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Abstract

The use of gas turbines is widespread in several industries such as; hydrocarbons,
aerospace, power generation. However, despite to their many advantages, they are
subject to multiple exploitation problem that need to be solved. Indeed, the purpose
of the present paper is to develop mathematical models of this industrial system
using an adaptive fuzzy neural network inference system. Where the knowledge
variables in this complex system are determined from the real time input/output
data measurements collected from the plant of the examined gas turbine. It is
obvious that the advantage of the neuro-fuzzy modeling is to obtain robust model,
which enable a decomposition of a complex system into a set of linear subsystems.
On the other side, by focusing on the membership functions for residual generator
to get consistent settings based on the used data structure classification and
selection, where the main goal is to obtain a robust system information to ensure
the supervision of the examined gas turbine.

Keywords: Gas turbine, Adaptive fuzzy neural network, Fuzzy inference modeling,
Fuzzy clustering, Data measurements

Background
Gas turbines have become very effective in industrial applications for electric and

thermal energy production in several industries. However, these rotating machines

systems are complex and they are composed of several sensitive elements that are

subject to some defects and operational risks [1–6, 7]. In the literature, several

scientific studies have been done as tentative to the model development for the

analysis of the dynamic behavior of these types of gas turbine machinery. On the

other side, the physical model of a gas turbine can be obtained by dynamic simu-

lations in the conception step, or based on real plant data of these types of

machine in exploitation. Indeed, the models developed in the literature screens are

complicated and are not exploitable in control strategy [8–13].

The developed model in this paper is reliable and easy to be implemented to

ensure the control of the gas turbine system, which can provide a quick and an

accurate estimation of the dynamic behavior of the studied gas turbine using the

identification techniques based on the fuzzy neural networks. This model can be a

suitable choice for the detection and the isolation of faults in gas turbine based

on the generation of residues resulting from the comparison of the actual process
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variables measurements and the referential model output. It also helps to under-

stand the dynamics of the gas turbine, suitable for the control system design based

on predictive model of the gas turbine, which provides an acceptable quality

prediction.

This paper presents a nonlinear model structure using the fuzzy clustering

method and the adaptive fuzzy neural network inference system [14–17]. This

structure was tested by the use of the real operational data obtained from a

SOLAR TITAN 130 gas turbine which is being used for the gas injection applica-

tion. An evaluation of this model is presented by comparing it with nonlinear

autoregressive exogenous NARAX modeling method. Furthermore, several robust-

ness tests were conducted in this work to validate the proposed fuzzy model.

Indeed, the measured data observed in the input/output of the examined SOLAR

TITAN 130 allowed to achieve the real-time modeling. On the other side, this

phase has helped to identify the adequate model which can be exploited in the

control of the studied gas turbine by the determination of some rules needed for

the supervision of such system.
Industrial application
The gas turbine studied in this work (Solar Titan 130) is installed at the gas com-

pression station SC3 SONATRACH Djelfa, Algeria. This gas turbine is composed

of three most important sections: Axial compressor, combustion chamber and the

turbine. It is obvious that the inlet guide vane (IGV) variable is located in the inlet

of the axial compressor and the nozzle guide vane (NGV) is located in the turbine

section [1].

Among the elements composing the gas turbine are the two flaps that are placed

on the line of the fuel combustion chamber at the aspiration, both flaps are the

main control tools of these machines. The first is used for controlling the fuel

pressure at the aspiration side of the turbine and the second is used for controlling

the speed of the load shaft, by the gas control valve (GCV) in the aspiration. The

examined gas turbine in this work (TITAN 130 Solar) which is located at the

Medjbara gas comression station SC3 SONATRACH at Djelfa, Algeria, is specific-

ally designed for gas compression stations used in gas transportation. Figure 1

shows the diagram of the discussed gas turbine system and Table 1 presents it

specifications.
Gas turbine modeling

In this paper, the fuzzy clustering is used for the initial study using a Takagi

Sugeno inference system to determine the set of fuzzy rules. These rules given the

fuzzy models of the dynamic behavior based on real data of the examined gas

turbine. The fuzzy c-means clustering requires the existence of a multiple input

and output data for the validations tests. This structure is used like an initial fuzzy

inference system for the preparation of the adaptive fuzzy neural network inference

system [18–20].

The variables of the studied gas turbine are the temperature and the mass fuel

flow rate. The examined system has the sensors that provide the outputs measures,



Fig. 1 The schematic of a solar gas turbine titan 130 with two shaft
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such as; the high pressure (HP), the shaft speed (NGP), the low pressure shaft

speed (NPT) and the temperature of the blades. These measurements are used to

provide different input–output data for the closed loop control, as it is represented

in Fig. 2. Furthermore, there are other important variables such as; the air mass

flow rate, the pressure ratio at the outlet of the axial compressor of the gas turbine

and the fuel/air ratio.

Algorithm of fuzzy clustering

The fuzzy clustering algorithms were developed and tested in serval previous works

[21–25], is a benchmark among different methods of fuzzy classification based on

minimizing the objective function of the form:

JFCM Z;U ;Vð Þ ¼
Xc

i¼1

XN

K¼1
μik
� �m

D2
ikA ð1Þ

Where Z is the data set, U = [μik] is the matrix of fuzzy partition (c ×N),V = [v1, v2,… vc]
is the vector of the center of classes to be determined, vi ∈ Rn is the center of the

ith class 1 < i < c, m ∈ [1, +∞] is a factor that denotes the degree of fuzziness of the

partition.
Table 1 Examined gas turbine specifications

Quantity Value

Output Power 15 290 kW (20,500 hp)

Heat Rate 9940 kJ/kW-hr (7025 Btu/hp-hr)

Exhaust Flow 180050 kg/hr (396,940 lb/hr)

Exhaust Temperature 505 °C (940 °F)

Max Speed 8855 rpm



Fig. 2 Variables of the examined gas turbine
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The standard quadratic distance in space in question, which defines the distance

measure between the zk observation and the vi center within the meaning of the

metric induced by A is given by using the flowing equation:

D2
ikA ¼ zk−við ÞTA zk−við Þ 1≤i≤c; 1≤k≤N ð2Þ

In the Eq. (1), the measurement of non-similarity is expressed by the sum of
squares of the distances between each data vector and the center of the corre-

sponding class. The effect of this distance is weighted by the degree of activation

μmik corresponding to the zk data vector, the value of the cost function JFCM(Z;U; V)

can be seen as a measure of the total variance of zk with respect to the vi centers.

The minimization of the objective function given in (1) is given as flows:

μik ¼
1Xc

j
1

DikA

DjkA

� � 2
m−1

1≤i≤c; 1≤k≤N ð3Þ

vi ¼
XN

K¼1
μik
� �m

zkXN

K¼1
μik
� �m ð4Þ

This leads to the Fuzzy C-Means clustering algorithm (FCM) given, which can be
summarized in three steps:

Step 1: Calculation of the cluster centers
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vli ¼
XN

K¼1
μik

l−1ð Þ m
zkXN

K¼1
μik

l−1ð Þ
� �m 1≤i≤c

Step 2: Calculation of the distances
D2
ikA ¼ zk−v

l
i

� �T
A zk−v

l
i

� �
1≤i≤c; 1≤k≤N

Step 3: Updating the partition matrix
If DikA
2 > 0 for 1 ≤ i ≤ c, 1 ≤ k ≤N

μ 1ð Þ
ik ¼ 1Xc

j
1

DikA

DjkA

� � 2
m−1

Where the function 1(.) equal to 1 for the positive values of the partition matrix

and −1 for the negative values pf this matrix. When m = 1 the partition matrix

become zero (all terms are zero). Otherwise μ 1ð Þ
ik ¼ 0 if DikA > 0 and μ 1ð Þ

ik ∈ 0; 1½ � withXc

i
μ 1ð Þ
ik ¼ 1 too ‖U(1) −U(l − 1)‖ < ε.

Adaptive fuzzy neural network system

The optimization variables of the studied gas turbine are obtained by using fuzzy

inference algorithms for the construction of the regions of data classified by the

neural networks. These method increases the degree of calculating a fuzzy model

using the neural networks layers structures. Therefore, this approach is typically

referred to an adaptive fuzzy neural network inference system [14–16, 26–28].

Figure 3 gives an example of a fuzzy data clustering structure with r rules signify

as a neural network.
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Fig. 3 Fuzzy data clustering structure
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The first layer nodes are calculated from the degrees of input in the fuzzy sets,

and the nodes products in the second layer represent the operation of the

antecedent conjunction. By normalization of the nodes N, the rules equations of

the five layers are given in the following equations:

Layer 1ð Þ : μAij
xj; cij; σ ij
� � ¼ e

−
xj−cij
2σ ij

� �2

i ¼ 1;…:;NMF ; j ¼ 1;…;m

ð5Þ

Layer 2ð Þ : wk ¼
Ym
i¼1

μAik
xið Þ k ¼ 1;…; r ð6Þ

Layer 3ð Þ : ―wk ¼ wkXr
i¼1

wi

ð7Þ

Layer 4ð Þ : ―wk f k ¼ ―wk pk0 þ
Xm
j¼1

pkjxj

 !
ð8Þ

Layer 5ð Þ : y ¼
Xr
i¼1

―wi f i ð9Þ

Where: m is the number of inputs, r is the number of rules, NMF is the number

of membership functions for each rule, cij is the mean value, σij is the variance of

each membership function, fk is the consequent part function and Pkj represents

the scalar coefficients.

In this work, the Takagi-Sugeno Fuzzy model is used to construct the ANFIS

model for the examined gas turbine, this configuration is shown in Fig. 4, where

three Gaussian membership functions for each input with an adjusting of the

ANFIS variable by a combination using the least-squares method and the back-

propagation gradient descent technique.
Fig. 4 Adaptive fuzzy neural network with inference system
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The nonlinear autoregressive exogenous model (NARX), which now is commonly

used for the approximation of the dynamic behavior of complexes system, the

MARX system output is given by y(t) which represents the feedback to the input

of the network and u(t) is used for storing previous values of the sequences in the

NARX model, is given by the Eq. 10:

y tð Þ ¼ F
y t−1ð Þ; y t−2ð Þ; :::::; y t−nað Þ;
u t−1ð Þ; u t−2ð Þ; :::::; u t−nbð Þ

� �
ð10Þ

Where: y(t) is the output signal, u(t) is the input signal, na is the number of

output regression, nb is the number of intput regression and F is the nonlinear

estimated function.

The estimated function F may be have different mathematical arrangement. In

this work a polynomial form is chosen, the nonlinear autoregressive exogenous

model, is given by:

y tð Þ ¼ α0 þ
Xn
i1¼1

αi1xi1 tð Þþ
Xn
i1¼1

Xn
i2¼i1

αi1;i2xi1 tð Þxi2 tð Þ þ…

þ
Xn
i1¼1

…
Xn
ik¼ik−1

αi1; :::::;ik xi1 tð Þ ::::xiK tð Þ
ð11Þ

Where: n = na + nb are scalar coefficients, xi(t) is the input data regression, k is
the nonlinearity degree in the estimated function F.

Gas turbine investigation
The model parameters of the examined gas turbine have been identified with a

series of operational data at the startup, at the shutdown and at the normal

operation phases. This identification is necessary for the overall gas turbine system

decomposition into several subsystems, including the axial compressor, high

pressure shaft (HP), low pressure shaft (LP) and the exhaust system, shown in

Fig. 5.

Axial compressor

The two main variables are the discharge temperature (TC) and the pressure (PC)

that can be modeled using the following expressions:

TC kð Þ ¼ F1 TC k−1ð Þ;HPspeed% k−1ð Þ; IGV k−1ð Þ;TA k−1ð Þ� �
: ð12Þ

PC kð Þ ¼ F2 PC k−1ð Þ;HPspeed% k−1ð Þ; IGV k−1ð Þ;NGV k−1ð Þ;TA k−1ð Þ; PA k−1ð Þ� �
ð13Þ

High pressure shaft (HP)

Normal operation (turbine is running and HPspeed% > 65)
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Fig. 5 Configuration of the adaptive fuzzy neural network model of a gas turbine
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HPspeed% kð Þ ¼ F3 HPspeed% k−1ð Þ; FF k−1ð Þ;NGV k−1ð Þ; IGV k−1ð Þ� �
: ð14Þ

Low pressure shaft (LP)

LPspeed% kð Þ ¼ F4 LPspeed% k−1ð Þ; PC k−1ð Þ; FF k−1ð Þ;NGV k−1ð Þ; IGV k−1ð Þ� � ð15Þ

Exhaust system (ET)

ET kð Þ ¼ F5 ET k−1ð Þ;ACDP k−1ð Þ;ACDT k−1ð Þ; IGV final k−1ð Þ� � ð16Þ

Where Fn, n = 1, 2,…, 5 are fuzzy inference system variable that has been assem-
bled from the real data of the examined turbine. TA and PA denote ambient

temperature and pressure respectively, FF is fuel mass flow and TE is exhausted

temperature. Figure 4 shows the overall configuration of the system modeling. The
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Fig. 8 High-pressure shaft speed ANFIS model validation



Table 2 RMSE comparison between the two models

Gas turbine parameter

Model type HP shaft speed LP shaft speed ET system

ANFIS model × 103 2,83 7,60 11,84

NARX model × 103 7,10 21,30 23,21
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parameter used for the comparison between the two models is the root mean

square error (RMSE).

The root mean square error (RMSE) is the residues given by the difference

between the actual and predicted values, obtiaied from a mean square error. Also

this is an error measure used on values observed on the system state. The RMSE

given in the Eq. 17 gives the estimation of the model predictions and is defined as

the square root of the average squared error:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
Xobs;i−Xmodel;i
� �2

n

s
ð17Þ

The obtained results are shown in Figs. 6, 7 and 8, representing respectively the
three main outputs of the model {HP, LP, ET} for the ANFIS and naRAX models.

The RMSE comparison between the two models is represented in Table 2.

The implementation equations of the laws, governing the gas turbine system

leads to knowledge model too complex and delicate implementation. In the case
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considered, the modeling techniques developed from input/output measures

collected from the system examined yield to good results for exploitable modeling

in control of the examined gas turbine system.

When the knowledge of the expert is not available, the identification of a struc-

ture made from real data of the TITAN 130 Solar, installed in MEDJBARA gas

comression station SC3 SONATRACH at DJELFA, Algeria, this method of fuzzy

classification allows the partitioning of the data space into several classes for fuzzy

models that are used for the control of the gas turbine variables. For the fuzzy

self- tuning with PID controller using the ANFIS model for the examined solar

turbine are given in the flowing Figs. 9a, b, 10a, b, 11a and b. The Fig. 9a show

the responses of the HP shaft speed supervision with fuzzy controller using ANFIS

model at the shutdown stage and the Fig. 9b show HP shaft speed supervision with

PID controller using ANFIS model at the startup phase. The Fig. 10a show the re-

sponses of the LP shaft speed supervision with fuzzy controller and in the Fig. 10b

the LP shaft speed supervision with PID controller is shown. The Fig. 11a shows

the responses of the exhaust temperature supervision with fuzzy controller using

ANFIS model and the Fig. 11b present the exhaust temperature supervision with

PID controller.

The obtained results of the dynamic behavior control in the examined gas

turbines are satisfactory, such behavior is a very important issue in oil and gas

industry; because for these uncontrolled dynamic action can lead to premature

aging of the components of the turbine, or unacceptable noise and vibration. This
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is particularly important to develop a robust control system, in the context of

having a good operation of gas turbines.

The proposed approach in this work, allows an effective and a reliable control

system for the examined gas turbine. Initially, the contribution of the fuzzy

techniques for the modeling of different control parameters of the examined gas

turbine is studied. This allows to develop a global model based on fuzzy clustering

method using algorithms based on fuzzy inference systems for classification of real

data of the examined gas turbine. Secondly, the ability of the application of fuzzy

models to the controller synthesis based on fuzzy logic system is studied. The

obtained results in this work are satisfactory and show the effectiveness of the

proposed approach.

Conclusion
This work has presented one of the major problems when looking for a reliable

mathematical representation of gas turbine variables; the proposed ANFIS model

provides a good improvement in performance during its operation. The use of the

fuzzy clustering algorithm has an important advantage which allows the automatic

generation of the membership functions of the fuzzy regions from the studied data.

The obtained results from data classification with the associated models construc-

tion offer advantageous performance in modeling of the examined gas turbine

system. This approach can provide reliable models for controlling of such systems.
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