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Abstract

Background: In the last decade Photogrammetry has shown to be a valid alternative to LiDAR techniques for the
generation of dense point clouds in many applications. However, dealing with large image sets is computationally
demanding. It requires high performance hardware and often long processing times that makes the photogrammetric
point cloud generation not suitable for mapping purposes at regional and national scale. These limitations are
partially overcome by commercial solutions, thanks to the use of expensive and dedicated hardware. Nonetheless, a
Free and Open-Source Software (FOSS) photogrammetric solution able to cope with these limitations is still missing.

Methods: In this paper, the bottlenecks of the basic components of photogrammetric workflows -tie-points
extraction, bundle block adjustment (BBA) and dense image matching- are tackled implementing FOSS solutions. We
present distributed computing algorithms for the tie-points extraction and for the dense image matching. Moreover,
we present two algorithms for decreasing the memory needs of the BBA. The various algorithms are deployed on
different hardware systems including a computer cluster.

Results and conclusions: The usage of the algorithms presented allows to process large image sets reducing the
computational time. This is demonstrated using two different datasets.

Keywords: Photogrammetry, Image orientation, Image matching, Point cloud, Distributed computing

Background
The generation of dense point clouds has been tradition-
ally performed using active sensors like laser scanners
due to the easiness, speed and ability to quickly capture
millions of points. In the last decade, Photogramme-
try has been living a second life pushed by the recent
developments in Computer Vision, providing very dense
and accurate point clouds compared to LiDAR tech-
niques. Image-based approaches have the advantage of
being cheaper than active sensors and they can provide
colour and range information just in one acquisition. Pho-
togrammetry is therefore replacing range techniques in
many applications (such as archaeology, geology, etc.) due
to their reduced costs and the introduction of turnkey
platforms such as unmanned aerial vehicles (UAVs) that
makes possible the acquisition of large datasets.
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The trend in the photogrammetric community is to
adopt larger datasets, increasing the image overlaps and
the extension of the surveyed area, and to increase the
resolution of the model using larger image formats. Many
commercial solutions (Autodesk 123D Catch [1], Agisoft
PhotoScan [2], Pix4Dmapper [3], etc.) and Free andOpen-
Source Software (FOSS) solutions (MicMac [4], Visu-
alSFM [5], Bundler [6], openMVG [7], SFMToolkit [8],
MVE [9], Theia [10], structure-from-motion [11], etc.)
have been developed in the last years showing good results
in many applications. The results achieved by image
matching techniques are so promising that some coun-
tries are studying the possibility to replace periodic LiDAR
acquisitions with airborne photogrammetric acquisitions.
However, most of the solutions concentrated on the gener-
ation of 3D models on relatively small areas, and solutions
for point cloud generation at a regional or national level
are still unluckily limited.
Only few commercial software solutions (such as

Acute3D [12]) are able to process city-scale regions and
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they are usually coupled with expensive dedicated hard-
ware to generate the final products in a reasonable
amount of time. Other solutions have also been specifi-
cally tailored to deal with large city-scale images datasets
[13–15]. These solutions deal with clustered image sets,
i.e. the total number of images is very large but even if the
images belong to the same ares, these researches bypass
this problem clustering the images in groups (for exam-
ple images of a specific monument). In these approaches
the technical challenge is more focused on the processing
of the different chunks (to obtain the models of the dif-
ferent objects/clusters) and in their merging in a unique
model, rather than in the processing of the whole block in
a unique step.
Considering FOSS, many tools are available to per-

form complete photogrammetric workflows. The current
solutions mostly target at running in a single computer.
However, for large image sets this is not enough as the
available memory and CPU is usually too limited, the data
is too large to fit in a single disk and the processing time is
too long. Therefore an accepted FOSS solution to manage
regions at regional and national scale has not been devel-
oped yet. In this sense, it is crucial to understand the basic
components of photogrammetric workflows in order to
identify a strategy to deal with large image sets.
In this paper, the bottlenecks in the basic components

of photogrammetric workflows are identified when deal-
ing with large image sets, and the algorithms to overcome
these problems are described. The algorithms are imple-
mented as FOSS tools. The FOSS photogrammetric tool
MicMac has been adopted as starting point. The use of
clusters has been foreseen as possible solution to dis-
tribute the jobs on many machines, making possible the
processing of big datasets.
The paper is organized as follow: the theoretical back-

ground and the problem statement are discussed in
“Theoretical background and problem statement” section.
The general structure of the MicMac tool is presented
in “Methods” section while the algorithms are dis-
cussed in “Tie-points reduction algorithms” section and
Distributed computing section. “Implementation” section
contains implementation details. Experiments of test

datasets are reported in “Results and discussion” section
while the conclusions and future developments are dis-
cussed in “Conclusions” section.

Theoretical background and problem statement
Photogrammetry is the science of extracting 3D informa-
tion from a set of overlapping images. Each image is ideally
modeled as a central projection according to the pinhole
camera model [16]: the projection center, the image point
and the corresponding point in the space lie on the same
line. The projective lines are then used to retrieve the posi-
tion of points in the 3D space, given their 2D position on
two or more images. Vice-versa, the position of a point on
the images can be determined from its 3D coordinates in
the space.
There are three basic components in photogrammet-

ric workflows as depicted in Fig. 1: image calibration and
orientation, dense image matching and true-orthophoto
generation.
The position and the attitude (georeferencing) where

each image was acquired are recovered in the image orien-
tation, while the focal length, the principal point position
or distortions are determined in the image calibration.
The image calibration is usually embedded in the image
orientation process, thanks to the self-calibration process
[17]. The image orientation process can be then divided
in tie-points extraction, pose initialization and the Bun-
dle Block Adjustment (BBA). In the tie-points extraction
the position of the same object points in different over-
lapping images is performed. The tie-points extraction is
usually performed using automated algorithms like SIFT
[18], SURF [19], etc. The algorithms of automated tie-
points extraction are able to detect thousands of points
for each stereopair. It means that, on large blocks, several
millions of tie-points can be extracted. This process can
be particularly time consuming if the number of images
is high as the correspondences between all the overlap-
ping images to bematched exponentially increases. All the
extracted tie-points are used in the pose initialization to
sequentially determine a rough position of the images and
the tie-points in the space: this step is usually fast and not
computationally critical as it process few images per time.

Fig. 1 Basic steps of photogrammetric workflows and the corresponding output of each component
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However, the pose initialization result needs to be refined
by the BBA several times during the orientation process in
order to prevent the diverge of the process. In each BBA,
the tie-points have to be uploaded in a unique block: the
higher is the number of points that have to be uploaded,
the larger will be the memory occupied by the process. As
a matter of fact, the requested memory on a large block
is normally too high to be managed by a user-grade com-
puter and the increase of the necessary RAM is not always
possible.
After the image orientation, the position among images

is known and a sparse point cloud with the tie-points posi-
tion in 3D can be obtained. The dense image matching
step can be performed to automatically extract a very high
number of correspondences between the (homologous)
pixels in overlapping images. The output of the dense
image matching step is a colored dense point cloud or a
depth map, i.e. a Digital Surface Model (DSM).
The current implementations are able to match one

point in the space for each image pixel. The density of
the point cloud is usually higher than the one that can be
achieved by LiDAR techniques (depending on the Ground
Sampling Distance, GSD, of the images), but it has the
inconvenient to be extremely expensive from a computa-
tional point of view. A twofold correspondence between
DSM points and corresponding image pixels is therefore
established: a pixel on the DSM can be also back-projected
to determine its coordinates on each of the overlapping
images. The DSM can be therefore used to generate the
true-orthophoto. The orthophoto is an orthogonal repre-
sentation of the scene where the projective deformation of
the images are removed exploiting the information given
by the DSM.
Photogrammetric workflows are nowadays automated

processes and the human interaction is limited. The devel-
opment of large format cameras [20] and the increase in
the image overlaps has led to the increase in the amount
of data captured on the same area. This has resulted
in a wider computational request to process large image
datasets. The possibility to parallelize the process on
CPUs andGPUs has just partially solved this issue as some
steps cannot be easily divided in different processes and
the steps are often too time consuming to make the whole
process affordable and timely.
In this paper the above mentioned components of the

photogrammetric workflow are analysed and solutions
to speed the processing up in the most critical steps is
presented. On the one hand, as the BBA requires all
the data simultaneously in memory, a smart tie-points
reductions is proposed to deal with large image sets. On
the other hand, the tie-points extraction and the dense
image matching the processing can be easily enhanced by
using distributed computing (clusters or clouds). The rea-
son is that the processes involved can be easily split in

independent chunks. Each combination of stereopairs can
be therefore distributed on independent processes for the
tie-points extraction. In the same way, the scene is divided
in small tiles and the dense image matching process can
be independently processed on each of them. The true-
orthophoto generation is usually performed together with
the dense image matching. Thus, it can benefit from the
same distributed computing solution used for the dense
image matching. In the following section we will discuss
the proposed solutions.

Methods
MicMac [4, 21–23] is a FOSS tool that executes pho-
togrammetric workflows. It is highly configurable and
allows to create and run different workflows tailored
for different applications. After the images have been
acquired, the steps to generate a dense point cloud and
a true-orthophoto with MicMac usually include: execut-
ing the Tapioca command for the tie-points extraction,
running the Tapas and the GCPBascule (or Campari)
commands to perform the BBA and to georeference the
image block, executing the Malt command for the dense
image matching, running the Tawny command to gen-
erate the true-orthophoto and executing Nuage2Ply to
convert the DSM and the true-orthophoto to the col-
ored dense point cloud. Note that in the adopted MicMac
pipeline is first necessary to create the true-orthophoto
before the colored dense point cloud.
The solutions proposed in this paper have been devel-

oped starting from the the steps described above and
using the data structures and exchange formats used in
MicMac. The implemented algorithms are therefore addi-
tional or alternative steps that have been inserted in the
workflow.

Tie-points reduction algorithms
The memory requirements for the BBA are in some cases
simply unaffordable for large datasets. We propose an ele-
gant solution that consists of running a tie-points reduc-
tion before the BBA. The tie-points reduction decreases
the number of tie-points effectively decreasing the mem-
ory requirements of the BBA. The general idea is that
a sufficient number of well distributed tie points in the
overlapping images is sufficient to assure a stable and reli-
able image orientation, as it was commonly done in the
traditional analogue Photogrammetry. Two different algo-
rithms of tie-points reduction have been developed. A
similar idea of tie-points reduction has been already intro-
duced in a study conducted by Mayer [24]. However, in
that case the tie-points reduction was part of the BBA. On
the other hand, the proposed solutions are intended as a
preliminary step to run before the BBA. In this way, the
memory requirements of the BBA are decreased since the
beginning preventing the need for large memory use.
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In the following subsections the overview of the two dif-
ferent algorithms is given. The first algorithm performs
the reduction using only the information provided by
the tie-points in image space, while the second approach
exploits the information provided by the tie-points both
in image and object space to assure a better distribution in
both spaces.
For an extended description and a study on the impact in

the quality of the produced point cloud using the reduced
set of tie-points, the reader can refer to the online report
of the project “Improving Open-Source Photogrammet-
ric Workflows for Processing Big Datasets” funded by the
Netherlands eScience Center [25].

Tie-points reduction in the image space (RedTieP)
The input of the RedTieP algorithm consists of the set of
images and their corresponding sets of tie-points. The rel-
ative position between overlapping images can be given
as optional input to improve the process. The tie-points
reduction is divided in tasks as depicted in Fig. 2, and there
are as many tasks as images. The steps performed for each
task can be described as follows:

• The master image, driving the reduction process, is
initially determined: the ith task uses as master image
the ith image from the list of images.

• The overlapping (related) images are selected
considering the ones that share tie-points with the
master image. A minimum number of common
tie-points must be available to consider an image as
related (10 points is the default value).

• The tie-points of all the related images are loaded. If
the related image was a master in a previous task,

then the reduced list of tie-points obtained by this
earlier process is considered for that image.

• The loaded tie-points are topologically merged into
multi-tie-points (MTPs). This means that a
correspondence is created for the tie-points in
different images pairs that relate to the same object
point. A MTP keeps track of the number of image
pairs in which a related tie-point is visible. This value
is called multiplicity.

• The image space is divided in a regular grid (i.e. Von
Gruber regions [26]). The algorithm fills the grids in
with the positions of the MTPs. To locate a MTP in
the image, the algorithm uses the position of the
related tie-point in that image.

• The reduction is driven by the master image grid.
Ideally the algorithm stores a single MTP (the related
tie-points in fact) for each grid cell of the master
image. However, some checks are done in order to
guarantee that the distribution of tie-points in the
related images is not damaged. For each grid cell of
the master image, the MTPs are sorted according to
their GainMTP value given by formula 1.

GainMTP = MMTP

1 + (K · AMTP
Amedian

)2
(1)

whereMMTP is the multiplicity of the MTP; K is a
threshold value defined by the user (the default value
is set equal to 0.5 from the performed tests); AMTP is
the estimated accuracy value of the MTP on the
master image and it is computed as the highest
residual value achieved by this point in the relative
orientation with the other images; and Amedian is the
median of relative orientation residuals. Note that if

Fig. 2 Overview of the steps performed by the RedTieP algorithm
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K is zero or the relative orientation is not used, the
GainMTP is directly equal to the multiplicity of the
MTP.
The MTP with the highest GainMTP in each grid cell
of the master image is stored and the rest are
removed if they meet the following conditions. A
MTP can be removed (a) if none of its homologous
points in the other images are part of the minimal set
of reduced tie-points computed in a previous task
with another master image (otherwise it would have
been deleted before) and (b) if for all the image pairs
another point is present in the same cell of the master
image and in the corresponding cells of the
overlapping images (in order to assure an
homogeneous distribution of the points).

To overcome the cross-dependency of image pairs, the
parallel algorithm guarantees that all the tasks running in
parallel, at any time, process different image pairs. Noo-
dles [27], a programmable workflow engine implemented
in Python, has been adopted for the execution of these
tasks in parallel.

Tie-points reduction in image and object space (OriRedTieP)
The second tie-points reduction algorithm is called
OriRedTieP. It exploits the initial image orientation
between adjacent stereo-pairs. In addition to the images
and the tie-points per image pairs, this algorithm also

requires the initial image orientation given by the pose
initialization approach.
Figure 3 shows an overview of the steps performed by

the OriRedTieP algorithm. From the initial pose estima-
tion of the images, the algorithm projects the images in
the 3D space to obtain the approximated 2D footprints.
The object space is roughly defined by intersecting the
tie-points extracted in the previous phase. The algorithm
computes a bounding box containing the footprints of all
the images and splits the bounding box in tiles. For each
tile, the algorithm determines which images overlap it.
The following of the process is split in tasks and the tiles
are processed independently. For each tile, the algorithm
follows a sequence of steps:

• The image pairs insisting on the tile and the
corresponding tie-points are initially loaded. The
tie-points with the estimated XY coordinates outside
the tile are discarded.

• The loaded tie-points are topologically merged into
3D multi-tie-points (3DMTPs). This means that a
correspondence is created for the tie-points in
different images pairs that relate to the same point in
the object space. For each 3DMTP the algorithm
determines its multiplicity (number of image pairs in
which a related tie-point is visible) and its estimated
3D position in the space computed from the initial
image orientation.

Fig. 3 Overview of the steps performed by the OriRedTieP algorithm
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• A Quad-Tree with the 2D (XY) coordinates of the
3DMTPs is created.

• A Heap data structure is then generated to sort the
3DMTPs according to their Gain3DMTP value. The
formula 2 is used to compute the Gain3DMTP .

Gain3DMTP = M3DMTP

1 +
(
K · E3DMTP

Emedian

)2 ·
(
0.5 + n3DMTP

N3DMTP

)

(2)

whereM3DMTP is the multiplicity of the 3DMTP; K is
a threshold value configurable by the user (the default
value is 0.5); E3DMTP is the estimated error when
computing the 3D position of the 3DMTP given by
the forward intersection; Emedian is the median of
estimated residual of all the 3DMTPs; N3DMTP is the
number of images where the tie-point is visible;
n3DMTP is the number of images where there are no
other points in the neighborhood that have been
already selected by the reduction process. Note that
the value of n3DMTP is dynamic and it changes every
time a neighbor 3DMTP is preserved in the reduction
process.

• The 3DMTPs are reduced in an iterative process
using the Heap data structure. The 3DMTPs with
higher Gain3DMTP are selected to be kept while their
neighboring 3DMTPs are deleted only if the
homogenous distribution of tie-points in the 3D
object space is not compromised. In other words, a
3DMTP is usually deleted if it is visible in the same
images of another 3DMTP that has been already
preserved in the reduction process.

• Before storing the reduced set of tie-points, a final
validation of the points in the image space is
performed. This process is based on the von Gruber
point locations [26]. For each deleted tie-point and in
each image pair, the algorithm checks which is the
closest tie-point which has been preserved. If that
tie-point is further than a certain distance, then the
deleted tie-point is re-added to the reduced list. The
distance threshold is defined by the user.

The tasks for the different tiles can be executed in paral-
lel. When all the tiles have been processed, the algorithm
merges the tie-points of the image pairs that are processed
in more than one tile.

Distributed computing
In the previous section we proposed two algorithms to
tackle the memory requirements of the BBA when deal-
ing with large image sets: the solution is to reduce the
amount of processed data to a lower, but sufficient, num-
ber of tie-points. For the other challenging components

of the photogrammetric workflows, i.e. tie-points extrac-
tion, dense image matching and true-orthophoto genera-
tion, distributed computing hardware systems can be used
since the involved processes can be divided in chunks
that can be processed independently (pleasingly paral-
lel). In the next subsections we describe the distributed
computing algorithms.
In “Methods” section we mentioned that in MicMac

the true-orthophoto is actually generated before the dense
colored point cloud. Therefore, both the dense image
matching and the true-orthophoto generation are tackled
by the distributed computing solution presented.

Tie-points extraction
The current single-machine implementation available in
the Tapioca command of MicMac is the following:

• For each image of the dataset, the set of
corresponding overlapping images is first
determined. This process can be eased by the image
geo-tag, reducing the number of homologous images
to a small set. If the geo-tag is not available, then the
whole dataset needs to be considered;

• For each image the features are extracted;
• For each stereopair, the features are matched to

determine the candidate tie-points. The extraction
and matching process are performed in parallel
exploiting all the cores of the machine. However, this
process is insufficient to process very large datasets.

The distributed computing solution is depicted in Fig. 4.
The algorithm splits the list of stereopairs (image pairs) in
chunks of N stereopairs where N is configured by the user:
the first chunk contains the stereopairs from the position
0 to N-1 of the original list, the second chunk contains the
stereopairs from the position N to 2N - 1 of the original
list and so on. Each chunk can be processed independently
and in a different machine. For each chunk, the algorithms
works according to the following steps:

• The list of images in the chunk is determined from
the list of image pairs. At this point the images are
copied to the machine where the chunk is going to be
processed.

• The feature extraction on the images belonging to the
chunk is performed.

• The feature matching among the image pairs of the
chunk is computed.

The tie-points generated by all the chunks are finally
combined. Note that since the distribution of the images
in chunks is performed by image pairs, it may happen that
different chunks use the same images. This means that the
feature extraction step is duplicated in those images. This
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Fig. 4 Distributed computing implemented in the tie-points extraction

could be avoided by a two-step distributing computing
solution where the feature extraction is completely per-
formed in the first step while the second step is devoted to
the feature matching among image pairs. However, due to
implementation details (separating feature extraction and
feature matching in Tapioca is not trivial) the two-step
distributed computing solutions for tie-points extraction
have not been considered at this stage of the work.

Dense imagematching
The current single-machine implementation available in
MicMac to generate the dense colored point cloud is the
following: (i) the dense image matching is run and a dense
depth map, i.e. a Digital Surface Model (DSM), is ini-
tially generated; (ii) using the DSM and the image spectral
information, a true-orthophoto is then produced; (iii) the
true-orthophoto and the DSM are finally used to generate
the colored dense point cloud.
The process is generally divided in tiles and each of

them is processed independently by a core. The GPU can
be also adopted for this parallel process. However, the
process can take very long times on a single machine.
For a large dataset, a distributed computing solution is
therefore required.
The distributed computing dense image matching algo-

rithm is shown in Fig. 5. This algorithm has been
specifically conceived for aerial images oriented in a

cartographic reference system. The algorithm assumes
that the Z component of the reference system does not
have a real impact on the definition of the matching area.
A 2D (XY) bounding box of the camera positions on the
ground is therefore computed using the image orientation
parameters. Then, this ground bounding box is split in
tiles as shown in Fig. 6.
Considering the 2D (XY) coordinates of the image pro-

jection centres, the algorithm determines the images that
overlap each tile: these images are initially considered
for this tile. Then the images partially overlapping with
the tile are added as well: for this purpose, the images
neighbouring the center and the vertices of the tile are
considered. For each of these points the algorithm deter-
mines the n closest images (with n equals to 6, by default)
and it adds them to the list of images, as shown in Fig. 7.
After the list of overlapping images is determined for

each tile, every independent process can be run in a
different machine. For each tile the following tasks are
executed:

• All the images corresponding to the processed tile as
well as their orientation are copied to the machine
where the tile is processed.

• The dense image matching algorithm is run
considering the tile extension as area of interest. A
DSM is therefore generated.
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Fig. 5 Distributed computing implemented in the dense image matching

• The true-orthophoto of the tile is then generated.
• Using the DSM and the colour information of the

true-orthophoto, the point cloud is generated.
• This point cloud is exported in order to be merged

with the other tiles.

Since all the generated point clouds are in the same refer-
ence system they can be easily merged together.

Implementation
The tie-points reduction algorithms are implemented as
stand-alone commands within the MicMac tool. The
names of the commands are RedTieP and OriRedTieP.
The distributed computing algorithms for tie-points

extraction and dense image matching are implemented in
pymicmac (https://github.com/ImproPhoto/pymicmac).
Pymicmac is a Python interface for MicMac workflows

execution. It allows to define through a XML file pho-
togrammetric workflows to be executed with MicMac.
A sequence of MicMac commands is specified in the
XML file. During the execution of each command pymic-
mac also monitors the usage of CPU, memory and disk.
Pymicmac can also define parallel commands via XML,
using a set of commands to be executed in parallel. This
is what is used for the distributed computing tie-points
extraction and the distributed computing dense image
matching. The sequential and parallel commands defined
in pymicmac can be executed with pycoeman (https://
github.com/NLeSC/pycoeman), a Python toolkit for exe-
cuting command-line commands. Pycoeman has tools to
run both sequential and parallel commands locally (in the
local computer) as well as parallel commands in a set of
remote hosts accessible via SSH as well as in SGE clusters
(computer clusters with Sun Grid Engine batch-queuing
system).

Fig. 6 Tiling procedure of the ground bounding box

https://github.com/ImproPhoto/pymicmac
https://github.com/NLeSC/pycoeman
https://github.com/NLeSC/pycoeman
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Fig. 7 Image selection strategy performed in each tile

Results and discussion
A set of experiments has been executed using the datasets
reported in Table 1.
The two datasets have been specifically chosen to assess

the performances of the tie-points reduction and the dis-
tributed computing. The first datased was acquired by an
Unmanned Aerial Vehicle over a urban area in Gronau
(Germany). The image overlap is quite irregular with 3
cm GSD. This dataset was chosen to assess the effective-
ness of the tie-point reduction with highly overlapping
and convergent image configurations. The second dataset
is part of the acquisition yearly performed by the Water-
schapshuis in The Netherlands: the image overlap is 60%
alongtrack and 30% acrosstrack with 10 cm GSD. The
number and size of the images prevent their processing on
a single machine and it therefore represents a challenging
dataset for the distributed computing task.

Tie-points extraction
The Gronau dataset has been used considering two dif-
ferent configurations: (i) the single-machine processing
and (ii) the cluster processing. In both cases the feature
extraction process has been supported by the geo-tag
information. In the first case, this operation was executed
with MicMac, i.e. using Tapioca, in a Ubuntu 14.04 Vir-
tual Machine (VM) with 4 cores. Tapioca took 292,318.26
seconds, used all the available cores, and the average used
memory was 13% out of the available 13.4 GB. Figure 8
(left) depicts the CPU and memory usage of Tapioca.
In the distributed computing solution, the DAS 4 clus-

ter [28] in TU Delft was used. The cluster has 32 nodes

(only 23 are currently usable), and each node has 16 hyper-
threaded cores at 2.4 GHz (512 hyper-threaded cores in
total, only 368 can be currently used) and 24 GB RAM
(768 GB in total, only 552 GB can be currently used).
A XML file with the set of commands was created

in order to execute the distributed computing tie-points
extraction in parallel. Each command processes a chunk
of image pairs. The processing took 22,071.90 seconds,
and in average 204 cores (out of the 512) and 13% of the
RAMwere used (97 GB out of the 768GB). Figure 8 (right)
depicts the CPU andmemory usage of Tapioca in the DAS
cluster.
Tapioca processes an image per time on each core of the

PC and the RAM usage in both the tests is similar as the
process is executed in the same way on a single machine or
on each node of the cluster. On the other hand, the cluster
processing reduces the computational time by a factor 10:
this is less than expected considering the number of cores
involved in the process. This can explained considering
the communication times in the cluster (i.e. copy of files
in remote) and the duplication of part of the processing as
already explained in “Tie-points extraction” section.

Tie-points reduction and image orientation
The online report [25] of the project “Improving Open-
Source Photogrammetric Workflows for Processing Big
Datasets” contains a thorough study of the impact of a
reduced set of tie-points in relation to the quality of the
produced final point cloud. In that study various datasets
and values for the options of the tie-points reduction

Table 1 Datasets used for the experiments

Image set #Images Image size [pixels] Total size [MB] Area [Km2] Description

Gronau 570 5,184x3,456 5,264 0.007 Square in city center of Gronau (Germany)

Zwolle 1,196 17,310x11,310 218,168 676 Zwolle city and surroundings (3% of The Netherlands)
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Fig. 8 CPU and memory usage for Tapioca execution in the single-machine (left) and in the DAS 4 cluster (right). The CPU usage ranges between 0
and 100% for each core (e.g. 4 × 100 = 400 is the maximum value for the single-machine solution)

commands were tested. In this paper, only somemeaning-
ful comparison are presented.
In particular, the comparison of the BBA results, i.e.

Tapas in MicMac, using all the tie-points or a reduced set
of tie-points are considered. The two commands RedTieP
and OriRedTieP are tested. As in the previous section,
the Gronau dataset has been used. In order to assess
the quality of the orientations, the BBA residuals have
beenmeasured on the tie-points re-projection, onGround
Control Points (GCPs) and Check Points (CPs). The GCPs
have been distributed using an uneven and very sparse
distribution in order to better assess the possible defor-
mations on the CPs due to the reduction of the used
tie-points. Additionally, the number of iterations to con-
verge the process has been recorded as well. The MicMac
command GCPBascule is used to absolutely orient the
images in the reference system and measure the residu-
als on the GCPs and CPs. GCPBascule performs a simple
7-parameter transformation where the parameters are

estimated in a least square approach. This tool was pre-
ferred to Campari (traditional BBA, with GCP embedded
in the process) because it does not introduce any non-
linear effect in the model built by the photogrammetric
data (i.e. the output of Tapas) and it allows a more frank
estimate of the goodness of the photogrammetric models.
In Table 2 the comparison of three different cases is

shown: the full set of tie points (No reduction), and the
results achieved by the two reduction algorithms decreas-
ing the full set of points to approximately the 5% of
the original size. The Tapas residuals are only slightly
degraded while the GCPs and CPs errors slightly increase
when using the reduction algorithms. Both the algorithms
show pretty similar results and their difference from the
original implementation is not very relevant. By using the
reduced set of tie-pointsTapas is around thirty time faster,
its memory usage decreases of about 90% and it requires
much less iterations to converge to the solution. RedTieP
is around five times faster than OriRedTieP because of

Table 2 Comparison of executions of Tapas and GCPBascule when using all the tie-points or when using reduced sets by both
tie-points reduction commands

Tapas GCPBascule

Time[s] Mem. #It. Res.[pix]
GCPs[m] CPs[m]

Mean Std. Mean Std.

No reduction 68,948 63.16 160 0.6423 0.0590 0.012 0.0582 0.0214

RedTieP

Size Red. Time[s]

0.0699 2,617 2,299 6.52 91 0.7336 0.0775 0.0359 0.0663 0.0309

OriRedTieP

Size Red. Time[s]

0.0654 10,966 1,544 5.53 50 0.6845 0.0783 0.0438 0.0836 0.0406
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Fig. 9 CPU and Memory usage for the distributed computing dense image matching execution in the DAS 4 cluster. The CPU usage ranges
between 0 an 100 for each core of the cluster: 70 cores were used on average

the latter requires an initial image orientation given by
the pose initialization while RedTieP only requires the
image orientations between image pairs that are faster to
compute.

Dense imagematching
The Zwolle dataset has been used for the dense image
matching test. This dataset is so large that its process-
ing on a the single-machine solution (via MicMac com-
mandsMalt, Tawny andNuage2Ply) would not be feasible
because of the limited storage and the too long compu-
tational time. For this reason it was opted to run the
process directly on the distributed solution in the DAS

4 cluster generating a point cloud with 25% of the maxi-
mum density achievable (i.e. 1 point every 4 pixels, 20 cm
avarage spacing between points) in order to fulfill the 15-
minutes-per-job policy of the cluster: the whole process
was divided in 3,600 tiles. The execution took 65,350 sec-
onds, and in average 70 cores were used (out of 512) and
only 2% RAM was used (15 GB of the 768 GB) due to the
very little dimensions of each tile. In Fig. 9 the CPU and
memory usage of the distributed computing dense image
matching in DAS 4 are reported.
The final point cloud had 15 billion points and an

average density of 25 points per square meter. The full res-
olution would have required 4 times more tiles and longer

Fig. 10 Snapshot of the point cloud generated by the distributed computing dense image matching. The different tiles are visible due to a different
color equalization per tile
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Fig. 11 Zoom on a detail of the point cloud generated by the distributed computing dense image matching

computational time. In that case an estimated density of
100 points per square meter would have been reached. For
the visualization of the final point clouds we used Potree
[29, 30] and the Massive-PotreeConverter [31]. Snapshots
of the visualization are shown in Figs. 10 and 11. The
images were acquired with low overlaps (60% along-track,
30% across-track), as the flight was not conceived to gen-
erate a dense point cloud. For this reason, the quality of
the point cloud is quite low, with several regions affected
by noise and not accurate 3D reconstructions. However,
the quality of the point clouds was out of the scope of
this work as this contribution was a proof-of-concept for
the processing of large datasets. The color equalization
among different tiles was still a problem as the true-
orthophotos used to color the point cloud was equalized
independently and in a different way on each tile.

Conclusions
An innovative approach devoted to the efficient and reli-
able photogrammetric processing of large datasets has
been presented in this paper. The bottlenecks in the basic
components of photogrammetric workflows when dealing
with large datasets have been pointed out at first. For each
of them an efficient solution has been conceived using
the FOSS tool MicMac. The tie-points extraction and the
dense imagematching (point cloud generation) are similar
problems. In these cases, the amount of data to be pro-
cessed is very large and it cannot be reduced. The positive
aspect is that the process can be parallelized and dis-
tributed on large clusters, as demonstrated in this paper.
On the other hand, the BBA is not easily divisible and an
algorithm to optimize the amount of processed data has
been developed. The developed algorithms allow the pro-
cessing on user-grade machines, preventing the need for
more powerful devices on large datasets.

The achieved tests have provided encouraging out-
comes in all the developed tools, showing that the devel-
oped algorithms decrease the computational time. This
paper represents a proof of concept and many details
will be improved in the future in order to further opti-
mize the whole process. The tie-points reduction would
greatly benefit from the division of the two tasks (feature
extraction and feature matching), reducing the number of
stereopairs that have to be matched in the cluster process-
ing. The dense point cloud generation would need some
improvement in the radiometric equalization of the point
cloud color.
The Zwolle dataset was challenging due to the high

number of (large format) images processed. However,
higher image overlaps would have allowed better results
using the same dense image matching algorithm. New
tests on more challenging datasets will be performed to
further validated the developed algorithms.
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