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Abstract

The cardiotoxicity of doxorubicin is becoming an interdisciplinary point of interest given a growing population of
cancer survivors. The complex and not completely understood pathogenesis of this complication makes difficult to
design successful preventive or curative measures. Although cardiomyocyte has been considered a classical cellular
target, other cells including various types of undifferentiated cells are involved in myocardial homeostasis. Such
perspective may shed light on previously unrecognized aspects of cardiotoxicity and promote new experimental
and clinical cardioprotective strategies. In this review, different cellular targets of doxorubicin are discussed with the
focus on cardiac progenitor cells, oxidative stress, DNA damage, senescence and apoptosis all of which contribute
to their compromised functional properties.
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Background
Anthracyclines, including doxorubicin (DOX), discovered
nearly a half-century ago, are still a backbone of life-saving
chemotherapy schemes [1]. Shortly after their introduc-
tion, the cardiovascular toxicity has been noticed and
reported [2–5]. Although this class of drugs has been used
and studied for decades, the pathogenesis of cardiotoxicity
remains not completely understood. Its complex and still
partially obscured nature makes difficult to design suc-
cessful preventive or curative measures. Nowadays, given
the accumulating population of cancer survivors that have
been exposed to the treatment as children or adults, this
problem is becoming an interdisciplinary point of interest.
In this regard, relatively recent cardio-oncology initia-
tive aims to respond to the growing needs to further
clarify pathophysiology and to uniform the guidelines
regarding diagnosis, prevention, management and
follow-up of anthracycline cardiotoxicity [6].
Unfortunately, contrary to the common perception,

the dimension of the problem is by no means small. One
of the recent analyses reported the incidence of respect-
ively subclinical and overt cardiotoxicity in 17.9 % and
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in 6.3 % of cancer patients treated with anthracyclines
after 9 years follow-up [7]. In another study, scheduled
echocardiography revealed left ventricular ejection frac-
tion reduction in 9 % of adult patients within the first
year after chemotherapy [8]. Moreover, with the use of
alternative echocardiographic parameters as myocardial
strain, high prevalence of cardiac dysfunction associated
with anthracycline treatment has been reported, varying
from nearly 30 % in adult survivors of childhood cancer
to as much as 60 % in children [9, 10]. Taking to account
the growing number of cancer survivors, that only in
USA is predicted to reach about 19 million by 2024 [11],
post-chemotherapy monitoring together with continued
research on cardiotoxicity of anti-neoplastic drugs are
warranted.
Cardioprotective strategies
The first step to diminish the incidence of DOX cardiotoxi-
city is to use doses lower than 450 mg/m2, although it is
becoming more and more apparent that while lowered
cumulative dose causes a significant reduction of on-
treatment events, no reduction of late-onset complications
has been observed [12]. Therefore, there is no dose of
DOX that can be considered absolutely safe.
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Up to date, a series of strategies have been used in at-
tempt to reduce or prevent deleterious effects that
anthracyclines have on the heart. Proposed pharma
cokinetics-based approaches consist of changing admin-
istration schedule by replacing bolus with slow infusion
and switching from conventional to liposomal formula-
tions [13]. In adults, continuous infusion that lowers
peak concentration without affecting the dose may
reduce cardiotoxicity without compromising anticancer
activity [14]. However, the elevated costs of longer
hospitalization and risk of infections have limited this
method [15]. Additionally, in children, continuous infu-
sion did not provide cardioprotective benefits [16]. Due
to their peculiar distribution profile, uncoated or pegy-
lated liposomal anthracyclines proved to be as effective
as standard preparations but associate with minor cardi-
otoxic effects [17, 18]. Despite the availability of several
formulations (i.e. liposomal DOX, pegylated liposomal
DOX and liposomal daunorubicin), their cost and the
lack of randomized trials in children with cancer [19],
restricts their use to limited oncologic settings [20]. An-
other strategy is to utilize less cardiotoxic anthracycline
derivatives, such as epirubicin or idarubicin, although
their better safety profile is yet to be proven [21, 22].
However, it is often necessary to augment the dose to
ensure the equivalent activity as that of DOX, thus
increasing the risk of cardiotoxic events [23].
Other measures aim to prevent cardiotoxicity by inter-

fering with molecular and cellular mechanisms altered by
anthracycline. Dexrazoxane is the only approved cardio-
protective agent used in patients exposed to anthracy-
clines [13], with a proven efficacy in childhood and
adulthood [24, 25]. As an iron chelating agent, it interferes
with iron-dependent redox reactions thereby decreasing
reactive oxygen species (ROS) production and tissue dam-
age acting as free-radical scavenger [26]. More recently,
dexrazoxane was shown to inhibit DNA topoisomerase
IIβ, thus preventing anthracycline from binding to the en-
zyme and consequent DNA double strand breaks [27]. A
single, not confirmed report, which claimed a possible
interaction of dexrazoxane with anti-tumour efficacy of
anthracycline [28] together with another concern regard-
ing the potential risk of a second malignancy in paediatric
patients [24, 29, 30] led regulatory agencies to limit its
clinical use [31]. However, this opinion may be worth to
be re-evaluated [20, 32]. Other compounds with anti-
oxidant properties, such as probucol, vitamin E, L-
carnitine, coenzyme Q, glutatione and N-acetylcystein
were tested in experimental and clinical settings with
inconclusive findings [13, 33].
At present, there are no specific clinical practice

guidelines and the treatment, as for all patients with
heart failure, includes a combination of β-blockers,
ACE-inhibitors, angiotensin receptor blockers, diuretics,
nitrates, and hydralazine [34] and, for end-stage failure,
heart transplantation. Among those, ACE-inhibitors and
β-blockers showed significant cardiac protection in
patients under anthracycline treatment [8, 35, 36]. Since
the whole class does not share this effect, their action is
probably not related to adrenoceptor blockage. In fact,
carvedilol diminishes ROS formation in DOX-treated
cardiomyocytes [37], whereas nebivolol prevents gener-
ation of peroxynitrite and NO synthase uncoupling [38].
Overall, available cardioprotective measures that operate

directly or indirectly at the most accepted upstream
phenomenon of ROS generation and oxidative stress [39]
has not solved the clinical problem. Additional studies are
necessary to develop alternative strategies for the hetero-
geneous patient population that carry for the rest of their
lives the burden of higher risk of heart failure.

Cellular targets
The myriad of studies aiming to explore cellular and
molecular phenomena that may be clinically relevant has
been focused on a cardiomyocyte and were extensively
reviewed elsewhere [40, 41]. However, although cardio-
myocyte has been considered a classical cellular target,
other cell types such as cardiac fibroblasts, endothelial
cells and vascular smooth muscle cells are also present
(and are numerically prevalent) within the myocardium.
Moreover, a notion that various types of undifferentiated
cells can also be involved in the homeostasis of cardiac
tissue certainly adds a new level of complexity to the
understanding of myocardial biology. Because these
elements dynamically interact in order to respond to
changes in homeostatic needs and pathological stimuli,
the structural and functional relationship between differ-
ent cellular components cannot be dismissed. These
considerations may offer the possibility to study previ-
ously unrecognized aspects of cardiotoxicity [42].

Cardiac progenitor cells
The adult heart contains a population of primitive cells
that in normal conditions contribute to tissue homeosta-
sis, while in pathological states mediate myocardial regen-
eration [43–46]. Adult cardiac progenitor cells (CPCs)
express c-kit, are self-renewing, clonogenic and multipo-
tent, give rise to cardiomyocytes, smooth muscle cells and
endothelial cells. CPC involvement has been documented
in aging and in several pathological conditions also in
humans [47–52], indicating this cells as a pathophysio-
logical target. Furthermore, senescence of stem cell popu-
lation contributes to the onset and progression of heart
failure [47–49, 51–54]. In this view, relatively recent stud-
ies have shown that cardiotoxicity of the anthracycline is
not restricted to cardiomyocytes but affects also resident
CPCs, proposing an additional mechanism underlining
the pathophysiology of DOX-induced cardiomyopathy
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[55–58]. In a model of anthracycline-induced heart failure,
DOX inhibited CPC proliferation, that in combination
with the accumulation of oxidative DNA damage, growth
arrest, cellular senescence and apoptosis led to an almost
complete depletion of the CPC pool. The lack of activation
of CPCs interfered with the turnover of cardiomyocytes in
the presence of myocyte death and senescence [56].
The clinical relevance of these animal findings was

established by the study performed on hearts obtained
at autopsy from oncologic patients who died of heart
failure developed after treatment with chemotherapeu-
tic regimens including anthracyclines. The hearts of
patients with anthracycline cardiomyopathy contained
higher fraction of senescent human CPCs (hCPCs)
when compared with age-matched controls that died
from non-cardiovascular causes [57]. The senescence
marker p16INK4a was present in the vast majority of
hCPCs, exceeding the values reported for chronologic
aging and other cardiomyopathies [47, 48, 54]. These
observations were complemented by the in vitro tests
showing that isolated hCPCs were sensitive to DOX,
and their survival, growth and function were nega-
tively affected. DNA damage in hCPCs, shown by the
expression of a phosphorylated form of histone H2
(γH2AX), and the accumulation of senescent cells
could therefore affect cardiac homeostasis increasing
susceptibility to the myocardial damage also in the
human heart.

DOX and functional properties of CPCs
To fulfil their role, the viable progenitor cells need to
reach the area of injury and give rise to differentiated pro-
geny capable to repair the damage. IGF-1/IGF-1R and
HGF/c-Met systems are determinants of CPC function
favouring CPC-mediated myocardial regeneration [59, 60].
Stimulation of IGF-1R activates mitogenic and antiapop-
totic effects [59, 61, 62] while c-Met is the receptor for
HGF, a cytokine that stimulates cell migration to the sites
of injury [62, 63]. DOX reduces the expression of IGF-
1R and c-Met in hCPCs and this negative effect persists
with time [57]. Although DOX does not abolish differ-
entiation capacity of hCPCs, the majority of committed
progeny deriving from DOX-treated progenitors pre-
maturely inherited a senescent phenotype. In addition
to CPC death and senescence, DOX negative interfer-
ence with growth factor systems that regulate cardiac
repair, may further aggravate the inadequate response
of the human heart to stress. The functional inferiority
of hCPCs exposed to DOX was confirmed in vivo in an
animal model of anthracycline cardiomyopathy. In con-
trast to experimental therapy with healthy cells, the use
of DOX-treated hCPCs did not lead to structural and
functional recovery and the survival benefits were not
observed [58].
CPCs and late onset cardiotoxicity
The unresolved enigma however, is that the time elapsed
between therapy with anthracyclines and onset of cardiac
complications varies from months to years or even de-
cades. It is possible that minor noxious events, that in the
healthy person would not have severe consequences, can
trigger pathophysiological cascade in subjects treated with
anthracyclines. Pre-existing conditions or co-morbidities
that develop during the post-chemotherapy period can
additionally increase the risk of the cardiovascular sequel.
An intriguing working hypothesis is that therapy with
anthracyclines can leave a specific cellular “signature” to
the heart that persists with time and reveals itself after the
latent and asymptomatic period with the devastating out-
come. In this scenario, a long-lasting damage of a quies-
cent progenitor cell can serve as a “carrier” of this
information. This concept was tested in the study of late-
onset cardiotoxicity in mice injected with DOX shortly
after birth [55]. In adult age, no difference in cardiac func-
tion was observed and the hearts from DOX-treated mice
appeared morphologically normal without degenerative
changes suggestive of DOX-mediated toxicity. However,
the juvenile DOX exposure reduced coronary flow, vessel
branching and capillary density, suggesting that juvenile
DOX exposure might affect vascular development. Inter-
estingly, hearts of adult mice injected with DOX in juvenile
age are more sensitive to stress (i.e. exercise or myocardial
infarction, MI) and displayed sign of late-onset cardiotoxi-
city. Moreover, the post-MI survival of DOX-exposed mice
was lower and these animals had a reduced neovasculariza-
tion suggesting that DOX treatment puts the adult heart at
higher risk for ischemic injury. Although MI was associ-
ated with the migration of progenitor cells into the dam-
aged area, there were significantly fewer CPCs in the
border zone of animals that had been exposed to DOX as
pups. This study also suggested that juvenile DOX expos-
ure affects differentiation of CPCs. Of note, DOX-exposed
pups had significantly fewer CPCs, reinforcing the hypoth-
esis that DOX might be harmful to these cells. CPC growth
and telomerase activity were reduced while cell cycle
inhibitor p16INK4a was upregulated. Therefore, juvenile
exposure even to low dose of DOX induced senescence
and might have permanently reduced the number of
resident CPCs.
The possibility that cellular senescence can represent

an early event also in the human heart is supported by
the presence of high fraction of p16INK4a-positive hCPCs
in myocardium of anthracycline-treated patients with
normal cardiac function that died of other complications
during chemotherapy [57]. Because the early and late
cellular adaptations that occur after treatment may
differ, the evolution of the cellular and molecular effects
of clinically relevant concentrations of DOX on hCPCs
was studied in vitro. Early after exposure, DOX reduced
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hCPC viability, induced significant level of apoptosis and
increased the expression of proteins involved in the
DNA damage response such as phospho-ATMSer1981

kinase, γH2AX and phospho-p53Ser15 [57]. The activa-
tion of ATM coupled with the increase of γH2AX indi-
cates DNA damage while the phosphorylation of p53
can activate apoptotic or cellular senescence pathways
[64]. In DOX-treated hCPCs, the early increase in p53
phosphorylation triggered the late activation of apoptotic
while the expression of p16INK4a began to rise in parallel
with the increased activity of SA-β-gal [57]. Similar cellular
events can occur in the hearts of patients during or imme-
diately after DOX administration. However, after removal
of DOX, the rate of apoptotic death of hCPCs and the ex-
pression of proteins involved in DNA damage response
(phospho-p53Ser15, phospho-ATMSer1981) returned to base-
line. In the absence of other pro-senescence stimuli a cell
could potentially resume its proliferative capacity [65] but
this was not a case. The very high fraction of senescent
cells indicated that hCPCs entered the irreversible phase
of growth arrest after permanent activation of p16INK4a-
Rb pathway. In this scenario, a transient activation of p53
initiates the senescence response while p16INK4a operates
to maintain this state representing a delayed cellular
response [64, 66].
Although the reported phenomena per se may not

directly lead to heart failure, they can make the myo-
cardium of an apparently healthy person more vulner-
able. The late onset of cardiomyopathy in patients, who
already have sustained subclinical cardiac damage as a
result of DOX chemotherapy, could be attributed to an
additional pathological or physiological stress like
ischemia, acute viral infection, exercise, pregnancy, or
the increase of body mass in children during normal
growth. These factors can transform the silent myop-
athy into overt heart failure [10, 67–69].

Other cardiac cells
Cardiac fibroblasts
Accumulation of fibrotic tissue is one of the features of
DOX-cardiomyopathy triggered by the necrotic damage
and its pro-inflammatory load, but also by the excessive
ROS generation. The latter has been recognized as a strong
stimulator of pathological collagen production as well as
activator of transforming growth factor-β (TGF-β), a cyto-
kine that has been associated to fibro-inflammatory signal-
ing [70–72]. In our model, DOX determined significant
increases of TGF-β and phospho-SMAD3 along with an
increment of collagen deposition, and enhanced pheno-
typic transformation of fibroblasts to myofibroblasts, cells
that express contractile proteins and secrete pro-fibrotic
factors [73]. Interestingly, cardiac fibroblasts isolated from
DOX-treated rats had elevated levels of TGF-β and an
increased phospho-SMAD3Ser423/425/SMAD3 ratio. The
expression of fibroblast activate protein 1α and α-SMA,
markers of activated fibroblasts was also augmented.
Additionally, DOX significantly upregulated two of the
main components of the extracellular matrix, collagen type
1 and fibronectin [73]. Therefore, these results show that
in vivo exposure to DOX generates pro-fibrotic population
of activated cardiac fibroblasts. Surprisingly, the activated,
pro-fibrotic phenotype of cardiac fibroblasts was preserved
in vitro even after several passages, suggesting once again
that the cell that has been stressed with DOX retains the
“pharmacological signature” and transmits this state to the
progeny. This intriguing phenomenon requires specific
future investigations.
Finally, because fibroblasts play a role as supporting

cells for CPCs within the niches, the potential damage
produced by DOX can result in the derangement of the
cardiac niche [74]. The biological role of myofibroblast-
endogenous stem cell interactions, in terms of cardiac
fibrosis, remains unclear, although several studies sug-
gest that also progenitor cells may influence extracellu-
lar matrix composition in a paracrine manner [75].
Vascular cells
Since both experimental and clinical studies reported that
anthracycline toxicity may be also linked to the deleterious
effects of these drugs on the endothelium [76], a brief
examination of smooth muscle cells (SMCs) and endothe-
lial cells has to be done. In particular, in vitro and ex-vivo
studies evaluated SMCs responses to drug exposure.
DOX-treated vascular SMCs were arrested in the G2/M
phase of the cell cycle and a series of classical markers of
cellular damage and senescence (i.e. SA-β-gal activity,
DNA damage foci, changed morphology, and increased
superoxide production) were observed [77]. Instead,
organ-culture vascular tissue was used to examine the
effects of DOX on the morphology and functions of
SMCs. Interestingly, treatment with DOX decreased the α
adrenoceptor protein and noradrenaline-induced contrac-
tion. The mediation of ROS was demonstrated by the
partial restoration of α adrenoceptor expression and vessel
contraction in presence of SOD [78]. Moreover, an
in vitro study conducted on endothelial cells documented
as both DOX and daunorubicin induced ROS-dependent
cytotoxic effects, although with different potency due to
their relative cellular accumulation [79].
Extracardiac cells with progenitor properties
As discussed above, the inhibition of the progenitor cell-
mediated self-repairing potential of the heart is considered
one of the pathogenetic mechanisms of DOX-induced car-
diomyopathy. Apart cardiac progenitors, also different cell
types of extra-cardiac origin, such as bone marrow, could
be taken into account to better understand pathophysiology
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of the heart after injury and to extend the knowledge about
the role of stem cells in DOX-induced cardiomyopathy.

Endothelial progenitor cells
Bone marrow-derived endothelial progenitor cells (EPCs)
can be mobilized to the peripheral circulation thus contrib-
uting to post-natal angiogenesis and vasculogenesis [80].
Recruitment of these cells was found to attenuate tissue
damage in models of myocardial ischemia and anthracy-
cline cardiomyopathy [81–83]. Also in patients, number of
circulating EPCs has been seen to be predictive of cardio-
vascular diseases and may represent a better predictor of
vascular reactivity than conventional cardiovascular risk
factors [84]. Interestingly, in vitro studies reported dose-
dependent DOX toxicity on EPCs in which apoptosis was
induced by high doses while low doses of DOX caused a
premature senescence phenotype. Sub-cytotoxic dose of
DOX produces ROS with the result of alteration in the
expression of several proteins that regulate cell cycle, cyto-
skeletal and cellular architecture [85, 86]. Oxidative stress
may trigger the p16INK4a-pRb-dependent senescence in-
volving p38 signalling [87]. EPCs exposed to sub-apoptotic
doses of DOX undergo the activation of MAPKs p38 and
JNK signalling, whose balance regulates senescence and
apoptosis [86, 88, 89]. p38 and JNK pathways antagonistic-
ally control cellular senescence, p16INK4a expression and
cytoskeletal organization in EPCs treated with DOX [86].
It is therefore possible that also in EPCs, ROS accumula-
tion, induction of p16INK4a together with telomere dysfunc-
tion, suggested by the down regulation of TRF2, jointly
contribute to DOX-induced senescence of this progenitor
cell class leading to the failure of EPC-mediated regenera-
tive processes. Of note, in an experimental model, DOX-
induced nephropathy was associated with development of
EPC senescence and incompetence that hampered their
engraftment into the kidney, supporting the hypothesis
that progenitor cells injured by DOX are, in part, respon-
sible for the progression of the disease [90].

Bone marrow cells
In physiologic conditions, the trafficking of bone marrow
cells (BMCs) to other organs is limited. However, after tis-
sue damage, this process is amplified and a massive num-
ber of progenitor cells are released into the peripheral
blood with the involvement of several mediators, such as
granulocyte-colony stimulating factor (G-CSF), stromal
cell-derived factor-1 and vascular endothelial growth fac-
tor [91, 92]. It has been shown that also human heart can
be the site of homing of BMCs and that cardiomyocytes
and coronary vascular cells can be formed de novo in the
adult life [93, 94]. Experimental models confirmed the
possibility that BMCs can translocate from the marrow to
the infarcted myocardium and contribute to the repair
process [95]. Although a significant amount of clinical
work has been published regarding the effect of the BMCs
mobilization on the heart after an acute ischemic injury,
inconclusive results have been achieved with divergent
evidence reported about the possibility that G-CSF-
activated BMCs may improve left ventricular ejection frac-
tion or attenuate ventricular remodelling [96–98]. Of note,
also in a mouse model of DOX cardiotoxicity, G-CSF has
been used to mobilize BMCs for evaluation of their migra-
tion capacity towards the myocardium and their possible
role in attenuating the cardiac dysfunction. G-CSF
enhanced the migration of BMCs into the heart, attenu-
ated cardiotoxicity and improved survival. Moreover,
green fluorescent protein-labelled BMCs observed were
structurally integrated in the myocardium and acquired a
myocyte-like phenotype [99]. Although the clinical import-
ance of the bone marrow mesenchymal stem cell (MSC)-
driven response to the cardiac damage is unknown, there
is a consensus that MSCs can contribute directly and indir-
ectly [100–102] to the repair of the damaged myocardium,
and the clinical trials with MSCs and chronic ischemic
heart failure are ongoing [103]. It should be pointed out
that the bone marrow, although provided with an active
population of stem cells, does (like any other system) fail
under prolonged toxic injury. In this regard, given the cyto-
toxic properties of DOX, bone marrow toxicity represents
the limiting factor during the treatment. When chemother-
apeutic regimens disregard regular time intervals to allow
the recovery of the hematopoietic system, bone marrow
failure leads to life-threating intractable septic and haemor-
rhagic complications [104]. Therefore, it is reasonable to
assume that bone marrow-derived stem cells “primed” with
DOX undergo alterations that can interfere with their
function also in other organs. In fact, it has been shown
that DOX is toxic for MSCs [105, 106]. In the view of
potential clinical interest for MSCs, this observations need
further investigation.
Conclusions
Although only a few studies addressing the role of
cells other than cardiomyocytes are available, it is
reasonable to assume that molecular events that occur
at level of different cellular compartments contribute to
development and progression of DOX cardiomyopathy.
Additionally, independently from the molecular mecha-
nisms through which DOX induces cellular damage,
oxidative stress, DNA damage, senescence and apoptosis
all happen and have an impact on myocardial homeosta-
sis, although their relative weight can differ. Therefore, to
facilitate the comprehension of the sequence of events
emerging from the complex interaction of different forms
of molecular stress, more detailed studies should address
not only the role of each cell type but also the possibly
different susceptibility of each cell.
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Adverse effects present long after the clearance of the
drug and its metabolites remain another unresolved issue.
A challenging hypothesis yet to be tested involves a
phenomenon of biological memory, described as a persist-
ent cellular response to a transitory stimulus. Cellular
memory of past stimuli maintains cell identity even if the
signal was experienced only once [107]. In addition to
normal development, such phenomenon has also been de-
scribed in diabetes when a cell “remembers” the onset of a
hyperglycaemic peak [108]. In this view, an anthracy-
cline can be considered as a pharmacological stressor
that leaves its molecular signature in different cellular
components probably through specific epigenetic
changes. Interestingly, ROS have been proposed as
one of the molecular keepers of metabolic memory
[109] and take an undisputable part in cardiovascular
diseases by modulating numerous cellular processes
like cellular migration, proliferation and hypertrophy,
angiogenesis, apoptosis and senescence, all of which
contribute to cardiotoxicity. Therefore, although ad-
vanced knowledge of biological and cellular events
implicated in the response of the heart to anti-cancer
therapy is a fundamental tool, the further dissection
of events should not drive our attention away from a
central role of a ROS-driven processes that sustain an
on-going damage and create a state of susceptibility.
Thus, a broader cellular view presented here combined
with ROS-modifying approaches could be a useful plat-
form for new experimental and clinical cardioprotective
strategies.
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