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Abstract

raster and image processing methods.

Background: Point clouds with increased point densities create new opportunities for analyzing landscape structure
in 3D space. Taking advantage of these dense point clouds we have extended a 2D forest fragmentation index
developed for regional scale analyses into a 3D index for analyzing vegetation structure at a much finer scale.

Methods: Based on the presence or absence of points in a 3D raster (voxel model) the 3D fragmentation index is
used to evaluate the configuration of a cell's 3D neighborhood resulting in fragmentation classes such as interior,
edge, or patch. In order to incorporate 3D fragmentation into subsequent conventional 2D analyses, we developed a
transformation of this 3D fragmentation index into a series of 2D rasters based on index classes.

Results: We applied this method to a point cloud obtained by airborne lidar capturing a suburban area with mixed
forest cover. All processing and visualization was done in GRASS GIS, an open source, geospatial processing and
remote sensing tool. The newly developed code is also publicly available and open source. The entire processing
chain is available and executable through Docker for maximum reproducibility.

Conclusions: We demonstrated that this proposed index can be used to describe different types of vegetation
structure making it a promising tool for remote sensing and landscape ecology. Finally, we suggest that processing
point clouds using 3D raster methods including 3D raster algebra is as straightforward as using well-established 2D

Keywords: 3D raster, Voxel model, Spatial pattern, Lidar, Raster algebra, Spatial indices

Background

Data acquired by airborne lidar have transformed how
the Earth’s surface and vegetation structure are mapped
and analyzed leading to many applications, for example, in
terrain modeling and ecosystem studies [1].

Lidar point clouds have been used not only to map the
spatial distribution of vegetation [2—4], but also to analyze
the vertical structure of forested and savanna ecosystems
[5-8]. With the increasing density of points obtained by
the new types of lidar technologies, such as single-photon
lidar, which produce orders of magnitude more points
[9], there is a need for new techniques that would take
advantage of high point densities and provide analyses to
support improved ecosystem management.
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Many existing methods for 3D point cloud analyses are
limited to 2D or 2.5D [7, 10, 11], have been implemented
in a specialized lidar-processing software [5, 12, 13], or
use custom low-level code [14]. To make advanced anal-
ysis of point clouds more general and accessible, we use
3D rasters and associated 3D raster algebra as the basis
for developing new methods for lidar data analysis. 3D
rasters, also referred to as voxels, voxel models, voxel-
based space, or 3D grids, are used in many fields such
as soil science [15], geology [16], atmospheric sciences
[17], human anatomy [18], and 3D printing [19]. In the
fields of remote sensing and geographic information sys-
tems, 3D rasters have been used with airborne lidar data
to characterize fine-scale bird habitat [12] and with ter-
restrial lidar to characterize forest canopy fuel properties
[20] and detailed tree models [21, 22]. In ecology, spatio-
temporal data in 3D rasters have been used to quantify the
complexity of simulated population dynamics [23] and 3D
rasters representing trees have been used to assess lighting
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conditions [24]. Remotely-sensed hyperspectral data have
been represented and processed as 3D rasters to extract
textures [25].

In order to describe vertical vegetation structure, we
define a 3D version of a 2D forest fragmentation index
introduced by Riitters et al. [26]. Different spatial indices
have been used to describe land cover structure [26—31].
These indices were implemented in various software pack-
ages including SPAN software [32], the r.le software pack-
age coupled with GRASS GIS [33] and later replaced by
different set of modules for GRASS GIS called r.li [34],
the well-known FRAGSTATS software package for com-
puting spatial indices [35], the GuidosToolbox software
package for the assessment of pattern, connectivity, and
fragmentation [36], and the SDMTools R package for
species distribution modeling [37]. Jjumba and Dragicevic
[38] presented a set of indices for the basic analysis of data
represented as 3D rasters. Parrot et al. [39] defined 3D
metrics for the analysis of spatio-temporal data in ecology.

The original 2D forest fragmentation index by Riitters
et al. [26] was created to characterize the spatial config-
uration and structure of a forest at a global scale. The
presented 3D fragmentation index can be used in applica-
tions describing 3D vegetation structure, classifying vege-
tation types, characterizing fine-scale bird habitat in three
dimensions, or describing overall landscape characteris-
tics. We present this new 3D fragmentation index as an
example how a 2D index or a 2D filter can be extended into
3D and implemented in a similar way as its 2D version. To
use the 3D rasters with established 2D raster processing
methods and tools, we also present several methods for
converting a 3D raster into a series of 2D rasters.

We provide source code for all the presented methods,
which we implemented as modules for GRASS GIS, so
that they can be used together with other open source
geospatial processing tools [40]. We also provide a repos-
itory with all the materials needed to fully reproduce the
research presented here using Docker [41].

Methods

First we describe a method for creating a 3D raster (Fig. 1)
from a lidar point cloud. Then we review how the forest
fragmentation index is defined in 2D. Then we define the
3D fragmentation index and review edge cases. Finally, we
show methods for further analyzing 3D rasters using 2D
and 3D raster processing methods.

Vegetation structure reconstruction

A 3D raster can be created from a lidar point cloud using
a process called binning, rasterization, or voxelization.
A value of a 3D cell (voxel) is determined by presence,
count, or properties of the points which fall into a 3D
space occupied by a given cell [12, 21, 38, 42]. We use
point heights relative to the ground surface. Generally,
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Fig. 1 3D raster example. An example 3D raster which represents the
3D fragmentation index using colors described in Fig. 3. It is a small
sample of size 33 x 44 x 46 3D cells

binning produces outputs such as number of points per
cell or, if points have values associated with them, a mean
of these values or other statistics. We use binning where
each cell which contains one or more points is assigned
value 1, while empty cells have value 0. Alternatively, we
could use a threshold for point count, mean intensity, or a
percentage of points within a vertical column [8, 42].

Depending on the point cloud density and resolution of
the 3D raster used for binning, the resulting 3D raster may
contain a lot of empty cells. In the next step, we recon-
struct the shape of the vegetation by assigning value 1
to all cells which have a neighbor with value 1. Neigh-
borhoods can be defined in 2D or 3D with neighbors in
different directions where neighboring cells are touching
by faces, edges or corners. Alternatively, a larger neigh-
borhood can be considered and then the cells in the
neighborhood may not touch the central cell. We use 3D
neighborhoods with 27 neighbors touching in any way.
An example profile (i.e. vertical slice or transect) of the
binning result in relation to the reconstructed vegetation
structure is visible in Fig. 2.

2D forest fragmentation index

According to Riitters et al. [26], the 2D forest fragmenta-
tion index is defined for a 3 x 3 window in the following
way. The ratio of forested cells Py is defined as:

1_71 Z _711911

Fr= 3.3
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Fig. 2 Selected profile. A selected profile (vertical slice) of 3D raster
representing the reconstructed 3D vegetation structure (top) and
fragmentation index profile (bottom). The yellow color represents
cells which contain lidar points from the original point cloud. The
green color represents the reconstructed vegetation. The colors in
the bottom profile represent the fragmentation index as described in
Fig. 3. Vertical and horizontal scales in this figure are the same. The
position of the profile is shown in Fig. 5 in 2D and in Fig. 6 in 3D space

where Py is the value of a central cell of a moving window
in the resulting raster, p;; is a cell value and i and j are
indices in the moving window. The value for non-forested
cells is 0 and value for forested cells is 1.

Further, number of cell pairs e; where both cells are
forested is:

i=1 j=0

ey = Z Z Pij N Pi+1 + Z Z bij N Pij+1

j=—1li=-1 i=—1j=-1

The operator A is logical AND, which we define so that
it yields 1 when both cells have value 1 and 0 otherwise.

Similarly, the number of cell pairs e; where at least one
cell is forested is defined as follows:

j=1 i=0 i=1 j=0

€2 = Z ZPL/ V Pit1j+ Z Zpi,/ V Pijt1

j=—1i=—1 i=—1j=—1

The operator V is logical OR, which we define so that
it yields 1 when at least one of the cells has value 1 and 0
otherwise.

The ratio of fully versus partially forested cell pairs Py is
defined as:

€1

Py = —
¥ €2

The final classification used to create the index is
described in the next section.

3D fragmentation index
For a 3D raster and an arbitrary window size, we define
the ratio of filled cells Pf as follows:

Zizr—r }——c Zk_—d Dijk

Pr =
/ Imn

where Dijkisa cell value at the position i, j, k in the moving
window, [ X m x n are the window proportions in each
direction, and r is defined as:
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2
where / must be an odd integer. The values ¢ and d are
defined in the same way using m and #n respectively. If we
assume isotropic environment, the window proportions in
all directions would be equal, i.e. [ = m = n.

The number of cell pairs e; where both cells are filled is
defined as follows:
i=r j=c¢ k=d-1

e = Z Z Z Dijk N Pijk+1

i=—rj=—c k=—d

r =

:Lrjcl

€g = Z Z Z Pijk N Pij+1,k

k=—d i=—r j=—c
j=¢ k=d i=r—1

ey = Z Z Z Pijk N Pit1,jk

j=—Ck=—d i=—r
er1 =¢er +eg+ey
The number of cell pairs e; where at least one cell in a
pair is filled is defined in the similar fashion:

i=r j=¢ k=d-1

€2= Z Z Z Pijk NV Pijik+1+ -

i=—rj=—c k=—d
Then the Py coefficient is computed in the same way as
in 2D:
€1
Pﬁf = —
We also deﬁne a difference Dp which is used later on:
Dp = Pr — Py

Finally, we use the following set of rules based on Riitters
et al. [26] to classify Py, Py, and Dp into the index
classes F:

patch, if Pr < py
transitional, ifPr >=p, APr >

F— edge, ifPf >t ADp <0
perforated, if Pr > t; ADp >0
interior, if Pr=1

undetermined, if Pr>t;ADp=0

where p; is the patch limit where the index changes from
patch to transitional and ¢; is the transitional limit where
the index changes from edge, perforated or undetermined
to transitional. Riitters et al. [26] sets p; = 0.4 and £; = 0.6.
We use these values in this study and we provide them as
defaults to the user in the software implementation, how-
ever, users can change the values if needed. The cell is
marked as interior when Py = 1. A graphical representa-
tion of relation between Py and Py and the index classes
(i.e. index values) is depicted in Fig. 3.

To accommodate uncertainty in floating point compu-
tations and to allow the user to loosen the requirements
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Fig. 3 Fragmentation index classification schema. The Pr variable
increases in the y-axis direction and the Py variable increases in the
x-axis direction. The class boundaries are set according to Riitters et al.
[26] with the exception of interior and undetermined classes which
are exaggerated for visualization purposes. The exterior class
(denoted with light blue color in this manuscript) is not included as
there are no values associated with it in the Ps-Pg space. Each of the
selected colors has different lightness allowing for gray-scale printing
and limited color-blind safeness

for the interior cells, we introduce the interior limit i; and
optionally use the following condition:

|Pr—1| < i

For some applications, it may be more appropriate to
define the interior cells as any cells whose Py and Py falls
into a circle around the point Py = 1, Py = 1 as show in
Fig. 3. The condition for the interior is the following:

(Py—1)*+ (P —1)° <2

We modify conditions for the classes that can overlap
with the interior class, namely the edge, perforated and
undetermined classes, because the interior class takes pri-
ority. For example, the modified condition for the edge
class is the following:

Pr > t; A Dp < 0 A —interior

where — is logical NOT, which we define in the way that it
yields 1 when the input value is 0 and vice versa.

Similarly, the general case may require that the undeter-
mined class is wider. Therefore, we also allow the use of
the following condition for the undetermined class:

|Dpl| < uy

where u; is the undetermined limit which specifies how
wide is the undetermined area around the line Py =
Pyr. Furthermore, overlapping classes, namely the edge
and perforated classes, need an additional condition sim-
ilar to the one for interior to exclude areas included in
undetermined class.
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Horizontal slices

Most raster and image processing algorithms operate on
2D rasters, not 3D rasters. 2D rasters are easier to com-
bine with other 2D data and more suitable for creating
printed or on-line 2D maps. Therefore, it is necessary to
convert a 3D raster into 2D representations so that differ-
ent approaches can be adopted based on the information
one wishes to preserve or highlight.

The basic conversion involves splitting the 3D raster
into horizontal slices, which will be represented as a series
of 2D rasters. Each 2D raster represents a slice at a certain
depth in the original 3D raster. This approach preserves
the information about the relative height based on the
order of the 2D raster in the series. The resulting series
of 2D rasters can then be processed as any other series or
used as image bands in subsequent analysis.

Number of cells per vertical column with a given class

A 3D raster which contains class numbers (i.e. categori-
cal 3D raster) can be converted to a series of 3D rasters
where the values in each 3D raster indicate the presence
(denoted by 1) or absence (denoted by 0) of a certain class.
The next step is counting the number of cells that have a
class present for each vertical column. The resulting value
for one class r is defined as:

k=d
Tij = Zpi,j,k
k=0

where p;  x is a value of the 3D raster (0 or 1), i, j are indices
in the horizontal directions and k is an index in the vertical
dimension which has values from 0, which is the mini-
mum vertical index, to d, which is the maximum vertical
index for the given 3D raster.

Generally, this can be viewed as a 3D moving window
which has as many depths as the 3D raster, but only 1 x
1 dimensions in the horizontal directions. In this regard,
we also provide an alternative definition of » which uses
a moving window that has non-trivial dimensions in the
horizontal direction. The resulting value for a given 2D
cell is defined as:

k=d i=r j=c
r=2.20 D Pijk
k=0 i=—rj=—c

where k is defined in the same way as in the previous
equation and i, are indices of the moving window.

The value which is the result for the central cell is
then assigned to the corresponding cell of the 2D raster.
This also creates a continuous raster from classified (i.e.
categorical) data such as the fragmentation index. Given
the fragmentation index, we can, for example, measure
the number of cells within the patch class and define a
measure of patchiness based on that.
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For the fragmentation index applied to vegetation struc-
ture, the resulting value for one class r is defined as:

k=t;;

rij = Z Pijk

k=b;;

where b;; is a value of a surface which limits the compu-
tation from the bottom and ¢;; is a surface value which
limits it from the top. The surface is a 2D raster with val-
ues corresponding to cell indices rather than coordinates.
The top surface t is, for example, the top of the vegeta-
tion, which is the case for this study. The bottom surface
b can be the ground surface. The equation can be mod-
ified to take into account the actual heights instead of
depth indices.

We also define g as a relative count of cells with a given
class. The relative count g is defined as follows:

Tij

W= = by

For the purpose of this study we replace b;; with 0 when
we apply this method to the fragmentation index because
we take into account all vegetation above the ground level
and we use heights relative to the ground. An example at
Fig. 4 shows the differences in between the absolute and
relative counts and count without the surface constraint.

Once we have relative count for each of the classes,
we can also determine the most common (i.e. dominant)
class for each vertical column by finding a class with
maximum g.

Results
For this study we used an airborne lidar point cloud. The
study site, depicted in Fig. 5, is a 16 hectare (38 acre) area

12 3 2 o0 2 3 1 2 2 1 0 o0 3

Fig. 4 Vertical class count principle. The two images show an
example profile (vertical slice) of a 3D raster. The orange raster cells
denote the cells with a class of interest and the empty cells are all the
other classes. The number under each column (vertical column in a
3D raster) is count of the orange cells. The left image shows the basic
example, while the right image shows just the counts of cells under
an example surface shown in blue. Relative counts for the right image,
i.e. counts divided by the total count of cells under the surface, would
be 1/3,2/3,3/4,1/4,0,0,and 1
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on North Carolina State University’s campus. The data
were collected during leaf-off conditions in January 2015
by the North Carolina Floodplain Mapping Program. The
point cloud was classified by the data provider. We used
only points classified as ground (class 2) and vegetation
(classes 3, 4, and 5).

Reconstructed vegetation structure

The computations were performed with cubical cells with
approximately 0.9 m (3 feet) edges. With this data it was
necessary to reconstruct the vegetation structure as some
parts did not have enough cells with at least one point.
The average point density is 2.0 points per 2D cell (0.9 m
x 0.9 m) and the point density in 3D is 0.044 points per
3D cell (0.9 m x 0.9 m x 0.9 m). However, as a profile
(vertical slice) in Fig. 2 shows, the structure of the vegeta-
tion emerges after the reconstruction step witha 3 x 3 x 3
neighborhood.

Fragmentation index

A profile of the 3D raster representing the fragmenta-
tion index in Fig. 2 shows areas with different structures
and distributions of the index classes using 3 x 3 x 3
neighborhood. The low vegetation contains only a few
exterior cells under the top of the canopy, while the higher
vegetation has a lot of exterior cells in some areas and
higher numbers of transitional and edge cells in other
areas (likely indicating different vegetation type, not only
height). The middle part of the profile in between the
low and high vegetation is very dense, resulting in a lot
of interior and perforated cells. Figure 6 shows the pro-
file from Fig. 2 placed into the 3D raster together with
an orthophoto.

The fragmentation index profile shows the relation of
the index to the basic structure of the vegetation. Simi-
larly, horizontal slices at different heights (depths) shown
in Fig. 7 reveal the correspondence between the sim-
ple presence of the points in the given horizontal slice
and the fragmentation index classes. However, the frag-
mentation index also considers the 3D neighborhood
and describes which areas have continuous vegetation
(i.e. interior class) and which areas are characterized by
presence of separated or partially separated cells (ie.
edge, transitional, and patch classes). For example, Fig. 7
shows that the north and north-east parts of the study
area are characterized by a low number of interior cells
and a high number of transitional cells in the lower
elevation range, while having a high number of inte-
rior cells in the upper elevation range. Similar differ-
ences can be also observed for the inner and boundary
sections of a forested area in the south-east corner where
the index suggests higher trees with dense canopy in
the middle and lower, similarly structured vegetation on
the boundary.
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Fig. 5 Overview of the study area. The top left figure shows orthophoto, zones 1-6 used for zonal statistics plots (red), and a sample profile (blue)
oriented from south-west to north-east. The top right figure is point density computed as number of lidar points ina 3 m x 3 m 2D cell. The bottom
left figure shows one of the results, a dominant fragmentation index class in a vertical column. The bottom left dominant class figure is combined

with topography shading and contours in white

Fig. 6 3D raster profile in 3D perspective view. The image shows a profile of the fragmentation index 3D raster similar to the profile in Fig. 2
positioned in the 3D raster. The are two other additional profiles along the edges of the study area are in the back of the image. The fragmentation
index is using the color table form Fig. 3. The bottom of the 3D image shows the orthophoto. The image was created in the GRASS GIS 3D view

where profiles and other 3D raster slices can be explored interactively
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Fig. 7 Horizontal slices of fragmentation index. Each image shows a horizontal slice for a given height. The selected horizontal slices from feft to

bottom are for heights 5 m (15 feet), 14 m (45 feet), 23 m (75 feet), and 32 m (105 feet). The color table is form Fig. 3 with addition of light blue color
for exterior. The areas in the north and north-east show only limited number of interior and a lot of transitional and edge class for the lower heights,
while for the higher height a lot of interior and perforated class is visible. This is different from the area in the south-east corner with a lot of interior

in the lowest levels but only exterior in the higher levels indicating dense low vegetation

Manually selected zones in the study area (Fig. 5) show
different behaviors for the intermediate values used to
compute the fragmentation index. When mean point
count per cell # and mean ratios Py and Py are shown as
functions of height (Fig. 8), we can observe the correlation
between them. We also observe that the ratio of Pr and
Py changes significantly, which ultimately leads to differ-
ent values for the fragmentation index revealing structure
not captured by the simple point count.

2D outputs

To visualize the 3D fragmentation index in 2D and to
potentially combine it with 2D data, we counted number
of cells of a given class in one vertical column (2D cell).
There are significant differences between the absolute cell
count and the relative cell count, which is the absolute
count divided by the number of cells under the vegetation.
The absolute count of interior cells in Fig. 9 highlights the
same areas as the point density in Fig. 5. However, the
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Fig. 8 Index intermediate values. Average values of intermediate 3D rasters of number of points per cell n (blue), Pr (red), P (green) in zones 1 (left)
and 3 (right) from Fig. 5. The values are averages of all cells for each depth in the given 3D raster and the x-axis shows height in meters. The graph
shows correlation of the variables (Pr and Py are derived from presence and absence of the points), but it also shows how the ratio of Pr and Py
changes for each height and zone. This indicates potential changes in the vegetation structure not captured by number of points alone. The values
of Pr and Py are between 0 and 1 while the small average values for n are caused by large number of cells without any points
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Fig. 9 Absolute and relative counts of edge, perforated, and interior cells. Counts of cells for each selected fragmentation index class; from left in
both rows: edge, perforated, and interior. The first row shows absolute count of cells while the second row shows count of cells under the vegetation
surface divided by the number of all cells under the vegetation surface. The absolute count of edge cells seems to be associated with higher
vegetation, but unlike the view provided by slices in Fig. 7, the vegetation on the edge of the areas is not visible as a separate group. Worth noting is
the difference between absolute and relative count of interior cells (last column). The absolute count shows the whole south-east quadrant as

mostly consistent while the relative count shows it as two distinct groups

Absolute count

Relative count
0.50

200m

relative count of interior cells highlights the distinction
between zones 1 and 2 (in south-east quadrant) and shows
a clear difference between zones 4 and 6 (in south-west)
which was not visible from the point density.

The relative count of interior cells shows distinction
between zones 2, 3, and 6 (middle and south-east corner)
and the rest of the study area. This is visible in Fig. 9 and
also in the plot of absolute and relative counts averaged
for each zone in Fig. 10. The same is valid also for absolute
count of edge cells but only for zones 2 and 6, while zone
3 has counts similar to the rest of the area.

Although we see generally the same behavior for all the
zones in Fig. 10, such as high number of exterior cells,
we can also observe more unique behavior for some of
the zones. The zones number 2 and 6 have the lowest
ratio of exterior cells under the vegetation surface, and the
zones 1, 4, and 5 seem to follow the same pattern for both
absolute and relative counts.

The dominant class summarizes the 3D fragmentation
index raster or the derived 2D rasters into one 2D raster
by showing the most common class in a vertical column.
Much of the information about the structure is lost, but

2

—
&
[ N

Absolute count

o v A W N =

Relative count

T T T T
0 1 2 3 4 5

Fragmentation class

Fragmentation class

Fig. 10 Absolute and relative counts of fragmentation index classes. Number of cells in each fragmentation class for all selected zones in the study
area (delineated in Fig. 5). The counts are only for the points under the vegetation surface (i.e. not including exterior cells above vegetation). The left
image is the absolute count and the right image is the relative count, i.e. count divided by the height of the vegetation in cells. The x-axis numbers
denotes the index classes: 0 is exterior, 1 patch, 2 transitional, 3 edge, 4 perforated, and 5 is interior as in Fig. 3; the lines in between the numbers
have only visualization purpose. The relative count (right) shows, for example, zones 4 and 6 as the most different ones from each other, while
absolute count (left) shows zone 3 (large deciduous tree in the middle) as the most unique one. Both plots show minimum of cells with a patch
class; this is mostly due to the choice of the size of the moving window in fragmentation index computation
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Fig. 11 shows the main distinctions in between the zones
described above such as the differences between zone 1
and 2. However, different patterns, primarily composed
of large interior patches, characterize zone 6, while the
zone 2, previously similar, now has only small patches of
interior cells.

When the number of cells for a given class is plotted as
a function of height (Fig. 12), zones 2 and 6 again show
different behavior than zones 1 and 4. The zones 1 and
4 have significantly different plots for the interior class,
although the perforated class plots significantly overlap.

Software
The 3D (forest) fragmentation index is implemented in a
new GRASS GIS module 73.forestfrag, which shares most
of its code with the 2D version, the rforestfrag module.
This was possible thanks to the extensive use of raster
algebra in both modules. The r.forestfrag module received
a major code update as part of this work.

Furthermore, we implemented the counting of cells with
a given class (i.e. category counting) in a vertical column
of a 3D raster in a new module called r3.count.categories.
To create profiles of 3D rasters (Fig. 2), we implemented
the r3.profile module, which slices 3D raster vertically
between two given points. Once again we based the code
of the r3.profile module on its 2D equivalent, the rprofile
module, which creates a profile from a surface map.
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Finally, we prepared a publicly available Git repos-
itory hosted on GitHub. The repository contains the
data for the study area, scripts to perform the analy-
ses presented here, and details about the dependencies.
Using Docker, this repository can be turned into a com-
plete runtime environment to produce the figures (except
for Figs. 1, 3 and 6), plots, and all underlying data
for this manuscript. We also connected the repository
with a continuous integration service, Travis CI, which
will show if the basic functionality was broken by any
future changes.

Discussion

Metrics for data represented as 3D rasters were presented
in the past for plot and artificial data [5, 38] and specific
applications [12, 20, 43]. We present a general fragmen-
tation index based on its 2D version [26] and apply it to
a sample study area. Although the initial testing of the
methods and the software was done on 13 million points,
the study area we selected for the manuscript is much
smaller and contains only about 900 thousand points to
make all the figures quickly reproducible and the data
easily distributable as detailed at the end of this section.

Fragmentation index
The individual classes of the 3D fragmentation index
can have different meanings. A specific application can

exterior
patch
transitional
edge
perforated

interior

200 m

Fig. 11 Dominant fragmentation class. The top left figure shows the most common fragmentation class for each vertical column (2D cell) when we
don't consider exterior class. The top right figure shows the same when we do count the exterior class. The bottom left figure shows the most
common class in 13 x 13 neighborhood of the 2D cell which removes significant level of detail for the rasters with exterior class, but it shows more
clearly the different areas such as the area in south-east quadrant with prevailing transitional class
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Fragmentation class percentage

5 9 ¥ 18 23 2 R 37 4
Height in meters

perforated class plot

F:ragmentation class percentage

5 9 ¥ 18 23 2 RN 3} 4
Height in meters

Fig. 12 Perforated and interior class percentage. The plots capture the dependency of fragmentation class percentage on height in meters for
selected zones in the study area. The perforated class plot (left) shows two main groups of distributions. The shape of the curve for zone 3 is likely
caused by the small area of the zone. The interior class plot (right) shows the same two main groups with smoother curves in comparison to

assign ranks or weights to individual classes based on their
importance for a particular use case. The interior class can
be important for forest structure study, but certain bird
species habitat may be associated with perforated or edge
classes. Alternatively, Py and Py variables or their ratio can
be used directly, leaving out the classification completely.

We applied the 3D fragmentation index on a 3D raster
containing zeros and ones which was based on presence
or absence of lidar points in a cell or surrounding cells
in a window 3 x 3 x 3 at resolution 0.9 m. Alterna-
tively, the 3D raster with zeros and ones can be derived
from cells falling above or below some threshold for point
count, total or mean intensity per cell, or their combina-
tion. The window size may be altered as well depending
on how many cells contain at least one point. However,
larger window size could cause creation of artificial inte-
rior cells. The 3 x 3 x 3 window creates an envelope around
the cells with points which is subsequently classified as
edge. The overall structure is not influenced as visible
from the profiles in Fig. 2, but we must be careful when
using the results in applications where the exact position
of the edge cell matters. With dense enough point clouds,
for example from waveform or single-photon lidars,
there isn’t any need for a moving window and structure
reconstruction step.

The choice of resolution is influenced by the application
and point density. We used small cubical cells to capture
details in tree canopy or understory, but for studying indi-
vidual trees or vegetation patches, it may be appropriate to
choose different vertical and horizontal resolutions. Using
a coarser resolution may also remove the need for the veg-
etation structure reconstruction step because when the
point density is high enough, the cells with points will
start to touch each other and there won't be any gaps
for structure reconstruction to fill. On the other hand,
no window at all in combination with sparse point cloud
would lead to potentially incomplete model of the tree
structure, no interior cells, and many transitional and

patch cells. Again, the significance of this depends on
the context in which the resulting fragmentation index
is used.

To compute the fragmentation index, we again used
3 x 3 x 3 window. The size of the window together
with the vegetation structure reconstruction causes only
insignificant number of cells to be classified as patch as
visible from Fig. 10. Larger window size would yield larger
number of patch cells and it would change the overall frag-
mentation result as well [26, 29, 44]. The horizontal pro-
portions of the window should be kept the same, i.e. the
2D projection of the window should be square. However,
the size in the vertical direction can be different because,
depending on the choice of resolution, the vertical rela-
tions may be different than the horizontal ones. In other
words, we expect the horizontal relations to be isotropic,
but in the vertical direction we may encounter anisotropy
depending on what the vertical dimension in the 3D
raster represents.

The choice of the window size for the fragmentation
index depends on the application and using multiple win-
dow sizes may be appropriate for regressions and classifi-
cations.

The 3D fragmentation index depends on lidar pulses
penetrating through the top of the canopy. When the
canopy is dense, lidar pulses may not penetrate it result-
ing in no points under the canopy and limited applicability
of 3D raster methods. The penetration also depends on
the sensors used. If the point cloud comes from process-
ing unmanned aerial system (UAS) imagery, it typically
captures only the top of the canopy, while the fragmenta-
tion index works on a full 3D raster (as opposed to surface
represented by 3D cells). However, UAS equipped with
lidar may provide a more complete representation of the
vegetation.

We applied the index strictly on vegetation, specifi-
cally different types of forest and groups of trees using
lidar point cloud where the points were already classified.
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However, using the fragmentation index together with the
technique of counting cells of a given class per vertical
column under a given surface, we could support classifica-
tion of the point cloud because, for example, the buildings
would be characterized by high number of exterior cells
under the surface and only one patch or transitional cell
right below the surface.

Processing of 3D rasters

In the context of point cloud and land cover analysis,
we can now take advantage of combining the 3D raster
data and processing with the 2D data so that the tech-
niques currently in use can be enhanced by the explicit
information about the 3D structure. We described and
demonstrated the 3D and subsequent 2D analyses on the
presented 3D fragmentation index which can be com-
bined with the commonly used 2D (or 2.5D) metrics such
as canopy height, point density, mean intensity, some of
the more specific point cloud measures such as canopy-
relief ratio [45], or spectral and hyperspectral data. How-
ever, alternative approaches exist, for example, 2D rasters
can be extruded into 3D rasters (with the same value for
all depths) and further used in 3D computations fully pre-
serving the 3D relationships captured in the other 3D
rasters.

The 3D version of the 2D forest fragmentation index,
similarly to the 3D Moran’s I presented by Jjumba and
Dragicevic [38], shows that 2D indices can be transfered
to 3D while keeping similar semantics as the 2D ver-
sion. Additionally, we can observe that 3D raster algebra
and 3D raster tools in general can be used for analysis
in the same manner as the 2D equivalents. For example,
the raster algebra expressions to determine fragmentation
class based on Py and Py values is the same for 2D and
3D and also the Py value is computed in a similar way;
only the expression for Py is different in 2D and 3D due
to additional members and third value for referencing the
neighboring cells.

The processing times and disk space will be typically
higher for 3D rasters simply because there is one more
dimension to take care of in comparison to 2D rasters,
however the parallelization of the computations can be
as straightforward as in 2D. In general, 3D rasters can
be used for development of new remotely sensed data
processing techniques and subsequent landscape ecology
methodologies and measures such as landscape indices
or connectivity metrics. Specifically 3D rasters in GRASS
GIS were used in past for modeling of evaporation pro-
cesses in 3D [46].

Reproducibility

We not only provide newly written source code and use
open source software, but we also prepared a repository
for a full reproducibility which is considered equal with
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replicability, repeatability, and recomputability [47] for
the purpose of this manuscript. The source code is a
necessary part of the method description [48, 49] and,
together with documentation, a step towards re-usability.
In addition to it, the use of open source software for the
dependencies, most notably GRASS GIS, makes repro-
ducibility possible [50] and opens the whole underlying
computational environment for review.

However, the full and easy reproducibility is possible
only when the whole processing chain and environment
is shared. Thanks to Docker and the way we prepared the
repository with data and code, our processing environ-
ment and the results can be reproduced on any computer
[41]. The results cannot be reproduced within 10 min-
utes on a standard workstation as required by Schwab
et al. [51] for easily reproducible result because of the envi-
ronment building and processing time. However, obtain-
ing the result requires up to 10 minutes of preparation,
depending on whether Docker is installed on the com-
puter or not, and the total time including building and
processing is within an hour.

Conclusions

In the fields of remote sensing, GIS, and landscape ecol-
ogy, scientists often process remotely sensed data as 2D
rasters (images). Comparing to 2D rasters, 3D rasters are
less common, despite the fact they explicitly preserve the
3D relations in the data such as lidar point clouds.

We show how 3D rasters can be utilized in a general
remote sensing and GIS environment to process lidar
point clouds. We used a point cloud, which is dense
enough for reconstructing the structure of vegetation. The
3D raster we obtained represents the spatial information
about the structure of vegetation in all three dimensions.

Well-known concepts such as moving windows and
indices used in 2D processing in remote sensing or land-
scape ecology can be also applied in 3D. The process of
doing so is very straightforward. We redefined an existing
2D forest fragmentation index as a general 3D fragmen-
tation index, which we used to describe 3D vegetation
structure. This index is represented as a 3D raster, how-
ever we show how to use it in 2D to leverage common 2D
processing techniques.

The newly developed code is open source and is imple-
mented in a well-established GIS and remote sensing
software GRASS GIS. Standard GRASS GIS tools, most
notably 3D raster support, were used for rest of the anal-
ysis showing how GRASS GIS can be leveraged for pro-
cessing lidar point clouds in three dimensions as well as in
two dimensions.

Availability of data and materials
We used a suite of existing and newly developed soft-
ware to implement the new methods and perform the
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analyses. We used publicly available data and aim for full
reproducibility of the results presented in this study.

Newly developed software

We implemented the 3D version of the forest frag-
mentation index as a GRASS GIS module called
r3.forestfrag. We developed the r3.count.categories mod-
ule to count cells with a given class (i.e. cate-
gory) and we also developed the r3.profile module to
create profiles (i.e. vertical slices) from 3D rasters.
The r3.profile module is written in C programming lan-
guage, while r3.forestfrag and r3.count.categories mod-
ules are in Python. All three modules are distributed
under the terms of the GNU General Public License
2 [52] or higher (GNU GPL). The modules are
now available in the GRASS GIS Add-ons reposi-
tory. The documentation for the modules is available
online [53].

Existing software

The rest of the study used GRASS GIS [54], its graphi-
cal user interface, and modules which can run in com-
mand line. The most important modules used in this
study were r3.in.lidar [42] and r3.to.rast. GRASS GIS
is platform independent, is supported on all common
desktop operating systems and can run on servers and
clusters. For our study we used a desktop computer
with Ubuntu [55]. GRASS GIS is licensed under GNU
GPL and, therefore, does not impose any special restric-
tions for use by non-academics. GRASS GIS is writ-
ten in C and Python. The r3.in.lidar module requires
libLAS library for reading lidar point clouds in LAS
format.

Data

The lidar point cloud data used in the study are from
the North Carolina Floodplain Mapping Program and are
available through North Carolina’s Spatial Data Download
website [56]. We used tile LA_37_20079301_20160228
from phase 3 from January 2015.

Code for full reproducibility

The Git [57] repository with data for the study area and
scripts in Bash for running the analyses is hosted on
GitHub and publicly available [58] under GNU GPL. The
repository contains a Dockerfile so that Docker [59] can
be used to create the exact environment used to run
the analyses for this study. The repository’s web page
contains instructions how to download it and the two
commands needed to reproduce all of the data and figures
presented in this study. The status of the code can be
reviewed at Travis CI [60], a continuous integration ser-
vice. A snapshot of the repository is also available as
Additional file 1.
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Additional file

Additional file 1: Code for full reproducibility. This is a snapshot of the
repository [58] provided for full reproducibility as a 7z archive file. It
contains a Dockerfile, so by using Docker it can be turned into runtime
environment for processing the data and creating the figures and plots.
The detailed instructions are in the readme file. The code for the newly
developed modules is included. (7Z 10,850 kb)
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