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Abstract

Increasing evidence suggests a multifaceted relationship exists between cancer and cardiovascular disease (CVD).
Here, we introduce a 5-tier classification system to categorize cardio-oncology syndromes (COS) that represent the
aspects of the relationship between cancer and CVD. COS Type | is characterized by mechanisms whereby the
abrupt onset or progression of cancer can lead to cardiovascular dysfunction. COS Type Il includes the mechanisms
by which cancer therapies can result in acute or chronic CVD. COS Type lll is characterized by the pro-oncogenic
environment created by the release of cardiokines and high oxidative stress in patients with cardiovascular
dysfunction. COS Type IV is comprised of CVD therapies and diagnostic procedures which have been associated
with promoting or unmasking cancer. COS Type V is characterized by factors causing systemic and genetic
predisposition to both CVD and cancer. The development of this framework may allow for an increased facilitation
of cancer care while optimizing cardiovascular health through focused treatment targeting the COS type.
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Introduction

With 2 million new cancer diagnoses per year, improve-
ments in cancer therapies has led to an increasing preva-
lence of cancer survivorship [1]. There are close to 17
million cancer survivors in the United States today,
representing 1 in 20 people [1, 2]. In the next 10 years,
there is a projected 31% increase in survivors, with more
than 22 million cancer survivors estimated for 2030 [1].
In the last decade, cardiologists and oncologists have
provided clinical and experimental evidence that cancer,
as well as cancer treatments, result in detrimental effects
on the cardiovascular system, a consequence that im-
poses clinical challenges for patient management. In
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parallel, the captivating notion that CVD can represent a
pre-oncogenic condition has gained growing awareness
[3]. Among survivors, CVD is the leading cause of non-
cancer related mortality [4, 5]. Interestingly, the relation-
ship is not unidirectional [6]. Epidemiologic data have re-
ported an increased cancer risk in patients with CVD [7—
9]. This relationship may be intuitive, given that both dis-
ease processes share common risk factors and
pathogenesis.

In this manuscript, we propose a 5-tier classification
system to better characterize the intersection between
cardiology and oncology (Fig. 1). Types I and II of our
classification systems address how cancer and cancer
therapies affect the cardiovascular system, while Types
III and IV incorporate how cardiovascular diseases,
monitoring strategies, and therapies may contribute to
unmasking cancer or fostering a tumorigenic environ-
ment (Fig. 2). Type V addresses systemic and genetic

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s40959-021-00110-1&domain=pdf
http://orcid.org/0000-0002-5687-7632
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:shbrown@mcw.edu

de Boer et al. Cardio-Oncology (2021) 7:24 Page 2 of 17

Cardio-Oncology Syndrome (COS): Neoplastic disorders and Cardiovascular disease whereby direct or
indirect mechanisms associated with the one condition induces acute or chronic presence of the other
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Fig. 1 Cardio-Oncology Syndromes in Precision Cardio-Oncology. The five types of Cardio-Oncology Syndromes are listed, along with a
description of whether they are direct (black arrows), indirect (grey arrows), or secondary and how they are defined. A few examples are given for
each type. CHiP, clonal haematopoiesis of indeterminate potential; COS, Cardio-Oncology Syndromes; CV, cardiovascular; TKI, Tyrosine kinase

inhibitors; VEGF, vascular endothelial growth factor
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Fig. 2 Relationships between CVD and cancer. This schematic demonstrates the multifaceted relationship that exists between CVD and cancer.
While CVD is the leading cause of non-cancer related mortality among cancer survivors, there is also a known increased risk for cancer in patients
with CVD. Additionally, CVD and therapies for CVD can have both a direct (curved black arrows) and indirect (curved grey arrows) impact on
cancer; while cancer and therapies for cancer can have both a direct (curved black arrows) and indirect (curved grey arrow) impact on cardiac

function and health. CVD, cardiovascular disease
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conditions that can lead to both CVD and cancer. We
also emphasize the need for medical communities in
both cardiology and oncology to raise awareness of these
aetiologies and related challenges to maximize collabor-
ation among medical scientists and clinicians. Such
interdisciplinary partnerships will help advance the clin-
ical care, research, and education needed in Cardio-
Oncology to advance the field and optimize the care
landscape for our patients.

Cardio-oncology syndrome type | (COS 1; direct):
effect of the presence of cancer itself on the
cardiovascular system

Arterial thromboembolism due to cancer

Patients with cancer are at higher risk of developing ven-
ous and arterial thromboembolic events. The risk of ar-
terial thromboembolism varies by cancer type [10, 11].
Particularly lung, gastric, and pancreatic cancers demon-
strate the higher risk. Evidence for this statement is sub-
stantial, while the mechanism remains less clear. It has
been suggested that tumour cells present tissue factors
and are therefore able to bind with coagulation factors.
Concurrently, they also produce inflammatory cytokines
and cancer procoagulant factors [12]. These mechanisms
are responsible for the activation of the coagulation-
cascade, promotion of the platelet activation and conse-
quentially increased thrombus formation. Furthermore,
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patients with cancer often present with lymphocytosis,
neutrophilia, and thrombocytosis, which are known to
promote hypercoagulability (Fig. 3) [13].

Cancer-associated cachexia and anorexia

Cachexia is a state of involuntary weight loss and is
commonly observed in patients with cancer - predomin-
antly pancreatic, colon, lung, head, and neck as well as
in gastro-oesophageal cancer. Depending on the cancer
type, the prevalence of cachexia varies between 40 to
70%. Though this condition impacts several organ sys-
tems, skeletal muscle is the first to be affected by body
wasting (Fig. 3) [14]. The cardiac manifestations, as
shown primarily in animal studies, results in altered
heart function, cardiac atrophy, and fibrosis, and re-
duced cardiac weight [15].

The mechanisms by which malignancies induce car-
diac wasting are not fully elucidated. It has been pro-
posed the ubiquitin-proteasome system, autophagy, and
myocyte apoptosis contribute to cardiac wasting [16].
Also, cancer-associated cachexia is characterized by the
secretion of inflammatory mediators and hormonal fac-
tors from tumours and their microenvironment [15].
These factors demonstrate diagnostic value and may
serve as biomarkers for the identification of cancer-
induced cardiac alterations.
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Fig. 3 Mechanisms by which the development of cancer can lead to CVD (Cardio-Oncology Syndrome Type I). There are three primary
mechanisms demonstrated in this schematic to illustrate COS Type I. Patients with cancer have a higher risk for both venous and arterial
thromboembolism. Patients with sudden development of cancer may develop tumour lysis syndrome, whereby hyperuricemia may result in
acute kidney injury which may have a deleterious effect on cardiac function, and severe hyperkalaemia may result in arrhythmias. Finally, the
inflammatory mediators from cancer cachexia may have a negative impact on cardiac function. CVD, cardiovascular disease
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Anorexia is a major component of cancer cachexia.
Tumours cause dysphagia and alter the gut function
resulting in nutritional deficiencies. In addition, some
cancer patients experience depression and pain, further
decreasing the desire to eat [17]. Eating disorders have
multiple medical consequences, such as potentially life-
threatening cardiovascular complications characterized
by hemodynamic and structural changes, cardiomyop-
athy, and premature death [18].

Tumour lysis syndrome

Tumour lysis syndrome (TLS) describes a state of a
massive tumour cell death resulting in the development
of metabolic imbalances and organ dysfunction. TLS can
occur spontaneously when cancer cells die without pre-
ceding chemotherapy, embolization, or radiation therap-
ies, or as a result of antineoplastic treatments. The
majority of TLS cases are reported in haematological
malignancies, such as leukaemia and lymphomas with
marked sensitivity to cell lysis with chemotherapy. The
prevalence of TLS is lower in patients with solid cancer.
The pathogenesis of TLS is explained by the fact that
cells, particularly malignant cells, contain high levels of
potassium, phosphorus, and uric acid. The release of
these intracellular substances facilitates the development
and progression of TLS and its complications [19].
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Cancer cell lysis is associated with a significant release
of nucleic acids, purines, and eventually uric acid. The
latter can crystalize and block the flow in the renal tu-
bules, which consequently leads to acute kidney injury
(Fig. 3) [20]. Hyperuricemia is associated with impaired
endothelium-mediated relaxation, vascular stiffness and
hampering left ventricular filling pattern. Additionally,
serum levels of uric acid are linked to the progression of
heart failure (HF). Excessive phosphorus binds to cal-
cium and forms a calcium-phosphorus product called
calcium phosphate. This product is deposited in kidneys
and cardiac tissue resulting in acute kidney injury and
cardiac arrhythmia, respectively. Also, the decline in free
calcium concentration, caused by phosphorus binding, is
associated with prolongation of the QT interval on ECG
and muscle tetany. This may lead to arrhythmias if drugs
that prolongate the QT interval are administrated [20].

Cardio-oncology syndrome type II-(COS 2;
indirect): anti-neoplastic treatments cause acute
or chronic CV disease

Cancer treatments-induced cardiotoxicity

Modern cancer therapies can lead to CV structural and
functional dysfunction [21]. Cardiotoxicity is one of the
most concerning side effects of chemotherapy. The clas-
sification and segregation of toxicities by type of therapy
have been discussed extensively elsewhere [22] and are
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Fig. 4 Cardiovascular toxicities of cancer therapies. Cardiovascular toxicities of a wide spectrum of cancer therapies can affect the heart (center,
left, and right of figure) or peripheral vasculature (bottom row of figure). Ab, antibody; CDK; cyclin dependent kinase; HER2, human epidermal
growth factor receptor 2; ICl, immune checkpoint inhibitor; MT, microtubule; PI, platinum inhibitor; TKI, tyrosine kinase inhibitor; Tx, Therapy. Used
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Fig. 5 Mechanisms by which anti-neoplastic therapies may result in CVD (Cardio-Oncology Syndrome Type II). There are many examples shown
here in which anti-neoplastic therapies may result in acute or chronic CVD [22]. Pharmacotherapies, such as anthracyclines and HER2 receptor
antagonists may result in myocardial dysfunction and heart failure. Immunotherapy can also induce cardiotoxicity. Radiation therapy may also
result in the development of atherosclerosis, as well as damage to the heart valves or pericardium. CV, cardiovascular; ECM, extracellular matrix;
HER2, human epidermal growth factor receptor 2. Adapted with permission; from Brown [23], Creative Commons Attribution License [CC BY]

largely catalogued in Fig. 4. This section highlights a few
examples of cancer therapy-related cardiac dysfunction.
A broad list of commonly used chemotherapies is pro-
vided in Fig. 5.

Several classes of commonly used chemotherapy
agents are known to have myocardial dysfunction and
HF as important consequences, most notoriously anthra-
cyclines and human epidermal growth factor receptor 2
(HER2) receptor antagonists [24]. While both agents can
cause reversible myocardial dysfunction, irreversible
myocyte damage is classically reported with anthracyclines
and can lead to HF years after drug administration. Even
“targeted” therapy such as vascular endothelial growth fac-
tor inhibitors can exert off-target effects causing hyperten-
sion, thromboembolism, QT prolongation, and atrial
fibrillation (AF), as well as cardiomyopathy [24—27]. Other
targeted tyrosine kinase inhibitors such as ibrutinib, soraf-
enib, and mammalian target of rapamycin complex
(mTORC) inhibitors also have a wide range of CV effects
including AF, QTc prolongation, and HF [28]. Cancer pa-
tients can face an increase in venous thromboembolism
compared to the general public, depending on the type of
cancer or specific treatments, among other factors [10].
The pharmacokinetics of several chemotherapeutic agents,
coalescing with drug interactions, frequent surgical proce-
dures, and reduced mobility of patients during treatment
also contribute to the risk for thromboembolism.

Different conditions can be induced by immunother-
apies for onco-hematological disorders. As an example,
chimeric antigen receptor T (CAR-T) cell therapy is
used in the treatment of haematological malignancies,

including acute leukaemia, lymphoma and multiple mye-
loma. In spite of the remarkable clinical effectiveness, this
treatment shows serious side effects that cannot be under-
rated. Cytokine release syndrome (CRS) is one of the most
clinically important and potentially harmful toxicities.
When CAR-T cells are activated by malignant cell antigen,
they in turn activate monocytes and macrophages, causing
the release of proinflammatory cytokines and chemokines
including IL-6, IL-8, IL-10, interferon-gamma (INF-y),
monocyte chemoattractant protein-1b, and granulocyte-
macrophage colony-stimulating factor [29, 30]. Conse-
quently, the IL-6 receptor antagonist Tocilizumab is used
to treat CRS in cancer patients as first-line treatment [31—
34]. While cardiac dysfunction caused by CRS is largely
reversible, tocilizumab is used in more severe cases, which
can include lethal cardiac dysfunction [35, 36]. Conse-
quently, tocilizumab, an IL-6 receptor antagonist, is indi-
cated when patients demonstrate significant left ventricular
dysfunction [37]. Corticosteroid therapy is applied in
certain acute cases that do not respond to tocilizumab.
When a patient may not respond to tocilizumab or a
steroid, other agents such as anakinra (an IL-1R inhibi-
tor) and etanercept (an anti-TNF) can be used to block
inflammatory pathways [29, 38]. Indeed, immunotherapy
can trigger native immune-system mediated cardiotoxi-
city, such as myocarditis, pericarditis, HF, and arrhythmias
[10]. In general, these events are uncommon, occurring in
<3% of patients who receive immune checkpoint inhibi-
tors, but carry a high risk of morbidity and mortality [39].
Radiation therapy is also taxing on the CV system.
Radiotherapy may lead to both short and long-term
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epicardial coronary artery and microcirculatory damage,
may cause regurgitation related to valve retraction and
stenosis, and can induce fibrotic changes in the parietal
pericardium [24].

Cardio-oncology syndrome type Il (COS 3; direct):
CVD promotes a pro-oncogenic environment
Epidemiological evidence demonstrating higher cancer
risk in CVD patients

Emerging epidemiological data has suggested an in-
creased cancer risk in patients with prevalent CVD
compared to subjects without CVD [3, 7-9]. Even
though most studies attempt to account for surveil-
lance bias, this remains a potential concern with
many observational studies. In a Danish study, all age
groups demonstrated higher incidence rates of cancer
after 1year from the diagnosis of MI [40]. The associ-
ation of CVD with increased cancer risk is further
supported by a long-term prospective study that eval-
uated the clinical features and prevalence of malig-
nant neoplasia in patients with acute coronary
syndrome (ACS) during a 17-year follow-up. The inci-
dence rate was 17.8 cases per 1000 person-years in
patients with ACS, which was three times higher than
that observed in the general population. Those who
developed malignancies after the ACS diagnosis dem-
onstrated a worse prognosis [41].

Earlier, data of the Swedish Inpatient Register were
collected from patients who were admitted to the hos-
pital between the years 1965 and 1983 for venous
thromboembolism. The enrolled patients did not have
cancer at the start of the study. The authors stated that
venous thromboembolism could be a potential indicator
of cancer as 4% of these patients were diagnosed with
cancer within the first year after admission and the risk
of all cancers was higher than expected with a standar-
dised incidence rate of 4.4 (95% CI 4.2—4.9) [42].. Based
on data collected for the Vitamin Intervention for Stroke
Prevention study, the investigators revealed that ische-
mic stroke survivors had a higher annual rate of age-
adjusted cancer risk compared to the general population
at 1year (581.8/100,000 persons vs. 486.5/100,000 per-
sons, SIR 1.2, 95% CI 1.16-1.24) and 2years (1301.7/
100,000 vs. 911.5/100,000, SIR 1.4, 95% CI 1.2—1.6) after
recruitment [43]. In these instances, the temporal pres-
entation of events helps to define the sequence of risk.

Based on 13 prospective studies, a meta-analysis found
patients with hypertension were more susceptible to de-
velop breast cancer [44, 45]. The prevalence of colorectal
cancer was 11% higher in patients with hypertension and
renal cell carcinoma was also shown to be associated
with high blood pressure [44].

Interestingly, AF may be also associated with cancer.
The RE-LY (Randomized Evaluation Long-Term
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Anticoagulant Therapy Study) revealed that malignant
tumours were the main non-CV cause of mortality in
AF patients [46, 47]. Also, the Women’s Health Study
(WHS) showed that 10% of patients who had new-onset
AF developed subsequent cancer [47]. Yet, most evi-
dence stems from retrospective analyses with mostly
non-causal relationships. Also, available data tend to
show positive associations due to publication bias. Thus,
these findings should be examined and evaluated critic-
ally by the reader.

An additional consideration is potential survivor bias
in cardiovascular trials. Participants that receive and sur-
vive focused cardiac treatment or intervention will ac-
crue exposure-time for risk of developing subsequent
cancer. However, since most studies compared those
with CVD compared to those without CVD when asses-
sing the association of CVD with subsequent risk for
cancer, it is unlikely the association seen between CVD
and cancer is driven by survivor bias, since those with
CVD even with treatment, are less likely to accrue more
time at risk than the non-CVD comparator.

The effect of CVD-induced hypoxia on cancer

Evidence suggests that tissue hypoxia in atherosclerosis
may accelerate cancer progression (Fig. 6). Endothelial
abnormalities and insufficient blood flow induce tissue
hypoxemia in CVD patients. Hypoxia subsequently in-
duces hypoxia-inducible factor 1-alpha (HIF-la) [48].
The latter is commonly overexpressed in many cancers
and has many functions such as, increasing glucose me-
tabolism, alteration of apoptotic pathways, stimulating
angiogenesis and tumour growth, and invasion [49].
Studies in animal xenograft models revealed that tumour
growth and angiogenesis were repressed by the loss of
HIF-1 activity and stimulated by HIF-1a overexpression.
Also, cancer biopsies from patients indicated that HIF-
la is overexpressed in several tumours and showed that
its level of expression correlated with prognosis and
mortality [49]. Based on these findings, the activation of
HIF-1a in CVD constitutes a potential pro-oncogenic
element that may lead to subsequent cancer and consti-
tutes a common therapeutic target for both diseases.
However, the presented evidence provides better support
to HIF-1a increasing tumour growth rather than causing
cancer. Therefore, adequate study design and pre-
clinical models are needed to determine whether the
HIF-1« initiates cancer.

Cardiokines stimulate tumour growth

A recent experimental study indicated that factors se-
creted by failing hearts stimulate tumour growth by
releasing pro-oncogenic factors into the circulation
[50] (Fig. 6). In the setting of MI, mice genetically
predisposed to the development of intestinal tumours,
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Fig. 6 Mechanisms by which cardiac scarring and remodelling may promote a pro-oncogenic environment (Cardio-Oncology Syndrome Type |Il).
This schematic demonstrates how a pro-oncogenic environment can result from cardiac dysfunction. With cardiac dysfunction (i.e. development
of heart failure after a myocardial infarction), increased central venous congestion can result in hypoperfusion for various end organs, which then
release stress signals that may increase tumour growth, angiogenesis, and tumour invasiveness. Increased filling pressures may similarly result in
pulmonary congestion and the increase in stress signals. Cardiac dysfunction may also result in release of cardiokines, increased oxidative stress,

and pro-inflammatory factors which may result in stimulated tumour growth, angiogenesis, and tumour invasiveness

exhibited a higher number of intestinal polyps com-
pared to sham mice. The authors suggested that the
oncogenic activity of the failing heart was mediated
by secreted factors such as SerpinA3, a factor regulat-
ing tumour cell survival pathways and apoptosis [50].
Treating colon cancer cell lines (HT-29) with a selec-
tion of proteins that were overexpressed in the myo-
cardium of failing hearts, resulted in a higher
proliferative rate. Further, the investigators showed
that HF and inflammation biomarkers were associated
with new onset cancer incidence among participants
with HF from the PREVEND (Prevention of Renal
and Vascular End-Stage Disease) study [50]. Compar-
able outcomes were validated in a recent study show-
ing that MI-induced HF accelerates breast cancer
progression in mice. Further, prospective studies
showed that cancer prevalence is higher in patients
with CV events [51]. Cardiokines may represent a
new biological pathway by which CVD induces cancer
development and progression. However, these findings
require further investigation in larger clinical studies.

Hypercoagulability promotes cancer

It is already acknowledged that cancer induces a hyperco-
agulable state through the production of pro-coagulant
factors. However, emerging data indicate that thrombosis
can also promote cancer (Fig. 6). Higher cancer prevalence
was reported in patients after stroke and venous thrombo-
embolism [42, 52]. Moreover, shorter duration of anti-
coagulation with warfarin (6 weeks) treatment was associ-
ated with a higher risk of incident cancer compared with
long-duration treatment (6 months) [53]. Studies indicated
that thrombin promotes metastasis and induces vascular
growth factors and angiogenesis [54, 55]. Also, thrombin
boosts the proliferation of dormant cancer cells and pro-
motes progression to clinical disease [48].

Cardio-oncology syndrome type IV- (COS 4;
indirect): the association between CVD treatments
and diagnostics and cancer diagnosis
Cardiovascular diagnostic radiation

Studies have suggested some indication of an association of
cumulative  cardiovascular  diagnostic radiation with
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subsequent development of cancer [56—58]. Cancer preva-
lence attributed to the exposure to cardiovascular diagnostic
radiation has been extensively investigated and existing data
suggest that children and adolescents are more prone to
developing radiation-associated malignancies than older in-
dividuals [56—58]. Consequently, there has been a debate re-
garding the optimal type of imaging modalities that should
be used for specific indications in young patients with a
focus on reducing radiation-exposing imaging studies.

A retrospective cohort study aimed to evaluate the
prevalence of leukaemia and brain tumours after CT scans
in children and young adults [56]. The investigators noted
a positive link between the radiation dose from CT scans
and both leukaemia and brain tumours. However, these
cancers are rare, thus, the cumulative absolute risks are
small. It has also been estimated that one excess case of
leukaemia and one excess case of brain tumour per 10 000
head CT scans will occur within the 10 years after the first
CT scan in patients younger than 10 years [56].

Another population-based cohort study compared
cancer incidence in young individuals exposed to a CT
scan, more than 1 year before cancer diagnosis, with
cancer incidence rates in unexposed individuals. Among
individuals exposed to a CT scan before the age of 19
years, the overall cancer incidence was 24% higher in
comparison to unexposed individuals. The proportional
increase in cancer risk was obvious at short intervals of
exposure and was greater for patients exposed at youn-
ger ages [57]. Further, cancer prevalence in young pa-
tients exposed to radiation from cardiac catheterizations
is relatively low: below 50 per 100,000 for males and 200
per 100,000 for females [58].

Although clinical benefits should compensate for the
low absolute risks, radiation doses should be kept as low
as possible and alternative methods, which do not involve
ionizing radiation, should be considered if suitable. As an
example, ejection fraction can be determined by echocar-
diography (no ionizing radiation) instead of multigated ac-
quisition scan. Moreover, when considering the annual
frequency of CVD requiring examination with CT scans
and cardiac catheterization, the overall attributable cancer
risk may become important. Therefore, cautious consider-
ation by treating physicians is needed before pursuing any
potentially carcinogenic diagnostic or therapeutic options.

Cardiovascular medications

The safety of CVD treatments concerning cancer devel-
opment is still an active topic of investigation (Fig. 7),
with equivocal results. Several studies reported a higher
rate of diagnosis of lung cancer in patients treated with
angiotensin-converting enzyme inhibitors, especially in in-
dividuals treated for more than 5 years [59]. Yet, the out-
comes of a large cohort study did not link cancer
incidence to angiotensin receptor blocker (ARB)
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treatment. Interestingly, a subgroup analysis showed a sig-
nificant association between ARB and cancers in male
genital organs [60]. Nevertheless, randomized clinical tri-
als with irbesartan, valsartan, and losartan did not detect
any rise in the overall or site-specific cancer risk in pa-
tients taking ARB [61]. The inconsistencies among these
findings may be due to bias (e.g., selection bias), which
can lead to inaccurate conclusions. Evaluating the link be-
tween CVD drugs and carcinogenesis is important to con-
sider, given the millions of patients treated with CVD
drugs.

Surveillance bias

Patients with CVD are typically under closer medical
surveillance than the general population. Thus, the
heightened risk of cancer in CVD might be partially ex-
plained by observation bias. Frequent chest X rays and
CT scans, as well as PET scans and MRI scans, may un-
mask pre-existing cancers. Also, repeated lab tests may
also raise concern for malignancies, which allows the de-
tection of cancer at early stages. Clinicians have long
been aware that bleeding, which is frequently observed
in AF patients treated with oral anticoagulants, could
potentially unmask occult cancer. Predominantly, evi-
dence of the association between bleeding and cancer
diagnosis emerges from small retrospective analyses of
databases intended to address other queries. However, a
nationwide Danish retrospective study involving patients
with AF treated with anticoagulants reported a 15-fold
higher hazard of a new colorectal cancer diagnosis with
lower gastrointestinal bleeding in patients older than 75
years [62]. A recent study analysed data from the Retro-
spective observational registry of patients with atrial fib-
rillation from Vigo’s health area (CardioCHUVIAF). The
authors found that gastrointestinal bleeding was associ-
ated with a 13-fold higher hazard of a new gastrointes-
tinal cancer diagnosis. In the same study, genitourinary
bleeding was associated with an 18-fold higher hazard of
new genitourinary cancer diagnosis [63]. A large popula-
tion of CVD patients is treated with anticoagulants and
is at higher bleeding risk. Hence, they are more exposed
to clinical management and screening (e.g., colonos-
copies), which unmasks occult cancers. To conclude, an-
ticoagulants are likely related to the unmasking of
prevalent GI cancers rather than a causative mechanism.

Survivor bias

An additional source of potential bias is survivor bias for
CVD patients that are randomized to a procedure as
compared to no procedure. CVD patients that undergo
the procedure or receive a study drug may have benefit
and live longer, thus leading to increased exposure time
at risk for development of subsequent cancer. A classic
example of this would be with the use of implantable
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cardiac defibrillators (ICD) in heart failure with reduced
LVEF. Those that receive an ICD may live longer than
those without an ICD, leading to increased rates of ob-
served cancer in those with ICDs.

Cardio-oncology syndrome type V (COS 5):
systemic and genetic conditions

Cardiac tumours

Cardiac tumours fall within COS Type V (Secondary)
due to shared systemic and genetic conditions leading to
concurrent cancer and CVD (Fig. 8). The degree of en-
vironmental and genetic contribution is largely variable
depending on the exact cardiac tumour subtype. Some
tumours may occur due to genetic predisposition, but
this is not always the case. Perhaps one of the best-
known examples of genetically driven cardiac tumours is
tuberous sclerosis, an autosomal dominant disorder that
is associated with cardiac rhabdomyomas [64]. Another
well-known genetic disorder is the Carney complex,
which is associated with myxomas [65].

Cardiac tumours can be metastatic and spread via
haematogenous seeding (e.g., melanoma, lymphoma),
lymphatic spread (e.g., breast cancer), venous extension
(e.g., renal cancer), or direct extension (e.g., lung cancer)
[66]. Regardless of tumour type, any cardiac mass can
have hemodynamic effects depending on the location, by
impairing valvular function or obstructing normal blood
flow. Additionally, tumours may serve as a nidus for ar-
rhythmias and result in sudden death. Embolic compli-
cations can be seen either from the tumour itself or due

to thrombus formation on the tumour. More aggressive
malignant tumours can also have a direct myocardial or
pericardial extension.

Shared risk factors

Extensive research over the decades has established risk
factors associated with the development of cancer and
CVD. These factors have been previously interpreted as
discrete entities associated with either cancer or CVD.
More recently however, an appreciation of a shared
overlap model has come to light in regard to risk factors
common to both CVD and cancer [67-70].

Smoking

Worldwide, smoking accounts for nearly 30% of all
cancer-related deaths and increases the risk of CVD 2-
to 3-fold. Smoking stimulates pro-inflammatory path-
ways through irritants, carcinogens, and oxidative stress
present in the development of CVD and smoking-related
cancer. Impaired nitric oxide bioavailability and endo-
thelial damage caused by smoking are key mediators in
the development of atherosclerosis and subsequent CVD
[71]. Tobacco is strongly associated with incident lung,
oesophageal, pancreatic, and bladder cancer.

Alcoholism

Studies over the last several decades have consistently
shown a J- or U-shaped relationship between alcohol use
and CVD [72]. Compared to non-drinkers, alcohol use
increases the risk of colorectal, oropharynx, oesophageal,
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liver, and breast cancer [73, 74]. Even moderate alcohol
use has been associated with an increased risk of overall
cancer [75]. Acetaldehyde, an ethanol metabolite, is con-
sidered carcinogenic through reactive oxidative stress,
altered DNA methylation, and changes in oestrogen
pathways [76].

Type 2 diabetes Mellitus

Type 2 diabetes mellitus has long been identified as a
risk factor for the development of CVD through deleteri-
ous effects on the micro- and microvasculature [77]. A
consensus report released by the American Diabetic As-
sociation found convincing evidence of an association
between type 2 diabetes mellitus and cancer [78]. Medi-
cations used in the treatment of diabetes also provide
insight into the interplay between CVD and cancer. The
use of metformin has been reported in several systematic
reviews and meta-analyses to reduce the risk of cancer
incidence and all-cancer mortality compared to other
traditional regimens [79]. More recently, sodium-
dependent glucose transporter 2 (SGLT2) inhibitors
have become first-line agents in metformin-resistant dia-
betes and are recommended for secondary CVD preven-
tion due to their cardioprotective effects. In a recent
study by Claudio et al, SGLT2 inhibition in early-stage
lung adenocarcinoma reduced tumour progression and
prolonged survival in mice with SGLT2 expression [80].
Conversely, pioglitazone - a thiazolidinedione - improves

glycaemic control in patients with type 2 diabetes but
has been shown to have detrimental CV effects and an
increased risk of bladder cancer [81].

Obesity

This association between CVD and obesity is likely me-
diated indirectly through factors related to the metabolic
syndrome including dyslipidaemia, insulin resistance,
sedentary lifestyle, but also a pro-thrombotic and inflam-
matory state [82, 83]. In a dose-response meta-analysis
of observational studies, every 5% increase in body mass
index (BMI) was associated with a 10% greater risk of
death related to cancer. The risk of cancer associated
with obesity is higher in women compared to men and
may be attributable to excess adipose tissue producing
elevated oestrogen levels, a known risk factor for breast
and endometrial cancer [84].

Physical inactivity

A dose-response relationship was observed in a pooled
meta-analysis, finding 2.5 h/week of moderate-intensity
activity led to a significant 13% reduction in cancer mor-
tality [85]. Sedentary behaviour, irrespective of activity
level, has also been shown by several meta-analyses to
be associated with CVD and certain types of cancer [86].
The shared biological mechanism in reducing CVD and
cancer is likely multifactorial through beneficial effects
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on blood pressure, insulin sensitivity, and reduced adi-
pose tissue [87].

Shared pathophysiology

While mechanisms involved in the development of CVD
in cancer patients have been extensively elucidated,
pathways driving the increased prevalence of malignan-
cies in CVD patients have not been equally explored
[88]. In this section, we highlight common molecular
pathways central to CVD and cancer, namely inflamma-
tion and clonal haematopoiesis of indeterminate poten-
tial (Fig. 8).

Inflammation

Based on the outcomes of the Canakinumab Anti-
Inflammatory Thrombosis Outcome Study (CANTOS),
inflammation is a valuable target in both cancer and
CVD. In this study, patients with MI and elevated CRP
were randomly assigned to receive the canakinumab, an
IL-1p-targeting antibody. The authors reported lower
rates of CV events in patients treated canakinumab com-
pared to the placebo group. Alongside, canakinumab re-
duced incident lung cancer and cancer-related mortality.
These results demonstrate a promising effect of anti-
inflammatory agents, such as canakinumab, in reducing
CV and cancer events . Accumulating findings from
clinical and preclinical studies highlight the role of in-
flammation in CVD development and consequential
complications and highlight the pathogenic activity of
proinflammatory cytokines, mainly TNF (tumour necro-
sis factor)-a, IL (interleukin)-1pB, IL-6, and IL-18 [61]. In
the context of cancer, targeting cytokines into the
tumour by the fusion of anti-cytokine antibodies repre-
sents a novel tool in immunotherapy [89]. The inflam-
matory response to haematological malignancies is often
associated with an overproduction of IL-6, predomin-
antly in B cell-derived and plasma cell tumours. Elevated
levels of IL-6 promote myocardial injury and are in-
volved in coronary artery diseases [90, 91]. In general,
IL-6 elevation has associated with cardiovascular compli-
cations such as atherosclerosis, MI, and heart failure.
The pathophysiology of ACS and atherosclerosis com-
prises adaptive immune response T cells and cytokines
[92]. Extensive investigations are needed to tease out
what factors are key players in the cancer-CVD axis.
However, such elements may 1 day serve as therapeutic
targets to improve the outcomes in patients.

Clonal haematopoiesis of indeterminate potential

Age-related genetic mutations in the highly proliferative
hematopoietic stem cells of the bone marrow can lead to
clonal haematopoiesis of indeterminate potential Early
blood cell progenitors contribute to the creation of a
genetically distinct subpopulation of blood cells, and
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successive mutations in the same clone or subpopulation
allow the progression to acute myeloid leukaemia [93].
These mutations occur predominantly in genes that
encode for key epigenetic regulators of haematopoi-
esis, such as Ten-Eleven Translocation-2 (TET2),
DNA Methyltransferase 3A (DNMT3a), Additional
Sex Combs Like 1 (ASXL1), Janus Kinase 2 (JAK2),
and tumour protein 53 (TP53) [94, 95].

Some of these somatic mutations in the hematopoietic
stem cells (e.g, TET2, JAK2, and ASXL1) are linked to
an increased risk of coronary heart disease [95]. Investiga-
tors have reported higher expression of pro-inflammatory
cytokines in TET2-deficient macrophages, which stimu-
lates the development of the atherosclerotic plaque. In the
same study, the authors observed larger atherosclerotic le-
sions in mice engrafted with bone marrows of TET2-
deficient (homozygous and heterozygous) mice compared
to a group of mice engrafted with normal bone marrows.
Additional studies have linked dysfunctional TET2 to the
stimulation of the cytoplasmic supramolecular assembly
Nod-like receptor protein 3 inflammasome (NLRP3) [96].
Additionally, somatic mutations in TET2 and DNMT3«
were shown to be associated with a poor prognosis in HF
patients [97]. Interestingly, the pharmacological inhibition
of 3 (NLRP3) prevented the aggravation of cardiac dys-
function in HF mouse models (TET2 or DNMT3adefi-
cient mouse models) [98]. Based on the data, genetic risk
factors and somatic mutations are emerging as common
drivers of cancer and CVD. This holds great clinical rele-
vance as these somatic mutations demonstrate predictive
values for cancer and CVD. This promising research may
help pave the way for personalized medicine that allows
optimized prevention, treatments, and management of
patients.

Genetic predisposition - monogenetic disease

In this section, we provide instances of common estab-
lished genetic mutations that may be involved in both
diseases. BRCA1/2 mutation carriers are predisposed to
breast and ovarian cancer. After the exclusion of deaths
due to cancer, the carriers of BRCA1/2 mutations still
have lower longevity [99]. Because BRCA1/2 mediates
DNA -repair and other vital pathways, it has been previ-
ously hypothesized that these genetic variants could be
linked to other diseases. Indeed, several studies reported
higher levels of proteins or biomarkers associated with
elevated thrombotic risk in patients with BRCA1/2 muta-
tions compared to controls with no mutations, independent
of breast cancer [100, 101]. These results suggest that the
carriers of the mutations are prone to have coagulation-
related problems independently of malignancies. Further,
low levels of insulin-like growth factor 1 (IGF-1) were
detected in individuals carrying BRCA1/2 mutations,
while high levels of IGF-1 were detected in BRCA1/2
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mutation carriers with breast cancer; abnormal con-
centrations of IGF-1 have been associated with higher
risks to develop insulin resistance, which contributes
to the pathophysiology of many CVDs [100, 102].

Titin (TTN) is the largest sarcomeric protein found in
the heart and is involved in the pathophysiology of cardio-
myopathy. Truncation mutations of TTN are the most
frequent mutation observed in dilated cardiomyopathy
where most cases are hereditary [103]. TTN mutations,
resulting in truncations in the A-band region of the pro-
tein, were detected in 25% of patients with dilated cardio-
myopathy [104]. Other forms of cardiomyopathies, such
as hypertrophic cardiomyopathy and arrhythmogenic right
ventricular cardiomyopathy are also linked to TTN muta-
tions [105]. Strikingly, in a cohort that included patients
with 34 solid tumours and 7 independent validation co-
horts from clinical trials, TTN mutations were detected in
~30% of solid tumours. Based on these outcomes, the in-
vestigators considered these mutations as potential tools
to risk-stratify tumour mutational burden into groups
with different clinical responses to immune checkpoint in-
hibitor monotherapy [106]. These two examples — of what
most physicians will consider ‘clear cut monogenetic can-
cer or CVD examples’ - further underscore the potential
links that exist between cancer and CVD.

Shared prognostic factors

Prognostic markers are hard to objectify because of their
either low sensitivity or specificity, unknown thresholds,
or difficult reproducibility. Seeing the large overlap in
CVD and cancer-related risk factors, it is challenging to
find a valuable prognostic biomarker that accurately pre-
dicts a patient’s prognosis. Several prognostic bio-
markers like age and circulatory biomarkers have
extensively been studied in both patients with cancer
and CVD [107, 108]. However, due to the low sensitivity
and specificity, these biomarkers have yet to be utilized
in routine clinical practice. Sex-bias presents as another
interesting factor in both CVD and cancer [109, 110].
Gender influences not only the overall incidence and
shared risk factors, but also the timing and phenotype of
disease presentation, the treatment regimen, and the dis-
ease prognosis as well [111].

CV biomarkers have been used in patients with cancer
to predict the risk and prognosis of cardiotoxicity, show-
ing promising results [112]. The reverse rationale has
also been suggested, reporting that certain tumour bio-
markers could predict CVD severity and prognosis. CA
125 known as a biomarker for ovarian cancer and several
haematological malignancies has been shown as a prom-
ising CV biomarker in diverse CVD [113, 114] . Further-
more, other tumour biomarkers, such as CYFRA 21-1,
CEA and Ca 19-9, demonstrated a prognostic value, es-
pecially in patients with severe HF [115].
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The search for the perfect prognostic biomarker in
Cardio-Oncology requires extensive resources and a
large data pool. Prognostic biomarkers, both positive
and negative ones, could help recognize not only the pa-
tients at high CV or cancer risks, but also patients with
low CV risk that could benefit from more aggressive
treatment regimes.

Benefits of the proposed classification

We anticipate that the classification system will guide
clinicians to better understanding of the predisposing
factors and assist with focusing treatment on removing
or tempering the driving cause for each disease state.
Additionally, these categories may serve as a tool for
classifying cardio-oncology patients into relatively more
homogenous cohorts for future trials with targeted inter-
ventions. Such an approach would help address an exist-
ing issue with the field — heterogeneity of cardio-
oncology patients and disease states. By focusing on a
single classification at a time, this would align treatments
with more consistent underlying drivers of disease and
provide more accurate estimates of treatment effect.

By understanding the predisposing factor, treatment
may be targeted at removing or tempering the driving
cause for the disease state. For example, in those with
progressive scarring and remodelling of the heart caus-
ing a pro-oncogenic environment (Type III), treatment
should be targeted at mitigating this effect. Thus, recog-
nizing that heart failure and myocardial infarction can
potentially foster a pro-oncogenic environment may lead
to intervention studies in patients with heart failure or
myocardial infarction specifically targeting components
of the pro-oncogenic environment itself, beyond stand-
ard treatment for the predisposing cardiovascular dis-
eases. Conversely, if a pro-oncologic environment was
caused by CV disease associated treatments or diagnos-
tic imaging (Type 1V), the focus would be on weighing
and addressing the risks and benefits of considering al-
ternative treatment or imaging modalities, recognizing
that these associations remain under investigation. The
classification schematic may therefore help researchers
identify focused pathways in appropriately selected and
relatively homogenous cohorts for future interventions.
Lastly, this novel classification system would harmonize
understanding and provide a clinical framework for car-
diotoxicity from cancer treatment by providing struc-
tured definitions with a “universal language” for
cardiologists and oncologists when caring for patients.

The identification and management of CV risk factors
in all five types of COS are important because if not rec-
ognized and treated, both CVD and cancer pose great
burdens for our patients. Yet, in those with cancer, the
development of CVD poses a greater risk than cancer it-
self, and those with heart disease have a greater risk of
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developing cancer as well. Thus, to reduce the risk of ad-
verse outcomes, the traditional CV risk factors should be
closely managed in this high-risk population. For in-
stance, lowering cholesterol levels via lifestyle changes,
medication, or exercise is believed to diminish breast
cancer prevalence and slow-down tumour growth [116,
117]. This can be explained by the fact that cholesterol
metabolites stimulate oestrogen receptors, which results
in tumour growth [118]. Expanding the role of primary
care physicians, oncologists, cardiologists, and allied
healthcare providers in cancer survivorship will be es-
sential in identifying and managing these five types of
COS in a coordinated fashion.

Limitations of the proposed classification

We realize that the enormous number of cancer therapies
cannot be easily fit into one syndrome or algorithm. Also,
aetiologies of both cancer and CV disease are usually
multifactorial, so we recognize that our proposal simplifies
a complex truth. Collectively, our approach offers a rea-
sonable and practical first attempt to better categorize
these patients. We envision our proposed system to be op-
erationalized in a similar manner to the classifications for
cardiorenal syndrome [119] or the WHO groups for pul-
monary hypertension [120], in which causes and treat-
ment differ by classification group.

The evidence supporting the statement that CVD rep-
resents a pro-oncogenic state is based on retrospective
and observational outcomes that cannot establish cause
and effect. However, three pre-clinical studies with sev-
eral combinations of HF aetiologies and cancer types
have proven the direct connection between the two syn-
dromes. Also, investigators of these studies found that
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failing hearts can affect tumour growth and severity in-
dependent of CVD risk factors [50, 121, 122].

In the clinical practice, we acknowledge the difficulty in
discerning between the CVD itself and the underlying risk
factors. Thus, it is more challenging to determine whether
detecting incident cancer following CVD is based on
shared risk factors such as a history of smoking (Type 5),
or if there is truly a link between CVD and cancer (Type
3). Nevertheless, the classification system is essential as it
allows clinicians to manage patients and evaluate the pre-
disposition to one or both of the diseases. Different strat-
egies or treatments may be more effective within each
defined category. Even in instances where a patient may
share more than a single classification (Fig. 9), recognition
of which specific categories apply will still guide treatment
strategies. Future studies should validate the usefulness of
our proposal, and diagnostic and therapeutic studies will
be necessary to prove clinical benefit.

Conclusion

In this review, we propose a classification system to
categorize Cardio-Oncology syndromes into five distinct
groups. The classification system (I-V) can help separate
and unmask certain aetiologies of CV damage from can-
cer and cancer treatment, and vice versa (Fig. 9). Using
the classification system, the course of treatment se-
lected by oncologists (COS I, COS II, COS V) or cardiol-
ogists (COS III, COS IV, COS V) may help guide
surveillance and management pursued by the converse
specialty (Fig. 10). This classification has emerged in re-
sponse to observations of the effects of cancer and its
therapies on the CV system, as well as the development
or diagnosis of cancers in the setting of heart disease.
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Fig. 9 Theoretical depiction of a clinical situation with a patient consistent with more than a single classification. However, the application of our
classification system depends on which disease is diagnosed first and on the available data regarding systemic and genetic predisposition and
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This Patient develops lung cancer first

This Patient develops myocardial infarction first

* COS I: Prevention and management should take into account the direct effect of cancer on
cardiovascular outcomes (e.g. cachexia, thromboembolism).
* COS II: Cancer treatment is initiated => Cardiotoxicity should be prevented.

* COS llI: Cancer risk is higher due to the direct effects of cardiovascular disease (e.g. systemic
inflammation, hypercoagulability). Cancer surveillance should take into account the effect of
cardiovascular disease on a pro-oncogenic environment.

* COS IV: Cardiovascular treatment/diagnosis (high doses of radiation, treatments) are associated
with higher cancer incidence.

This patient is predisposed to systemic or genetic conditions

Cardiovascular Di

Myocardial Infarction

.
=»  syndromes.

* (COS V: This individual might be healthy and predisposed to one or both syndromes (due to known
risk factors, or known genetic mutation)=> Periodic check ups to prevent the initiation of these

* The availability of data (genetic mutations, risk factors/life style), before developing one or both
syndromes, will potentially affect the management of COS |, 11, I, and IV.

Fig. 10 Theoretical depiction of how the classification can be useful in the clinical setting

These aetiologies include the effects of the tumour itself
on the CV system which can have a direct effect on CV
dysfunction (COS Type I) from aetiologies including
TLS, cardiac cachexia, and arterial thromboembolism;
the indirect effects from anti-neoplastic treatments
(COS Type 1II) encompassing traditional chemotherapy,
targeted therapies, and immunotherapy, as well as radi-
ation therapy; CVD pro-oncogenic effect (COS Type
III), which exerts direct effects from cardiokines,
galectin-3 and other factors; chronic CVD and their as-
sociated treatments (COS Type IV), which may increase
the risk for or enhanced detection of cancer; and lastly
shared risk factors, metabolic diseases, and genetic pre-
disposition (COS Type V), which work synergistically to
increase the risk of long-term cardiac complications, as
well as malignancies. This classification method paves
the way for improvements in patient care, research, and
education in Cardio-Oncology.. Having such a frame-
work facilitates providing the best cancer care while op-
timizing CV health, and also being able to pre-empt
both CVD and new malignancies based on the recogni-
tion of underlying or pre-existing risk and disease.
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