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Learning from studying very rare cardiac
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Abstract

Background: Some congenital heart conditions are very rare. In a climate of limited resources, a viewpoint could
be advanced that identifying diagnostic criteria for such conditions and, through empiricism, effective treatments
should suffice and that extensive mechanistic research is unnecessary. Taking the rare but dangerous short QT
syndrome (SQTS) as an example, this article makes the case for the imperative to study such rare conditions,
highlighting that this yields substantial and sometimes unanticipated benefits.
Genetic forms of SQTS are rare, but the condition may be under-diagnosed and carries a risk of sudden death.
Genotyping of SQTS patients has led to identification of clear ion channel/transporter culprits in < 30% of cases,
highlighting a role for as yet unidentified modulators of repolarization. For example, recent exome sequencing in
SQTS has identified SLC4A3 as a novel modifier of ventricular repolarization. The need to distinguish “healthy”
from “unhealthy” short QT intervals has led to a search for additional markers of arrhythmia risk. Some overlap
may exist between SQTS, Brugada Syndrome, early repolarization and sinus bradycardia. Genotype-phenotype
studies have led to identification of arrhythmia substrates and both realistic and theoretical pharmacological
approaches for particular forms of SQTS. In turn this has increased understanding of underlying cardiac ion
channels. In silico and pharmacological data have highlighted risks with abbreviation of refractoriness accompanied by
local dispersion of repolarization, and this urges caution with the deployment of K+ channel activation as a novel
antiarrhythmic approach. The association between abbreviated QTc intervals and primary carnitine deficiency,
particularly in patients with concomitant cardiomyopathy illustrates a link between metabolism and electrogenesis, in
which the correct identification of causation could, in some cases, lead to dietary intervention that may obviate the
need for antiarrhythmic or heart failure drugs.

Conclusions: As illustrated here for the SQTS, the detailed study of rare disorders is both directly beneficial for the
treatment/management of affected patients and for increasing the understanding of associated underlying cardiac
physiology and pharmacology. The pursuit of underlying gene mutations can lead to unanticipated new links between
particular genes and cardiac electrophysiology, opening new avenues for research and potential therapeutic intervention.
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Introduction
The ability to link individual cases of particular inherited
cardiac conditions to specific gene mutations is valuable
in establishing causality and potential treatments, al-
though it is recognized that the identification of gene vari-
ants of unknown significance can be problematic [1]. At
its best, however, the integration of clinical and basic sci-
ence can reveal causality, underlying mechanism(s) and
provide a rational basis for therapeutic interventions.
The prevalence of different inherited and congenital

heart conditions varies greatly. In a climate of limited
resources, a viewpoint could be advanced that for
extremely rare cardiac conditions extensive mechanistic
research is excessive; identifying reliable diagnostic
criteria and, through empiricism, effective treatments
should suffice. Here, we present evidence refuting such a
view. Drawing on the example of the rare congenital
arrhythmia disorder short QT syndrome (SQTS), we
illustrate the benefits to be gained from detailed study of
very rare heritable cardiac conditions.

Abbreviated cardiac repolarization and short QT
syndrome
It has long been known that species of kangaroo that are
prone to sudden cardiac death (SCD) exhibit abbreviated
ventricular action potentials and QT intervals on the
ECG [2, 3]. In 1993 a link was first made between
shorter than average QT intervals (< 400ms) in humans
and an increased risk (2.4 fold) for SCD [4]. Abnormally
short QT intervals have been recorded immediately be-
fore and after episodes of ventricular tachycardia (VT)
and ventricular fibrillation (VF) [5, 6]. Approximately
35% of male patients with idiopathic ventricular fibrilla-
tion exhibit somewhat shortened QT intervals [7]. These
observations point towards a link between abbreviated
repolarization and serious ventricular arrhythmia. A sig-
nificant correlation has also been identified between
shortened QT intervals and incidence of atrial fibrilla-
tion (AF), independent of other variables [8]. Analysis
from 281,277 subjects from the Copenhagen ECG Study
has reported a “J”-shaped association between QT inter-
val and risk of AF, with significantly increased hazard
ratio for QTc intervals lower than the first percentile [9].
The association between abbreviated repolarization and
VT/VF and AF suggests that it should be instructive to
study the basis of arrhythmogenesis in circumstances
where causality can be clearly established. Accelerated
repolarization linked to single gene mutations provides
such opportunities.
As a distinct congenital condition, the Short QT Syn-

drome (SQTS) is a relatively young entity, having been
first reported in 2000 [10]. The SQTS is characterized by
accelerated ventricular repolarization, leading to abbrevi-
ation of the rate-corrected QT (QTc) interval on the

ECG, with poor rate adaptation of the QT interval such
that it remains short even at low heart rates [11–13].
These changes can occur in the absence of obvious
structural heart disease. The ECGs of affected patients
often show narrow, tall T waves, especially on the precor-
dial leads [11–13] (Fig. 1). Importantly, there is a strong
association between the SQTS and both atrial and ven-
tricular arrhythmias and of sudden death [11–13]. The
pathogenicity of the condition is well illustrated by the fact
that approximately 40% of SQTS cases first present as car-
diac arrest [14].
Since 2004, mutations have been identified in 8 ion

channel subunits (SQT1–7, SQT9 in Table 1) and in the
SLC4A3 encoded anion exchanger 3 (AE3; SQT8 in
Table 1), with functional data that have demonstrated
causality for 7 of the 8 ion channel genes implicated
[11, 13, 15]. Broadly speaking the ion channel mutations
identified are gain-of-function mutations to potassium
channels (SQT1–3) or loss-of-function mutations to so-
dium or calcium channel subunits (SQT4–7 and, putatively,
SQT9) [11, 13, 15]. Patients with the metabolic disorder
primary carnitine deficiency (which arises due to loss of
function mutations to SLC225A gene encoding the OCTN2
carnitine transporter) can also exhibit abbreviated QTc-
intervals and tall T waves, with additional structural abnor-
malities, in particular dilated cardiomyopathy [16–18].

Complexities in the diagnosis of the SQTS
Short QT intervals appear to be rare in the general
population, with a prevalence of QTc intervals of < 320ms
of ~ 0.1% [19, 20]. The prevalence of the SQTS seems also
to be low [13, 15]. Around 200 cases of SQTS have been
reported in the literature [21]. One recent analysis listed
27 probands with genetic mutation [22], whilst another
considered a total of 132 reported cases [15]. In the nearly
two decades since the identification of congenital SQTS
there has not been an accumulation of cases to mirror that
of the long QT syndrome. There are several points to
make in this regard, however.
First, the cut-off between a healthy but abbreviated

QT interval and a pathological short QTc interval is not
entirely clear. This has led to development of diagnostic
criteria combining clinical electrophysiological measure-
ments (QTc and Jpoint-Tpeak) intervals with patient and
family clinical history [23]. More recently, simplified
diagnostic criteria have emerged from the European
Society of Cardiology (ESC): a positive diagnosis can be
made with a QTc interval of ≤340 ms [24], or with a lon-
ger QTc interval of ≤360 ms, if there is evidence also of
one or more of: a familial history of SQTS; a confirmed
pathogenic mutation; a family history of sudden death
below 40 years of age; survival from ventricular tachycar-
dia (VT) or fibrillation (VF) in the absence of structural
heart disease [24].
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Second, there is the issue of measuring accurately the
QTc interval. The correction method used may influence
the derived value and hence diagnosis and it is therefore
important that clinical measurement of the QT interval
are made at a low/resting rate [25]. Measurements at or
near to a low resting heart rate are likely to be particu-
larly valuable given the impaired rate adaptation of the

QTc interval in SQTS patients. Furthermore, as has been
highlighted by others, a “spot” ECG may be insufficient
to identify SQTS, as surface ECG abnormalities can be
intermittent [26, 27]. The use of 24 h Holter monitoring
or repeated ECGs during hospitalization may be prefera-
ble [26, 27]. Additional potential markers for SQTS that
have been identified include PQ segment depression on

1 second

Fig. 1 Example SQTS ECG. ECG recording from young adult male who had experienced out-of-hospital arrest. Heart rate at time of ECG measurement
62min− 1, with QT and QTc intervals respectively of 322 and 326ms (below the cut-off level in ESC diagnostic criteria [24]). Note tall T waves in
precordial leads. ST segment elevation probably reflects early repolarization

Table 1 List of known SQTS variants and associated mutations

SQT subtype Gene & gene product Channel (subunit) Mutation (amino-acid change) Gain/Loss of function

SQT1 KCNH2 (hERG) IKr (α [pore-forming] sub-unit) N588K
R1135H
E50D
I560T
T618I
S631A

Gain-of-function
Gain-of-function
Gain-of-function
Gain-of-function
Gain-of-function
Gain-of-function

SQT2 KCNQ1 (KCNQ1/KvLQT1) IKs (α sub-unit) V307 L
V141 M
R259H
F279I

Gain-of-function
Gain-of-function
Gain-of-function
Gain-of-function

SQT3 KCNJ2 (Kir2.1) IK1 D172N
M301K
E299V
K346 T

Gain-of-function
Gain-of-function
Gain-of-function
Gain-of-function

SQT4 CACNA1C (CaV1.2) L-type ICa (α subunit) A39V
G490R
R1973P
R1977Q

Loss-of-function
Loss-of-function
Loss-of-function
Loss-of-function

SQT5 CACNB2b (β2b subunit) L-type ICa (β2b subunit) S481 L Loss-of-function

SQT6 CACNA2D1 L-type ICa (α2δ1 subunit) S755 T Loss-of-function

SQT7 SCN5A INa (canonical α subunit) R689H Putative loss-of-function

SQT8 SLC4A3 Anion exchanger AE3 R370H Loss-of-function

SQT9 SCN10A INa (noncanonical α subunit) G805 V Presumed loss-of-function
(functional data required)

Other

Primary carnitine deficiency SLC22A5 OCTN2 W62X ♂ + R471 ♀
R471 + null
R289*

Loss-of-function

Modified from [13] with additional information from [14], [18] and [85]. ♂ - inherited from father; ♀ inherited from mother; * truncation mutant
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the ECG (seen in > 80% of 64 patients studied [28] and
in a further recent case report [29]) a refractory period
cut-off of 200 ms in the right ventricular outflow tract
during invasive testing (whilst pacing at a cycle length of
500–600ms) [30].
Third, the atrial tachyarrhythmia in SQTS patients

presenting with AF can make it difficult to measure the
QT interval accurately and some SQTS cases could be
missed in such a scenario. A useful analogy can be made
here with familial atrial fibrillation caused by a
gain-of-function mutation (S140G) to the major KCNQ1
subunit of cardiac “IKs” channels [31]. In vitro and in
silico biophysical data indicate that, aside from its pro-
pensity to cause AF, this KCNQ1 mutation should also
abbreviate ventricular APs and increase susceptibility to
ventricular arrhythmia [32–34]; however the initial re-
port of this mutation in AF did not find QTc abbrevi-
ation, noting that irregular ventricular beats could
impact QT interval representation and accuracy of QTc

correction [31].
Fourth, there is evidence that in some instances SQTS

may be an ‘overlap syndrome’, concurrent with Brugada
[35, 36], early repolarization syndrome [37] or sick sinus
syndrome [15] phenotypes, which may complicate pri-
mary diagnosis. Fifth, the yield of successful gene cul-
prits from genotyping suspected SQTS cases is rather
low (less than 25–30%) [13, 23]. Given that genetic
screening generally includes a wide range of ion channel
candidates, this highlights a limit in our current under-
standing of factors controlling cardiac repolarization.
Finally, as highlighted by others, the majority of stud-

ies of the general population have centred on adults and
this may underestimate the occurrence of short QT in-
tervals in the early years of life, during which fatal ar-
rhythmias may occur [21]. Irrespective of its incidence
and prevalence, the SQTS is highly pathogenic [13, 14],
making it important to understand the basis, mecha-
nisms for arrhythmia susceptibility and treatment poten-
tial for identified SQTS variants. The following sections
illustrate the mutual benefits of combining the pursuit
of clinical and pre-clinical basic science research in this
rare condition.

Establishing causality
Whilst bioinformatic tools such as Polyphen [38] and
SIFT [39] can provide valuable estimates of likely patho-
genicity of identified mutations, the only way definitively
to establish causality, and certainly mechanism, is to
demonstrate altered gene product function. Indeed, it
has been highlighted for the long QT syndrome that re-
sults of in silico bioinformatics predictions of pathogen-
icity and functional testing of mutations can be at
variance with one another [40]. For nearly all of the ion
channel gene mutations implicated in the SQTS, detailed

cellular electrophysiology study using patch clamp electro-
physiology has been performed. Such recordings have
demonstrated the gain-of-function consequences of
SQT1-SQT3 K+ mutations [15, 41–55] and loss-of-func-
tion consequences of Na and Ca channel subunit
mutations [36, 56–59]. With an historical lack of genotyp-
ically accurate mammalian models of the SQTS, computa-
tional modelling has been employed to determine the
consequences of altered channel function for repolariza-
tion. Such work is time-consuming but has value in enab-
ling unequivocal demonstration of a causal link between
specific mutations and in explaining how particular func-
tional changes underlie disease phenotypes.

Synergy between clinical and preclinical studies in
understanding genotype-phenotype links
It has recently been reported that among genotyped
variants with mutations to K+ channel or Ca2+ channel
subunits: 55.5% of patients had mutations to hERG,
11.1% had mutations to KCNQ1, 14.8% had mutations to
KCNJ2, 11.1% had mutations to CACNA1C, and 3.7%
had mutations to each of CACNB2 and CANAD1 [22].
Penetrance and expressivity varies between mutations
[13], with an overall penetrance of ~ 82% [15]. Correla-
tions between phenotype and genotype have been made
in vitro and in silico.
The first genotyped SQTS (SQT1) variant was found

to be due to an asparagine to lysine (N588K) change in
the external S5-Pore linker region of the hERG channel
[41]. N588K accounts for ~ 18.5% of genotyped SQTS
cases and exhibits 100% penetrance [22]. The S5-Pore
linker region of the hERG channel is implicated in the
uniquely rapid inactivation kinetics of the hERG channel
[60–62] and the N588K mutation was found to shift in-
activation profoundly towards more positive voltages
[42, 43]. These findings have added to the available evi-
dence for the role of the S5-Pore linker in hERG/IKr
channel inactivation and the critical role of inactivation
in shaping the contribution of IKr to ventricular repolari-
zation [63, 64]. Computational modelling has demon-
strated causality between this inactivation change and
abbreviated repolarization [65–67]. Moreover, in multi-
cellular ventricular simulations incorporating regional
heterogeneity of IKr channel expression, the N588K
mutation was found to increase transmural membrane
potential heterogeneity (δV) during AP repolarization
and also APD dispersion within localised regions of the
ventricular wall [67]. Such changes may underlie the
increased T wave amplitude seen in patients. Figure 2
summarises proarrhythmic consequences of the N588K-
hERG mutation. A second mutation in the hERG chan-
nel pore (S631A) that produces a similarly marked shift
in hERG/IKr inactivation [68, 69] has been identified in
an SQTS family [70]. It produces comparable effects on
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hERG during ventricular repolarization to those reported
for N588K [47].
The T618I hERG mutation is the most commonly oc-

curring ion channel mutation thus far observed in geno-
typed patients, accounting for 25.9% of genotyped cases
SQTS [22]. It is strongly associated with arrhythmia, but
produces a smaller abbreviation of the QTc interval than
does the N588K mutation [22]. This may reflect a more
modest effect of the mutation on voltage dependent in-
activation kinetics of hERG [44, 45]. However, not all

studies of T618I have reported an inactivation voltage
shift and a negative shift in voltage dependent activation
and faster activation time-course have also been sug-
gested [22]. Curiously, in contrast with the N588K muta-
tion, no T618I carriers have exhibited atrial fibrillation
[22, 71]. Intriguingly, the I560T mutation, located to-
wards the top of the S5 transmembrane segment of the
hERG channel, appears to produce broadly similar
changes to hERG current to those seen in some studies
of T618I [44, 45] and has been associated with atrial

Fig. 2 A schematic diagram of the main pro-arrhythmic mechanisms of the N588K-hERG short QT syndrome (SQTS) mutation identified by experiments
and modelling. The upper panel shows experimental voltage and action potential (AP) clamp characterisations of wild type (WT) and N588K
mutant hERG currents at the ion channel level. The N588K mutation was found to increase greatly the current over the physiological range of
membrane potentials due to impaired inactivation [43] causing increased maximal IhERG to occur earlier during a simulated human ventricular AP
waveform [148]. These changes were integrated into a mathematical models of the human ventricular AP in which the N588K mutation was
shown to shorten the action potential duration (APD) whilst increasing the transmural dispersion of repolarisation (TDR) across the ventricular
wall [67, 132]. At the tissue level this had the effect of shortening the QT interval whilst increasing the amplitude of the T wave, as has been
observed clinically in SQTS patients. When integrated into a human left ventricular wedge model with realistic geometry, the combined pro-
arrhythmic substrate of shortened AP with increased heterogeneity of repolarisation due to the N588K-hERG mutation rendered ventricular
tachycardia/fibrillation (VT/VF) inducible. Modified with permission from [132]
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fibrillation and flutter [15]. Further work is therefore re-
quired to uncover the basis for the difference in AF sus-
ceptibility between T618I and these other mutations.
The E50D [23] and R1135H hERG mutations have

been reported in isolated cases of SQTS [46]. R1135H is
particularly notable because it has been associated with
a mixed SQTS/Brugada phenotype. The mutation’s prin-
cipal effects were to increase current magnitude and
slow the deactivation kinetics of hERG channels [46].
Computer simulations have shown that slowed hERG
channel deactivation can result in fewer channels closing
during diastole, increasing the recruitment of hERG
channels early in successive APs and increasing the like-
lihood of all-or-none repolarization in the right ventricle
[35]. A subsequent study has reported several hERG mu-
tations in Brugada syndrome patients that increase
hERG current without modifying inactivation kinetics
that are also associated with QT interval shortening
[72]. The R164C mutation was found in a 58 year old
man with coved-type ST segment elevation and a QTc

interval of 342 ms. No genetic data were available for
other family members, although he had an uncle who
had undergone sudden cardiac death [72]. The W927G
mutation was found in a 32 year old man who lost con-
sciousness and experienced VF detected by an external
defibrillator [72]. He had saddleback ST segment eleva-
tion in lead V1 and coved ST elevation at the third inter-
costal position. His QTc interval was 350 ms. Both
mutations increased hERG current density and produced
a modest left-ward shift in voltage dependent activation
kinetics [72].
What this body of information collectively indicates is

that, depending on the particular effects of a gain-of-func-
tion hERG mutation on channel function, the resulting
phenotype may be SQTS alone or, more subtly, that of
mixed SQTS-Brugada syndrome. Very recent work has
reported a heterozygous missense hERG mutation
(K801T) that produces a moderate gain-of-function in a
family with early repolarization syndrome and sudden
death [73]. Affected family members had shorter QTc

intervals (384 ± 12 ms) than ethnically matched con-
trols (415 ± 9 ms) [73]. This is consistent with the no-
tion that there may be a continuum on which the
different abbreviated repolarization disorders lie.
SQT2 typically shows an earlier age of manifestation

than does SQT1 [15]. Several KCNQ1 mutations
(V307L, V141M, R295H, F279I) have now been identi-
fied in SQTS patients [48–52]. Similar to the situation
outlined above for hERG, the phenotypic consequences
of SQT2 mutations depend on the nature of the channel
current/kinetics modification. For example, for the
V307L mutation (the first KCNQ1 mutation to be iden-
tified in SQTS2) residing within the P-loop of the
KCNQ1 channel, mutant channels (when co-expressed

with KCNE1 to recapitulate cardiac “IKs” channels) ex-
hibits left-ward shifted and accelerated voltage
dependent activation and moderately slowed deactiva-
tion kinetics [48, 50]. This mutation led to abbreviated
QT interval and an episode of aborted sudden death at
age 70 [48], with causality established in silico [74, 75].
The V141M mutation, in the S1 segment of the KCNQ1
protein, led to a phenotype that was detectable in utero
as bradycardia and irregular rhythm [49]. This mutation
has now been associated with multiple reports of a
mixed AF and sinus bradycardia phenotype [15, 49, 76,
77]. This mutation results in an instantaneous compo-
nent of IKs current and initial modelling (using a human
ventricular model and rabbit sinoatrial node model)
showed abbreviation of ventricular APs and abolition of
pacemaking [49]. Our recent human atrial and sinus
node simulations have shown that the distinct changes
to IKs produced by the two mutations can account for
their different phenotypes in respect of sinus bradycardia
[78]. Only the V141M mutation exerted a marked effect
on simulated sinoatrial node pacemaking rate, due to its
greater effect in increasing IKs over the diastolic mem-
brane potential range (the increased IKs resulting in a
slowed diastolic depolarisation) [78]. The V141M muta-
tion also produced a greater effect on atrial AP duration
than did V307L and whilst both mutations shortened
atrial tissue excitation wavelength for re-entry, V141M
led to more stationary spiral wave dynamics than did
V307L [78].
SQT3 involves mutations to KCNJ2 which encodes the

Kir2.1 channel which contributes to inwardly rectifying
K+ current, IK1 [13]. The observed Kir2.1 mutations are
D172N, M301K, E299V, K346T [53–55, 79]. The first re-
ported SQT3 mutation was D172N, which was associated
with a distinct T wave morphology in which not only was
T wave height increased, but the T waves exhibited marked
asymmetry [53]. This SQT variant is a clear instance where
identifying the biophysical changes to the underlying chan-
nel has explained the resultant T wave changes. IK1 usually
exhibits marked voltage-dependent rectification so that it
contributes little repolarizing current during the ventricular
AP plateau, but contributes markedly to the terminal repo-
larization phase of the AP. In D172N-Kir2.1 channels, the
processes underlying rectification of Kir2.1 current are
impaired, leading to a selective increase in outward current
[53, 80]. When these changes were incorporated in ven-
tricular AP simulations they resulted in an abrupt acceler-
ation of the final repolarization stage of the AP, and in
tissue simulations this recapitulated the T wave asymmetry
seen clinically [53, 81].
The M301K mutation leads to a greater attenuation of

Kir2.1 current rectification, resulting in a contribution of
IK1 over a wider range of voltages than is normally the
case and thus to a greater QTc shortening than the
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D172N mutation [54]. The E299V mutation produces a
still greater decrease in Kir2.1 current rectification and
so a larger current at positive voltages, with simulations
demonstrating greater AP abbreviation [55]. Thus, the
degree to which KCNJ2 gain-of-function mutations alter
AP repolarization can be linked to the severity of the
underlying mutant’s effects on Kir2.1 channel function
and the range of voltages over which outward Kir2.1
current is augmented.
SQT4–6 variants involve loss of function mutations to

genes encoding L-type Ca channel subunits (CACNA1C,
CACNB2b, CACNA2D1) [36, 56, 57, 59]. In each case,
the observed mutations lead to reductions in L-type Ca
current in vitro. Patients exhibit a mixed Brugada/SQTS
phenotype, combining changes in ST segment morph-
ology (with or without drug testing) with QTc abbreviation
[36, 56, 57, 59]. For example, in the first study associating
CACNA1C with Brugada/SQTS, the 44 year-old male
patient with the A93V mutation presented with marked
ST segment elevation in ECG lead V1, saddle-back eleva-
tion in lead 2 and a prominent J wave in lead 3. His QTc
interval was 360ms. His mother had experienced syncope
and undergone sudden death [36]. The proband with
G490R mutation identified in the same study presented
with AF and an abbreviated QTc of 346ms. ST segment
elevation in leads V1 and V2 was exacerbated by ajmaline
[36]. In electrophysiological testing, extrastimuli induced
monomorphic VT. L-type current from recombinant
channel expression experiments was suppressed across a
wide range of voltages by both mutations [36]. Mutations
in L-type Ca2+ channel subunit genes are linked to
Brugada and Early Repolarization Syndrome [82] and it
has been suggested that Brugada/early repolarization and
QTc shortening phenotypes may be part of a continuum
of manifestations of decreased L-type Ca current [59].
Putative SQT7 has been reported to involve a mutation to
SCN5A which leads to a R689H substitution in the Nav1.5
protein which carries cardiac Na current [58]. The index
patient had a Brugada-like ECG concurrent with a short
QT interval and his father had died suddenly aged 39.
There are conflicting biophysical data on this mutation:
some data suggest a loss of function (consistent with a
Brugada/SQTS phenotype [58], whilst other data suggest
an increase in late Na current (which would prolong repo-
larization) [83]. It is possible that the clinical manifestation
of effects of this mutation may depend on additional as
yet to be identified factors.
What is reasonable to conclude from consideration of

the relationship between preclinical and clinical findings
is that examination of the precise consequences of iden-
tified mutations helps establish causality and in some in-
stances explains the distinct nature of the clinical
phenotype. In turn, the clinical information helps estab-
lish the importance to different phases of cardiac

repolarization of particular biophysical changes to the af-
fected ion channels.

Evidence for novel modifiers of the QT interval from SQTS
studies
The dominant cardiac Nav1.5 channel isoform is
encoded by SCN5A, but growing evidence has suggested
that Nav1.8 (encoded by SCN10A) may influence cardiac
conduction and SCN10A mutations have been identified
in Brugada Syndrome [84]. Recently, a case of sudden
death in J wave syndrome associated with short QT
interval (QTc of 303 ms) was found to be linked to an
SCN10A mutation which led to a G805V substitution in
the transmembrane domain of Nav1.8 [85]. The patient
had been treated by the COX-2 inhibitor etoricoxib for
rheumatoid arthritis and, as prostaglandin E2 influences
Nav1.8 trafficking, it is possible that there was a pharma-
cogenomic component to the altered repolarization in
this case [85]. Whilst functional work is needed to verify
the loss-of-function effect of the G805V mutation, this
case appears to extend the evidence for involvement of
SCN10A in aberrant cardiac repolarization and to high-
light the potential for trafficking modulation and pharma-
cogenomics as components of SQTS.
Exome screening of two SQTS families with no muta-

tions in candidate ion channels has recently identified a
missense (R370H) mutation in a conserved motif of the
AE3 anion transporter encoded by the SLC4A3 gene,
which was absent in healthy controls [86]. Expression
studies of recombinant wild-type and mutant AE3 pro-
tein revealed reduced surface localisation of the mutant
variant along with reduced HCO3

− transport. A causal
link with QTc abbreviation has been identified through
knockdown of slc4a3 in zebrafish embryos; this abbrevi-
ated repolarization and resulted in a rise in intracellular
pH in zebrafish embryo hearts [86]. Additionally, intra-
cellular alkalization and reduced intracellular chloride
concentration ([Cl−]i) shortened rabbit QT interval and
ventricular AP duration [86]. This work has demon-
strated that altered function of an anion transporter can
lead to abbreviated ventricular repolarization, though
the electrogenic processes that effect accelerated repolar-
ization remain to be determined.
A second transporter that has been implicated in the

SQTS is the SLC22A5 encoded OCTN2 sodium-dependent
carnitine transporter [18]. Oxidation of long chain fatty
acids (LCFAs) is important for cardiac energy metabolism
and L-carnitine is a key cofactor for the transport of LFCAs
into mitochondria in cardiac myocytes. Sarcolemmal
OCTN2 is important for carnitine entry to occur. In
primary carnitine deficiency (PCD), SLC22A5 mutations
lead to malfunction of OCTN2, resulting in impaired LCFA
oxidation and accumulation in the cell cytosol [87, 88].
PCD is characterized by low intracellular and plasma
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carnitine and reduced renal carnitine reabsorption. PCD
patients can develop a progressive cardiomyopathy and ar-
rhythmias [89]. A SQTS phenotype has been identified in
some patients with PCD, leading to the suggestion that
PCD should be considered as a potential cause of
SQTS, particularly when concurrent with dilated car-
diomyopathy [16–18]. A causal link between carnitine
deficiency and abbreviated ventricular repolarization
and arrhythmia has been demonstrated in a mouse
model of PCD [16]. It is critical that, where present, PCD
is identified in SQTS patients as it can be treated by diet-
ary L-carnitine supplementation [16, 17], potentially obvi-
ating the need for antiarrhythmic pharmacology or
antiarrhythmic device implantation. The underlying ven-
tricular ionic current changes that lead to QT shortening
in PCD remain to be established. In vitro data raise the
possibility that hERG/IKr modulation may be involved [16,
90]. However, this cannot account for accelerated repolari-
zation in the mouse carnitine deficiency model, as mice
do not rely on hERG/IKr for ventricular repolarization [18,
91]. Consequently, further work is required to understand
the basis of QTc shortening in PCD.
The identification of links between both SLC4A3 and

SLC22A5 mutations and the SQTS indicates that under-
standing of the cellular mechanisms controlling ven-
tricular repolarization has been incomplete, providing
fertile ground for further research.

Insights from preclinical SQTS studies into arrhythmia
substrates with abbreviated repolarization
Insight into SQTS arrhythmia mechanisms has come
from experiments using pharmacological K+ channel
activation as a surrogate for gain-of-function K+ channel
mutations and in silico simulations of the effects of
SQTS mutations [13, 92]. The association between ab-
breviated QT intervals and both ventricular and atrial
fibrillation highlighted earlier in this article means that
insights gained from such studies may also have wider
relevance to settings of fibrillation associated with abbre-
viated repolarization. Consistent with this, the SQTS has
been suggested to provide a paradigm for increasing un-
derstanding of the roles of K+ channels in (ventricular)
fibrillation [93]. The SQT3 variant provides a valuable
illustration in this regard. It has been known for some
time that the magnitude of outward current carried by
IK1 influences stability of high frequency rotors, with a
larger outward current producing greater APD shorten-
ing and rotor stabilization [93, 94]. Concordant with this
notion, incorporation of the effects of the D172N Kir2.1
mutation into human ventricle models led not only to
shorter APD and effective refractory period (ERP), but
altered excitability (reducing excitability at low excitation
rates and enhancing excitability at high rates) and in-
creased tissue vulnerability to 2D/3D re-entry [53, 81].

In both 2D and 3D tissue models this led to ability of
tissue to support reentrant spiral/scroll waves with in-
creased dominant frequency compared to wild-type tis-
sue [81]. Subsequent simulations compared the ability of
D127N and E299V mutations to abbreviate ventricular
APD. These found a greater effect of E299V due its mark-
edly weaker rectification properties. This led to absence of
a clear ST segment [55] and activation delay of the right
ventricle leading to QRS alterations and to an increased
susceptibility to re-entry in an atrial tissue model [55].
Comparison of effects of the two mutations in atrial tissue
models has subsequently shown a greater shortening of
wavelength of re-entry for E299V than D172N and in-
creased susceptibility to sustained spiral wave re-entry in
both conditions [95]. In 3D tissue simulations, stable spiral
wave re-entry was seen for both mutations in heterozygous
expression conditions mimicking those of patients, but with
greater meander for the E299V condition [95]. Overall, the
simulation data indicate that mutation-induced increased
outward IK1 has strong potential to increase susceptibility
to pro-fibrillatory re-entry.
Simulations of the N588K hERG mutation have shown

a strong propensity towards re-entry consequent to
attenuation of voltage-dependent inactivation [67]. The
mutation produced a marked shortening of APD and the
ERP and localised increases in δV facilitated vulnerability
to uni-directional block and re-entry. In 2D and 3D
tissue models this led to a reduced substrate size for
re-entry, prolonging the lifespan of induced spiral or
scroll waves and supporting an increased dominant
frequency of excitation [67]. Interestingly, temporal vul-
nerability was decreased for N588K hERG at many loca-
tions across the ventricular wall, but the significant
decrease in minimal substrate size required to sustain
reentry was sufficient to increase markedly spatial vul-
nerability [67]. Similar observations have been made
from simulations of KCNQ1 and KCNJ2 mutations asso-
ciated with genetic forms of AF [34, 96]. This highlights
that effects on indices of both temporal and spatial vul-
nerability need to be evaluated in order to understand
the overall effects of arrhythmia causing mutations. Sim-
ulations of the I560T hERG mutation, which produces a
more modest attenuation of inactivation than N588K,
have also shown susceptibility to sustained spiral wave
re-entry [15]. Simulations of KCNQ1 mutations in SQT2
have shown abbreviation of ERP and reduction of the
tissue substrate required to support reentry, for both
ventricular and atrial tissue [74, 75, 78].
Computer simulations incorporating electromech-

anical coupling have predicted a decrease in the
phasic Ca2+ transient that leads to ventricular con-
traction, with APD shortening due to SQTS K+

channel mutations [97]. Subsequent speckle-tracking
echocardiography and Doppler imaging has shown a
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measurable decrease in left ventricular contraction
and greater mechanical dispersion in individuals with
SQTS [98, 99].
Arrhythmogenesis in the SQTS has also been studied

by using K+ channel openers to reproduce accelerated
repolarization, albeit without the ability to reproduce ef-
fects of specific K+ channel gene mutations. In studies of
the canine ventricular wedge or rabbit perfused heart,
the KATP channel activator pinacidil abbreviated repolar-
ization and the ERP, augmented transmural dispersion of
repolarization and increased susceptibility to polymorphic
VT or VF [100–102]. Utilization of the hERG activator
PD118057 also abbreviated the QT interval and refractori-
ness whilst increasing transmural dispersion of repolariza-
tion and predisposition to arrhythmia in ventricular
wedge preparations [103]. Application of the same hERG
activator to perfused canine atrial preparations also short-
ened AP and ERP duration, whilst increasing spatial dis-
persion of repolarization and vulnerability to arrhythmia
provocation [104].
The only genotypically accurate mammalian experimen-

tal models of (hERG-linked) SQTS have been recently re-
ported. Two of these are cardiomyocyte lines derived from
induced pluripotent stem cells (iPSCs) made from fibro-
blasts from two SQT1 patients with (i) the N588K [105]
and (ii) T618I [106] hERG mutations. As expected, myo-
cytes from these lines exhibited abbreviated repolarization
and increased IKr compared to a control line and, interest-
ingly, also showed increased hERG/KCNH2 expression
[105, 106]. Unlike normal adult ventricular myocytes,
iPSC-derived myocytes tend to exhibit an immature
phenotype of spontaneous activity and spontaneous Ca2+

transients from N588K-myocytes also exhibited after-
depolarization like events, which were exacerbated by
application of the cholinergic agonist carbachol [105].
Whether or not such events are likely to occur in myo-
cytes with a more adult phenotype remains to be estab-
lished. However, their observation points intriguingly to a
potential arrhythmia trigger in SQTS under conditions of
vagal stimulation. In the T618I hERG study, comparison
between the myocyte line derived from the patient with a
line with I618➔T genetic correction showed alterations in
functional expression of other ion channels, including Na+

and L-type Ca2+ channels [106].
Very recently, a transgenic rabbit model of SQT1 has

been reported in which the human N588K hERG muta-
tion has been expressed [107]. SQT1 transgenic animals
exhibited shortened QTc intervals, altered QTc-rate
adaptation and abbreviated ventricular and atrial APs
and ERP. Alterations in T wave height were not reported
[107]. Increased regional AP dispersion was seen in
SQT1 rabbits (consistent with reported localised alter-
ations in δV seen in silico [67]). In perfused heart experi-
ments, VT/VF was readily inducible in SQT1 hearts

[107]. Diastolic relaxation was enhanced in SQT1 hearts,
but changes in systolic function were not seen [107],
contrasting with systolic changes reported in patients
and electromechanical simulations [97, 98]. Moderate
electrical remodeling involving IKs, IK1 and L-type ICa
was observed [107]. Significantly, similar to patient and
simulation studies, quinidine normalized ventricular re-
polarization [107]. The generation of the first mamma-
lian genetic model of the SQTS represents a significant
advance for the field. A model precisely recapitulating
the situation for N588K hERG patients would involve
heterozygous expression of the analogous N➔K muta-
tion in rabbit erg. In the absence of such a model, it re-
mains to be established whether overexpression of a
human transgene results in differences from the patient
situation of heterozygous expression of mutated en-
dogenous IKr.

Implications from preclinical SQTS studies for the
therapeutic deployment of K+ channel activators
There has been interest in the development and poten-
tial use of K+ channel activators as novel antiarrhythmic
agents, particularly in the setting of pathologically
prolonged repolarization, where deployment of a K+

channel activator may act to normalize repolarization
[108–110]. The presence of endogenous KATP channels
comprised of Kir 6.x and SUR2A subunits, which only
conduct significant current when cellular ATP falls, may
exert some protective effects for the heart in situations
of cardiac ischaemia or hypoxia, although it can lead to AP
triangulation and associated arrhythmia risk [109, 111].
There is some evidence that administration of KATP chan-
nel activators in patients with LQTS mutations exerts bene-
ficial effects on repolarization [112–114]. On the other
hand, the successful deployment of KATP channel activation
by pinacidil to produce experimental models of the SQTS
[100–102] suggests that some caution is warranted in the
use of such a strategy. If excessive ventricular APD shorten-
ing occurs as a result of KATP channel activation the result
may be proarrhythmic. Similarly, the use of the hERG acti-
vator PD118057 to model ventricular and atrial arrhythmic
substrates in the SQTS [103, 104] highlights that augment-
ing IKr from a baseline of normal repolarization also carries
risk. Consistent with this, Lu and colleagues have
highlighted potential risks of QT shortening drugs in a
study in which hERG activators (mallotoxin and NS1643)
and KATP activators (levcromokalin and nicorandil) signifi-
cantly abbreviated the QT interval and elicited ventricular
fibrillation in isolated perfused rabbit hearts [115]. Add-
itionally, a recent study has shown marked proarrhythmic
effects of KATP and hERG activators on guinea-pig hearts at
high concentrations and has suggested the use of J-Tpeak

interval and JT area as biomarkers of arrhythmia risk with
QT shortening drugs [116]. Such observations do not
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preclude entirely the development or therapeutic deploy-
ment of K channel activators; agents that abbreviate repo-
larization whilst also prolonging the post-repolarization
refractory period (PRRP) may in some circumstances be
beneficial [117]. What the data from pharmacological QT
shortening teach us is that the most likely circumstances
for beneficial deployment would be those in which base-
line ventricular repolarization is already delayed and that
care would be needed to avoid excessive ventricular AP
shortening and the unintentional production of an SQTS
phenotype. Moreover, the effectiveness of KATP activators
in recapitulating an SQTS phenotype would perhaps make
it not surprising if gain-of-function mutations to KATP

channel subunits were to be identified in the future in
clinical SQTS cases.

Insights from preclinical pharmacological studies of the SQTS
Due to the high risk of sudden death in the SQTS [118]
the use of implantable cardioverter defibrillators (ICDs)
is warranted, particularly in patients who have survived
cardiac arrest or who have document episodes of ven-
tricular arrhythmia [24]. However, the changes in T
wave height in SQTS ECGs can lead to T wave oversen-
sing and inappropriate ICD shocks [11, 119–121]. Young
patients in particular have a high rate of inappropriate
ICD shocks [118]. Also, ICDs do not normalize repolariza-
tion or the arrhythmia substrate and so additional, pharma-
cological, approaches are desirable to help normalize
repolarization and reduce arrhythmia burden.
(Hydro) quinidine has proved effective in a number of

SQTS patients and at present is probably the pharmaco-
logical treatment of choice [13, 92]. SQTS cohort findings
have shown a high level of effectiveness of hydroquinidine
in preventing life-threatening proarrhythmic events dur-
ing long term follow up [122]. In studies of SQT1 patients
with the N588K hERG mutation quinidine but not sotalol
retained antiarrhythmic effectiveness, prolonging repo-
larization, ventricular ERP and protecting against VF
[41, 123]. Sotalol and other class III drugs that select-
ively inhibit hERG/IKr show a strong dependence on in-
tact hERG channel inactivation to block the channel
effectively [124–129]. The N588K mutation significantly
impairs sotalol block of hERG channels [41, 123], whilst
quinidine is comparatively little affected [126, 128]. The
S631A mutation, also recently found in an SQTS family,
retains sensitivity to quinidine too [47, 124, 129]; from this
one can predict that quinidine should retain effectiveness
in patients with this mutation. Disopyramide, a second
class Ia antiarrhythmic agent, also retains effectiveness
against N588K and S631A channels [125, 128, 129] and
has been tested successfully in SQT1 patients and a pa-
tient with unknown genotype [130, 131]. Computational
analysis of quinidine and disopyramide in the setting of
N588K-linked SQT1 has demonstrated that normative

effects on repolarization arise from the drug’s IKr blocking
action, whilst ERP prolongation results from a combin-
ation of IKr block and actions on INa [132]. The fact that
the N588 residue lies outside the hERG channel pore
means that the N588K mutation provides a means of
interrogating inactivation dependence of hERG blockade.
Since its discovery in SQTS, this has been exploited in
mechanistic studies of a range of cardiac and non-cardiac
drugs in addition to quinidine and disopyramide, includ-
ing amiodarone, astemizole, cisapride, dofetilide, doxepin,
E-4031, flecainide, ivabradine, lignocaine, ranolazine and
terfenadine [127, 129, 133–136].
In the ventricular wedge model of SQT1 using the

hERG activator PD118057, quinidine effectively pro-
longed QT interval and ERP suggestive that it would be
effective in other settings with augmented IKr [103].
Considering known effects of hERG inactivation modu-
lation on drug sensitivity of hERG, it is likely that for
those SQT1 variants with profoundly altered inactiva-
tion, quinidine and disopyramide would be reasonable
first line antiarrhythmic choices, whilst sotalol may be
ineffective. One notable potential exception to quinidine
effectiveness in SQT1 is the T618I mutation, for which
in vitro data suggest retained effectiveness of quinidine
[44, 45]. However, whilst quinidine prolonged QTc inter-
val it did not prevent ventricular arrhythmias in all re-
cipients [22]. This suggests that further work is needed
to understand the relationship between in vitro and in
vivo pharmacology of this SQT mutation. Bepridil was
found to be effective in a case of T618I linked VF unre-
sponsive to other treatment and the in vitro study of in-
teractions between T618I-hERG and bepridil to
elucidate this effect is likely to be instructive.
Quinidine has been reported to exert beneficial effects

in non-SQT1 variants of the SQTS [36, 71], though with
stronger effects in SQT1 than non-SQT1 variants [71].
In a recent simulation study of atrial arrhythmia sub-
strates in SQT2, simulated quinidine application in-
creased atrial ERP for both V307L and V141M KCNQ1
mutations. However, it was not effective at restoring
APD in the V141M setting [78] though it decreased the
dominant frequency of excitation for both mutations,
consistent with a potential role for rate if not rhythm
control. The in silico observations regarding lack of ef-
fectiveness of quinidine for rhythm control with V141M
correspond well to clinical findings in which recurrent
AF associated with the V141M KCNQ1 mutation failed
to respond to antiarrhythmic agents including quinidine
[77]. There are no selective IKs inhibitors in clinical use,
but preclinical experiments have suggested that the IKs
inhibitor HMR-1556 actually exhibits enhanced affinity
for V141M KCNQ1 and, in principle, would be expected
to mitigate effects on repolarization of this mutation
[137]. Simulations of the effects of the V307L mutation
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on ventricular cell and tissue electrophysiology suggest
that ~ 60% IKs inhibition would be likely to normalize re-
polarization in this SQT2 variant [75]. The location of
the V307 residue is in the binding region for canonical,
chromanol based IKs inhibitors and IKs incorporating the
V307L mutation exhibits reduced sensitivity to chromanol
293B [138]. The antimalarial drug mefloquine is an effect-
ive IKs inhibitor [139] and has been shown to block re-
combinant V307L-KCNQ1 + KCNE1 (recapitulating IKs)
[50]. This highlights a potential value for non-canonical
IKs inhibitors and establishing the mefloquine binding site
on KCNQ1 may be helpful in respect of potential future
IKs inhibitor development.
There are currently no selective IK1 inhibitors in clin-

ical use and because the role of IK1 is normally confined
to terminal repolarization selective IK1 blockade might
in any event be of limited value for non-SQT3 variants
of the SQTS [13]. There is experimental and simulation
evidence, however, that IK1 inhibition might in principle
be of value for SQT3. The antimalarial drug chloroquine
inhibits native IK1 from ventricular myocytes, with a
preference for the outward over inward current compo-
nent [140]. Chloroquine has been shown to be able to
inhibit effectively D172N Kir2.1 mutant channels and, in
simulations, to prolong repolarization and ventricular
ERP [80, 141, 142] Auxiliary effects on IKr may contrib-
ute to the drug’s effect [141, 142]. The E299 residue lies
in the binding site for chloroquine [143] so it is quite
likely that the drug would not be effective against the
E299V SQT3 variant, whilst mutation of M301 did not
impair chloroquine block [143] and so it may be effective
against the M301K mutation. Recent work has discovered
a pentamidine analogue PA-6 that shows inhibitory select-
ivity for IK1 [144] and reduces D172N-Kir2.1 current
[145]. Our recent simulation work has shown in respect
of atrial electrophysiology that 50% inhibition of IK1 alone
was sufficient to prevent re-entry in E299V but not D17N
mutant conditions; on the other hand, simulated com-
bined IK1+ IKr inhibition was effective at terminating reen-
try for both mutations [95]. Interestingly, however, partial
inhibition of IK1 precluded complete excitation of the pul-
monary vein area in E299V conditions, whereas 50% in-
hibition of IKr alone was sufficient to terminate reentry.
This highlights both the complexity of mutation effects
and the value of exploring these in silico. The ultra-rapid
delayed rectifier K+ current, IKur, has received considerable
attention as a potential atrio-selective Class III antiar-
rhythmic target [146, 147]. In SQT3 simulations, 50% in-
hibition of IKur decreased the dominant frequency of
excitation for both D172N and E299V mutations, but did
not terminate re-entry. When this effect was combined
with 50% inhibition of IKr reentry was terminated for both
mutations. This highlights a potentially effective Class III
combination effect against this SQT variant.

From a therapeutic standpoint the overall pharmaco-
logical findings in respect of SQTS suggest that some
drug interventions may be of value in one genotype but
of no benefit (or perhaps even hazardous) in another.
Moreover, it is clear that the use of a drug that carries
possible side effects with no predicted therapeutic bene-
fit is poor medicine and wasteful of scarce resources.
The data from preclinical studies can inform judicious
drug selection and development of novel treatment
strategies.

Conclusion
There is clear synergy between characterization of the
clinical phenotype of a rare genetic syndrome like the
SQTS, genotyping and preclinical studies that can estab-
lish causality, provide mechanistic insights into the basis
of clinically observed effects and a rational basis for the
deployment of existing pharmacological treatments or
‘proof of concept’ for the pursuit of novel approaches.
As evidenced for the SQTS, efforts to understand the
underlying basis of particular clinical phenotypes can in
turn provide insight into the role of particular biophys-
ical properties of identified ion channels in controlling
or modifying the underlying biological process – in this
case cardiac repolarization. In turn this can lead to a
rational use of medications which may modify the ion
channel in a beneficial way and potentially improve
prognosis. The comparatively low success rate in tar-
geted genotyping of SQTS cases highlights that there is
probably still much that we still do not understand
about modifiers of cardiac repolarization; it follows that
the identification of hitherto unknown associations be-
tween particular genes and the syndrome promises to
drive a broader and deeper understanding of this essen-
tial process.
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