three proteins act as a defense against
the mutagenesis induced by oxidized dGTP (Table 2).

Table 1 Expected functions of cellular proteins related to mutations
by GO directly produced in DNA

Protein Role

Specialized
DNA pol

pol η error-free bypass

pol ζ error-free bypass

pol κ error-prone bypass

pol λ error-free bypass, suppression
of untargeted mutations

DNA
glycosylase

OGG1 suppression of G→T mutation
by GO removal

MUTYH suppression of G→T mutation
by A removal

NTH1 suppression of G→T mutation

NEIL1 suppression of G→T mutation

WRN suppression of untargeted mutations

Fig. 2 Mutagenesis pathways of dGOTP. APE: AP endonuclease

Table 2 Expected functions of cellular proteins related to dGOTP-
induced mutation

Protein Role

Specialized DNA pol

pol η incorporation of dGOTP

pol ζ incorporation of dGOTP

REV1 incorporation of dGOTP

DNA glycosylase

MUTYH promotion of A:T→C:G
mutation

Nucleotide pool
sanitization enzyme

MTH1 decrease of dGOTP

MTH2 decrease of dGOTP

NUDT5 decrease of dGOTP

Suzuki and Kamiya Genes and Environment  (2017) 39:2 Page 4 of 6



Conclusions
The G➔T transversion is the major targeted substitution
mutation caused by the GO base in mammalian cells.
Moreover, the G➔A and G➔C mutations at the GO site
and the substitution mutations at the 5’-adjacent position
of GO are also induced. Action-at-a-distance mutations at
untargeted positions are detected when the levels of WRN
and DNA pol λ are reduced. The A:T➔C:G (A➔C) trans-
version is the mutation induced by dGOTP in the cellular
nucleotide pool. The DNA repair and nucleotide pool
sanitization enzymes function as the defenses against GO

in DNA and the nucleotide pool, respectively. MUTYH is
an exceptional DNA repair protein, since it enhances the
A:T➔C:G mutations when GO is formed in the nucleotide
pool. Some specialized DNA pols are involved in nucleo-
tide incorporation opposite GO and/or dGOTP incorpor-
ation, and thus affect the mutation induction by GO. The
mutagenic properties of GO are affected by various factors,
including the sequence contexts and the amounts of spe-
cialized DNA pols, DNA repair proteins, and nucleotide
pool sanitization enzymes. This is one of the explanations
for the fact that various mutation frequencies of GO:C
have been observed, as described above. Further studies
are necessary to reveal the detailed mechanisms of the
GO-induced mutagenesis and its suppression by cellular
proteins, using various experimental systems.

Abbreviations
dGOTP, 8-hydroxy-dGTP (8-oxo-7,8-dihydro-dGTP); GO, 8-hydroxyguanine
(8-oxo-7,8-dihydroguanine); pol, polymerase; ds, double-stranded.
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