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Abstract

Ischemic stroke represents a major, worldwide health burden with increasing incidence. Patients affected by ischemic
strokes currently have few clinically approved treatment options available. Most currently approved treatments
for ischemic stroke have narrow therapeutic windows, severely limiting the number of patients able to be
treated. Mesenchymal stem cells represent a promising novel treatment for ischemic stroke. Numerous studies
have demonstrated that mesenchymal stem cells functionally improve outcomes in rodent models of ischemic stroke.
Recent studies have also shown that exosomes secreted by mesenchymal stem cells mediate much of this effect. In
the present review, we summarize the current literature on the use of mesenchymal stem cells to treat ischemic stroke.
Further studies investigating the mechanisms underlying mesenchymal stem cells tissue healing effects are warranted
and would be of benefit to the field.
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Background
Stroke is the second leading cause of death and its
prevalence is increasing [1]. Stroke can be classified into
two types, ischemic and hemorrhagic, of which the
former comprises up to 80 % of all cases [2]. Ischemic
stroke occurs when blood flow decreases in the cere-
brum as a result of an obstruction, such as an embolism
or thrombus [3]. Currently, the only approved treatment
for ischemic stroke is tissue plasminogen activator (tPA)
[4]. However, tPA has a narrow therapeutic window of
only 4.5 h from the onset of symptom [5]. Consequently,
most stroke patients don’t qualify for this treatment and
would greatly benefit from the development of novel
treatments that have an expanded therapeutic window [5].
Adult stem cell-based therapies, such as mesenchymal

stem cells (MSCs) have emerged as a promising ap-
proach for the treatment of ischemic stroke [6]. MSCs

are good candidates for the treatment of stroke as they
are easily obtained and have a strong safety profile [7].
MSCs have demonstrated beneficial effects in improving
functional outcome through mechanisms implicated in
brain plasticity such as neurogenesis, axonal sprouting,
and angiogenesis [6].
In this review, we summarize the current literature on

MSCs and their potential use as a therapeutic in cases of
ischemic stroke.

Review
Phenotype of MSCs
MSCs are adult multipotent cells which can differentiate
into osteo, adipo and chondro lineages [8]. MSCs can be
isolated from bone marrow, umbilical cord and adipose
tissue [9]. MSCs express the mesenchymal markers
CD105, CD90, and CD73 but express few HLA class I
and no HLA class II molecules, allowing them to evade
allogeneic immune response, making them well suited
for allogenic use [10].
MSC mediate tissue healing in damaged organs in-

cluding ischemic stroke, myocardial infarction and liver
injury [11]. MSC activate endogenous cellular repair
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programs by releasing various secretory proteins such as
fibroblast growth factor, epidermal growth factor,
insulin-like growth factor and monocyte chemoattract-
ant protein-1 [12]. MSCs have also been shown to in-
duce angiogenesis and vascular remodeling via factors
such as vascular endothelial growth factor, angiopoietins
and hepatocyte growth factor [13]. Additionally, MSCs
secrete IL-10, IL-6 and nitric oxide which induce a local-
ized anti-inflammatory state, thereby facilitating the
healing of damaged tissue [14].
Several studies demonstrate that small cellularly se-

creted vesicles called exosomes mediate much of MSCs’
tissue healing capabilities [15–28]. MSC derived exosomes
are internalized by target cells and transfer proteins, RNA,
lipids and metabolites [29]. Our recent study determined
that ex-vivo expanded MSCs substantially increase their
secretion of exosomes upon exposure to in vivo-like con-
ditions and that these exosomes contain a diverse profile
of prosurvival and angiogenic proteins [30].
Studies have demonstrated that MSCs are immunomod-

ulatory and are capable of reducing pathogenic inflamma-
tion [31]. MSCs can exert profound immunosuppression
both in vitro and in vivo by inhibiting the proliferation of
T-cells, natural killer cells, and dendritic cells [32]. MSC
have also been reported to induce proliferation of immune
suppressive Treg cells, at least in part by inducing the dif-
ferentiation of monocytes towards resident M2 macro-
phages [33].

MSCs in the treatment of ischemic stroke
Ischemic stroke is a major cause of death and disability
in the aged population [34]. During cerebral infarction,
transplanted MSCs migrate to areas of damage and me-
diate tissue healing [35]. MSCs induce angiogenesis,
neurogenesis and neurite outgrowth in the surrounding
endogenous tissue through the secretion of neuroprotec-
tive factors [6, 24, 36]. MSC have generally been injected
intracranially or intravascularly [6]. Some evidence sug-
gests that intravascular MSC administration after stroke
may be a viable alternative to intracranial transplantation,
but more work in this area is needed before definitive
statements can be made [37]. However, intravascular de-
livery may be better for larger lesions as it could lead to a
wider distribution of transplanted cells around lesions
than intracranial delivery, but also potentially dilutes out
the therapeutic effect across a larger volume.
Numerous studies have reported favorable outcomes

in immune-competent ischemic stroke rodent models
upon treatment with MSCs (Table 1) [38–57]. Many, but
not all, of these studies reported MSCs reduced infarct
size and induced functional recovery as reported by less-
ening of motor deficits or special learning as measured
by the radial maze test [38–57]. Many of these studies
report a lowering of deficits as assessed by the

composite modified neurological severity score (mNSS),
while others demonstrated reduced inflammation and
apoptosis, as well as increased neurite outgrowth and
plasticity [38–57]. Interestingly, recent studies have
also determined that exosomes secreted by MSCs are
capable of inducing functional recovery in models of
ischemic stroke [24, 41, 47, 55, 58].

MSCs, their mechanism of action and safety profile
While not fully understood, postulated mechanisms of
actions proposed to account for therapeutic effects of
MSCs include cell replacement, growth factor secretion,
and biobridge formation [59]. Stroke therapeutics have
been categorized as ‘neuroprotective’ for the acute phase
or ‘neuroregenerative’ for the subacute and chronic
stages of stroke [59]. The acute treatment in stroke is
relegated to tPA and other drugs that are designed to
maintain structure and functionality of the blood vessels.
The subacute (several hours to a few days) and chronic
(several days, to weeks, months, and even years) phases
are the targeted window for MSC transplant therapy.
For the subacute phase, MSC transplantation has been
shown to abrogate the early secondary cell death re-
sponses associated with stroke, such as dampening the
oxidative stress, inflammation, mitochondrial impair-
ment, and apoptosis [60]. On the other hand, MSC treat-
ment in the chronic phase has been demonstrated to
trigger brain remodeling via angiogenesis, vasculogen-
esis, neurogenesis, and synaptogenesis [61]. The minim-
ally invasive intravenous or intra-arterial delivery of
stem cells has been the preferred choice for the subacute
phase due to an already injured brain produced by the
primary ischemic insult, combined with chemoattrac-
tants that can guide migration of MSCs from the periph-
ery to the brain. The direct intracerebral implantation of
stem cells to the peri-infarct region is utilized for the
chronic phase with the stroke brain more tolerant of an
invasive treatment procedure, but also because of ta-
pered levels of chemoattractants [62]. Direct transplant-
ation was initially examined in chronic stroke patients
using neural progenitor cells (NT2N) [63] and in recent
years using Notch-induced bone marrow cells (SB-623)
[64], with subsequent clinical trials employing intraven-
ous and intra-arterial administration of MSCs in sub-
acute stroke patients [65, 66].
Cell therapy for stroke has tested several types of

transplantable cells in the laboratory, with a few reaching
clinical trials, such as fetal cells, NT2N cells, CTX0E3,
embryonic stem cells, neural stem/progenitor cells, umbil-
ical cord blood, amnion, adipose, and induced pluripotent
stem cells [67–72]. Compared to these other stem cells,
MSCs have established a solid safety profile in other
disease indications, providing the basis for on-going clin-
ical trials to explore MSCs and their cell subpopulations
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[73, 74]. As noted above, MSCs have been transplanted in-
tracerebrally and peripherally [73, 75–78], with encour-
aging pilot studies reporting safety, but efficacy remains to
be fully assessed [74].

Translational challenges of MSC therapy for stroke
Recent clinical trials on transplantation of MSCs have
shown their safety in stroke [75, 79–81]. In addition to
the small number of patients enrolled in these clinical
trials, the translation of laboratory protocols for clinical
transplant regimens has been marred with major dis-
crepancies including the lack of well-defined release cri-
teria of the donor cells, varying timing, cell dose and
route of transplant intervention, altogether deviating
from the established preclinical readouts. In particular,
many of the clinical trials were not performed along the
guidelines of Stem cell Therapeutics as an Emerging
Paradigm for Stroke or STEPS lab-to-clinic translational
guidelines [82]. The recommended translational research

approach is to use at least two models of stroke using
small animals (rodents). Any unanswered issues related
to safety and efficacy, as well as insights into mecha-
nisms of action, need to be pursued using a large animal
model (non-human primates). A rigorous preclinical
testing, as recommended by the STEPS guidelines will
increase the likelihood of success of future clinical trials
of MSC transplant therapy for stroke.

Conclusions
Although numerous studies have demonstrated that
MSCs facilitate tissue healing and functional recovery in
rodent models of ischemic stroke, several outstanding is-
sues in the field warrant further investigation. The
underlying mechanisms by which MSCs respond to their
environmental niche upon injection healing is poorly
understood [83]. MSCs generally have a relatively short
half-life which limits their ability to heal damaged tissue
[84]. A major goal for the field should be to develop

Table 1 Studies demonstrating the efficacy of MSC-based therapies for the treatment of ischemic stroke in rodent models

Author Type of Cells Stroke model Delivery Effect Histology Outcomes

Brenneman, M BM-MSC (Rat) CCAO/MCAO 24 h Y TCC, TUNEL, DAPI, Fluorescein Decreased infarct

Chen J BM-MSC (Rat) MCAO 24 h Y H&E, Y chr, TUNEL Increased rotarod,
adhesive

Chen, JR BM-MSCs (Rat) MCAO Immediate Y Nissel, GFAP, GalC, MAP2,
Tuj1, BrdU

Decreased infarct

Doeppner TR BM MSC & Exosomes (Human) MCAO Days 1,3,5 Y cresyl violet, Neun, BrdU Increase rotarod,
tightrope

Goldmacher, GV BM-MSCs (rat) MCAO Immediate Y TTC, HNA, GFAP, CD11 Decreased nMSS

Fernandez, M Adipose-MSC (Human, Rat) Permanent MCAO 30 mins Y H&E, TUNEL, GFAP. VEGF,
SYP, DAPI

Decreased cell death

Honma, T MCS-Telomerase (Human) MCAO 12 h Y H&E, TTC. Beta-gal, NeuN, GFAP Decreased infarct,
inflammation

Koh, SH UC-MSC (Human) MCAO 2 weeks Y Neun, SNE, GFAP, nestin Decreased nMSS

Li Y BM-MSC (Human) MCAO 1 day Y H&E, NeuN, MAP-2, GFAP,
vWF, TUNEL

Decreased mNSS

Lim, JY UC-MSC (Human) MCAO 72 h Y TTC, NeuN, GFAP, DAPI, TUNEL Decreased infarct

Liu, N BM-MSC-SVV (Rat) MCAO 26 h Y TCC, NeuN, GFP Decreased infarct

Nomura, T BM-MSC-BDNF (Human) MCAO 6 h Y TCC, Beta-gal, NeuN, GFAP Decreased infarct

Quittet MS BM-MSC-PAM-VEGF (Rat) MCAO 24 h N BrdU, NeuN, GFAP, CASP2,
DCX, Ki67

No Difference

Wei, L BM-MSC (Rat) MCAO 24 h Y BrdU, NeuN, MAP2, GFAP,
Tuj1, lba-1

Increased rotarod

Yamauchi T BM-MSC (Human) Permanent MCAO 7 days Y Tuj-1, NeuN, GFAP Increased rotarod,
radial maze

Yang C BM-MSC-HIF1a (Rat) MCAO 6 h Y TTC, CD105 Decreased infarct, nMSS

Toyoshima, A BM-MSC (Rat) MCAO 24 h Y DAPI, Q-Tracker, TCC Decreased infarct, nMSS

Xin. H BM-MSC (Rat) MCAO 24 h Y BDA-DAB, NF-200, SYP Decreased adhesive,
foot-fault

Xin. H BM-MSC (Mouse) MCAO 24 h Y Nissl, Luxol, SYP, Apo-TAG Increased neurites,
plasticity

Lowrance, SA BM-MSC (Rat) MCAO 7 days Y Hoescht, GFAP Decreased SORT
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strategies augment the half-life of MSCs upon injection
into affected tissue [10]. Hypoxic preconditioning has
garnered some beneficial effects in this regard, but more
investigation is needed [8].
The molecular mechanisms underlying MSCs thera-

peutic effects are also poorly understood at present.
More detailed mechanistic studies of MSCs’ therapeutics
effects are warranted and sorely needed. These en-
deavors would be greatly rewarding in a field where
more and more labs are attempting to genetically engin-
eer MSCs with enhanced therapeutic profiles [9]. In
addition, MSC secreted exosomes is a field that merits
continued exploration, as the discovery of these vesicles
has given us the profound insight that the sheer variety
of communication signals MSC use to mediate tissue is
likely orders of magnitudes higher than previously ex-
pected. Indeed, the field has only recently begun to in-
vestigate the protein, RNA, lipid and metabolite cargo
exosomes transport from MSCs to neighboring cells.
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