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Abstract 

The out-of-sample R2 is designed to measure forecasting performance without look-
ahead bias. However, researchers can hack this performance metric even without 
multiple tests by constructing a prediction model using the intuition derived from 
empirical properties that appear only in the test sample. Using ensemble machine 
learning techniques, we create a virtual environment that prevents researchers from 
peeking into the intuition in advance when performing out-of-sample prediction 
simulations. We apply this approach to robust monitoring, exploiting a dynamic shrink-
age effect by switching between a proposed forecast and a benchmark. Considering 
stock return forecasting as an example, we show that the resulting robust monitoring 
forecast improves the average performance of the proposed forecast by 15% (in terms 
of mean-squared-error) and reduces the variance of its relative performance by 46% 
while avoiding the out-of-sample R2-hacking problem. Our approach, as a final touch, 
can further enhance the performance and stability of forecasts from any models and 
methods.
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Introduction
The out-of-sample R2 is no better than in-sample R2 regarding data snooping concerns. 
Persistent researchers can attempt multiple prediction models and ingenuously report 
only the best performing one (Inoue and Kilian 2005, 2006, de Prado 2019). Alterna-
tively, careful researchers examine a model of their own choice, but only the lucky ones 
obtain false positive results that are good enough for publication (Chordia et al. 2017). 
However, the problem, in reality, is even deeper than that. Researchers often construct 
a prediction model using the intuition derived from recent empirical findings that did 
not exist in the training sample period (Yae Forthcoming). It is unlikely that prior to the 
recent findings, forecasters chose such a model without a hint from the future; that is, an 
unintended look-ahead bias arises in pseudo out-of-sample testing.
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For example, some early studies, such as Pesaran and Timmermann (1995), show that 
stock return predictability is time-varying: the predictability is stronger in recessions 
than in expansions. Then, many follow-up studies utilize such empirical facts to improve 
out-of-sample predictability further.1 The truth is, however, a hypothetical forecaster in 
out-of-sample prediction simulations would not choose such stylized models without 
sufficient evidence at the moment of prediction (Martin and Nagel 2022). Therefore, the 
best option previously available for the forecaster is to consider all possible models and 
choose one or a combination, ex-ante optimally, without help of the not-yet-available 
intuition.

We consider a machine learning approach to tackle this comprehensive out-of-sam-
ple R2-hacking problem. However, our strategy differs from others, which highlight the 
superior prediction accuracy of machine learning. We find a new solution by exploiting 
the weakness of machine learning: the black-box-like nature that potentially exacerbates 
the out-of-sample R2-hacking problem and blurs economic intuition.2 Figuratively, using 
this black box, we create a virtual environment that prevents researchers from peeking 
into the intuition from the future when they perform out-of-sample prediction simula-
tions.3 Therefore, we do not attempt to maximize the average forecasting performance 
ex-post. Instead, we aim to measure the attainable level of out-of-sample predictability 
in practice using machine learning.

As a practical example, we demonstrate our solution for out-of-sample R2-hacking 
in the context of robust monitoring forecasts; that is, a forecast that switches between 
a proposed forecast and a benchmark while utilizing the conditional predictabilities, 
which are monitored in real-time.4 To avoid out-of-sample R2-hacking, we suggest the 
following three-step approach: (1) choose an information set (i.e., conditioning vari-
ables) for monitoring, independently of intuition available only after the moment of 
prediction, (2) approximate the entire time-series model space of the conditioning vari-
ables with feature engineering, and (3) apply a combination of ensemble machine learn-
ing algorithms, instead of choosing what works best ex-post after attempting many. That 
is, we design each step to exclude the out-of-sample R2-hacking associated with select-
ing data, models, and optimization algorithms, respectively. Therefore, implementing 
the first two steps are as important as the last step, which ensembles multiple machine 
learning algorithms. We call this class of machine learning approach for robust monitor-
ing forecasts, robust monitoring machine.

We apply our robust monitoring machine to a real-world prediction example for dem-
onstration purposes. The proposed forecast in this example is a combination forecast 
from Rapach et al. (2010), which set an equal-weighted average of the 14 stock market 
predictors studied in Goyal and Welch (2008). The benchmark forecast is a real-time 
historical average of stock market returns, as Campbell and Thompson (2008) suggests, 

1  Among many others, Dangl and Halling (2012) study time-varying coefficient models whose coefficients follow a ran-
dom walk. Henkel et al. (2011) and Zhu and Zhu (2013) choose regime switching models instead. Rapach et al. (2013) 
have the discounted mean squared forecast error (DMSFE) in the past to determine the combination weights, similarly 
to Stock and Watson (2004) and Bates and Granger (1969).
2  See (Prado and López 2018) and (Bailey et al. 2015) for out-of-sample R2-hacking problem.
3  Similarly, Kou et al. (2022) propose an extension of group decision-making and spherical fuzzy numbers.
4  The method of monitoring forecasts solves a classification problem by supervised learning. For recent development in 
clustering (unsupervised learning) with financial data, please refer to Kou et al. (2014) and Li et al. (2021).
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while defining the out-of-sample R2 . Then, we apply the three-step approach as fol-
lows. First, we choose the smallest possible information set for monitoring: a history 
of the prediction loss (e.g., squared-error loss) differences between the proposed and 
benchmark forecast. Next, following Christ et al. (2018), we convert the variable in our 
information set into hundreds of time-series features, which act as building blocks to 
approximate the entire time-series model space. Finally, we blindly combine (with equal 
weights) three popular ensemble machine learning algorithms that we sequentially 
trained and validated for out-of-sample forecasting: random forest, extremely rand-
omized trees, and gradient boosting. We stress that we rule out potential out-of-sam-
ple R2-hacking problem by intentionally performing these tasks in an unsophisticated 
manner.

Nevertheless, the out-of-sample classification performance of the robust monitoring 
machine remains outstanding, despite our efforts to avoid out-of-sample R2-hacking 
problems. Its sensitivity is 57.0% and specificity is 56.8% without any look-ahead biases, 
which statistically differ from those of uninformative random classifiers. Our results 
imply that the past return-predictability truly contains information for the future return 
predictability of proposed and benchmark forecasts.

To quantify the advantages of the robust monitoring machine, we measure a prediction 
loss difference (between a forecast and the benchmark forecast). Its mean represents the 
average forecasting performance, while its variance indicates the stability of forecasting 
performance. We find that our monitoring forecast beats the proposed forecast in both 
aspects. Our approach improves the mean prediction loss difference by 15%, while the 
variance falls by 46.3% because of its expected benefits. We emphasize two things here. 
First, our approach aims to attain a realistic level of out-of-sample prediction rather than 
compete with other algorithms that maximize ex-post performance metrics. Second, a 
robust monitoring machine can be easily added to other forecasting methods as a final 
step. In particular, forecasters should apply the robust monitoring machine if they evalu-
ate performances relative to a benchmark.

We also confirm that the robust monitoring machine captures the well-known eco-
nomic intuition in real-time: return predictability is greater in bad economic periods. 
The robust monitoring machine tends to favor the proposed forecast ex-ante in bad eco-
nomic periods, which are characterized by low stock valuation and high macro uncer-
tainty. Previously, this intuition looked clear only when researchers studied the whole 
sample period in hindsight.

This study contributes to two strands of the literature. First, a few recent works use 
a forward-looking approach to model selection or averaging; Zhu and Timmermann 
(2017), Gibbs and Vasnev (2018), and Granziera and Sekhposyan (2019) optimize 
weighting strategy conditional on the expected future performance of the prediction 
models. This approach represents a considerable departure from the prior literature with 
backward-looking approaches. We then fully scale up their forward-looking approach 
by searching the entire time-series model space as approximated by feature engineer-
ing (e.g., Kou et  al. 2021), instead of considering only a few models possibly chosen 
by subjective intuitions. Second, stock return predictions via machine learning made 



Page 4 of 28Yae and Luo ﻿Financial Innovation            (2023) 9:94 

tremendous progress recently in academia and practice.5 Prevailing research, however, 
concentrates on improving the accuracy of the prediction.6 Instead, we exploit the black-
box-like nature of machine learning to intentionally block intuition from the hypotheti-
cal future data (test sample) in out-of-sample simulations. That is, this study resolves the 
out-of-sample R2-hacking problem by machine learning techniques instead of creating 
one. Unlike existing solutions for multiple testing, our approach does not compromise 
forecasting performance.

To the best of our knowledge, no prior works attempt to resolve the R2-hacking prob-
lem by machine learning techniques. This gap creates the need for a new approach. This 
study offers the first attempt by proposing how to properly use existing machine learning 
algorithms to avoid the out-of-sample R2-hacking problem instead of proposing a single 
machine learning algorithm that maximizes forecasting accuracy by multiple testing.

The remainder of the paper is organized as follows. Section  Monitoring forecasts 
revisited revisits forecast monitoring in a simple framework. Section Robust monitor-
ing explains the benefits of the robust monitoring forecast. Section Robust monitoring 
machine outlines our machine learning approach to robust monitoring. We describe its 
real-world example in Sect.  Applications: robust monitoring for return-predictability 
and present the results in Sect. Empirical performance of monitoring forecasts. We dis-
cuss several important topics, such as how to interpret the results in conjunction with 
business cycles in Sect. Discussion and conclude in Sect. Conclusion.

Monitoring forecasts revisited
Monitoring forecasts can be viewed as an extreme case of combination forecasts with 
dynamic weights. If a researcher is unsure which forecast predicts conditionally best, 
it is better to combine multiple forecasts for variance reduction. However, selecting a 
single predictor can be better if an accurate signal for conditional performance is avail-
able. In this section, we characterize the condition on which a monitoring forecast can 
outperform individual forecasts in a simple model. We also include a few metrics and 
statistical tests to quantify monitoring performance.

A simple model of monitoring

Suppose that r is the target variable to predict and its unconditional mean is µ . There are 
two unbiased forecasts, f (a) and f (b) ; that is, E[f (a)] = E[f (b)] = E[r] = µ , as follows.

(1)r = µ+ e(y) + e(s),

(2)f (a) = µ+ e(a) + Se(s),

(3)f (b) = µ+ e(b) + (1− S)e(s).

5  See (Goldstein et al. 2021; Kou et al. 2019), and (Abad-Segura and González-Zamar 2020) for recent advanced research 
in finance.
6  See, for example, Gu et al. (2020), Feng et al. (2020), Heaton et al. (2017), and Freyberger et al. (2020) among many 
others.
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The individual shocks (e(y), e(s), e(a), e(b)) follow a normal distribution centered at zero, 
respectively. These shocks are uncorrelated to each other, and their standard deviations 
are SD(e(y)) = σy , SD(e(s)) = σs , and SD(e(a)) = SD(e(b)) = σf  , respectively. The indica-
tor variable S follows a Bernoulli distribution with probability ps.

Without loss of generality, we assume that the forecast f (a) is unconditionally more 
accurate than f (b) such that ps > 1

2 . If S = 1 , then the forecast f (a) is conditionally more 
accurate than f (b) ex-ante, while the forecast f (b) is if S = 0.

Now consider a monitoring forecast f (m) optimally switching between two forecasts 
f (a) and f (b) given a signal on S. We measure the accuracy of the signal, pm , as

M is a monitoring signal following a Bernoulli distribution. The higher pm is, the more 
accurate the monitoring forecast is. For example, if pm = 1 , then the monitoring fore-
cast always picks the more accurate forecast between f (a) and f (b) . Next, we adopt a 
squared forecast error as a loss function:

and define a loss difference between two forecasts as follows.

Then, we can easily derive the condition for which the monitoring forecast f (m) outper-
forms both individual forecasts on average. The monitoring forecast f (m) is uncondition-
ally more accurate than f (a) (and so f (b) ) ex-ante if and only if

Condition (8) states that the monitoring forecast will outperform if a monitoring signal 
is accurate enough to dominate the accuracy advantage of an individual forecast over the 
other. For example, in case two forecasts are similar in accuracy ps = 1/2 , then it is not 
difficult to beat both forecasts by monitoring; we need only pm > 1/2.

Out‑of‑sample R2 : a conventional metric for forecast performance

Campbell and Thompson (2008) suggests an out-of-sample R2 metric to evaluate the 
performances of stock return forecasts. Suppose f (i)t|t−1 is a given forecast for the target 
rt . Then, the out-of-sample R2 for the period from t = t0 to t = t1 is

(4)S =

{
1 with probabiliy ps,
0 with probabiliy 1− ps.

(5)f (m) = Mf (a) + (1−M)f (b) where M =

{
S with probabiliy pm,
1− S with probabiliy 1− pm.

(6)L(a) = (r − f (a))2, L(b) = (r − f (b))2, and L(m) = (r − f (m))2,

(7)�L(b,a) = L(b) − L(a), �L(b,m) = L(b) − L(m), and �L(a,m) = L(a) − L(m).

(8)E[�L(a,m)] = E[�L(b,m)] − E[�L(b,a)] = (pm − ps)σ
2
s > 0.

(9)R2
OS = 1−

t1
t=t0

(rt − f
(i)
t|t−1)

2

t1
t=t0

(rt − f
(b)
t|t−1)

2
,
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where f (b)t|t−1 is a benchmark forecast, which is the historical average of the past returns 
rt , commonly used in the stock return predictability literature. The out-of-sample R2 
measures the reduction in mean squared prediction error for a forecast relative to the 
benchmark forecast. If R2

OS is positive, then the forecast f (i)t|t−1 outperforms the bench-
mark forecast in terms of the mean square prediction error metric.

Metrics and tests for monitoring performance

Monitoring forecasts solves a classification problem: which forecast performs better 
conditionally? Therefore, we can adopt metrics and statistical tests from the classifica-
tion literature to evaluate monitoring performance. For example, we can define the event 
in which f (a) outperforms f (b) ; that is, �L(b,a) > 0 , is positive, and negative otherwise. 
Then, the sensitivity, or true positive rate (TPR), refers to the empirical probability that 
the monitoring forecast f (m) equals f (a) when �L(b,a) > 0 (i.e., f (a) outperforms f (b) ). 
Likewise, specificity, or true negative rate (TNR), refers to the empirical probability that 
f (m) equals f (b) when �L(b,a) < 0 . We also adopt other metrics, such as positive pre-
dicted value (PPV), negative predictive value (NPV), and accuracy (ACC), following 
their conventional definitions in a confusion matrix.

If the classifier is purely random, then both ‘‘sensitivity + specificity’’ and ‘‘PPV + 
NPV’’ should be one in the population. We compute their 95% confidence intervals as

where n1 and n2 are the numbers of true positives and negatives in the data, respectively.

where n3 and n4 are the numbers of predicted positives and negatives in the data, respec-
tively. If these confidence intervals do not contain one, then we can conclude that a 
monitoring task is informative ( pm > 1/2 ) at the 5% significance level.

We adopt two formal tests of monitoring performance from the classification con-
text: Fisher’s Exact test and the Chi-square test for binary classifiers. The null hypothesis 
H0 in both tests is that the true (predicted) positives and true (predicted) negatives are 
equally likely to be predicted as (true) positives. Therefore, low p-values of these tests 
are evidence that a monitoring task is informative.

Robust monitoring
Monitoring Forecast is an aggressive technique to maximize predictability in contrast 
to a Combination Forecast, which aims to reduce the variance of forecast errors. That 
is, monitoring forecast and combination forecast are traditional counterparts of boost-
ing and bagging (i.e., bootstrap aggregating) in machine learning, respectively. However, 
monitoring the forecast, which is aggressive by nature, can produce a robust conserva-
tive predictor when it switches between a given proposed forecast and a benchmark. 
That is, monitoring forecast becomes a robust version of the originally proposed fore-
cast, whatever it is. We briefly explain the intuition in the following sections.

TPR+ TNR± 1.96×
√

TPR× (1− TPR)/n1 + TNR× (1− TNR)/n2,

PPV + NPV ± 1.96×
√

PPV × (1− PPV )/n3 + NPV × (1− NPV )/n4
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Using a benchmark to make a forecast robust

Suppose a researcher wants to measure the forecasting ability of a proposed forecast f (a) 
relative to a benchmark forecast f (b) in the context of the previous section. Then, the 
loss difference, �L(b,a) = L(b) − L(a) , between the forecasts f (a) and f (b) is a measure of 
how much the forecast f (a) outperforms the benchmark forecast f (b) . With a quadratic 
loss function, the expected loss difference E(�L(b,a)) is the expected reduction in mean 
squared error when we replace the benchmark f (b) by f (a).

Moreover, researchers can construct a monitoring forecast f (m) that switches between 
a proposed forecast f (a) and a benchmark forecast f (b) . They may wonder if the moni-
toring forecast f (m) outperforms the proposed forecast f (a) . Note that comparing 
the mean squared errors of the forecasts f (a) and f (m) is equivalent to comparing the 
expected loss differences E(�L(b,m)) and E(�L(b,a)) because of the following identity:

Here, the empirical loss difference �L is the main building block for evaluating relative 
forecasting performance. Its first moment is a difference in the mean squared errors, 
a key comparison metric in the forecasting literature. Researchers, therefore, compare 
their means E(�L(b,m)) and E(�L(b,a)) to see if the monitoring forecast f (m) outperforms 
the original forecast f (a) on average. However, what about their variances Var(�L(b,m)) 
and Var(�L(b,a)) ? Should researchers ignore or care about them? What do they even 
mean?

Those variances represent the uncertainty of how well the forecasts f (a) and f (m) per-
form at a given time relative to the benchmark forecast f (b) . Yae (2018) adopts the idea 
of a tracking-error-volatility (TEV)-efficient frontier from the portfolio optimization lit-
erature and argues that risk-averse researchers should care about such variances if they 
evaluate performance relative to the benchmark forecast.7 The idea of relative perfor-
mance is common in investments. An investor who wants to outperform the market 
would consider deviating from the market as taking risks for higher returns. The more 
the portfolio deviates from the market, the greater the downside risk (and upside oppor-
tunity) relative to the market performance.

Nevertheless, conventional forecasting performance metrics focus only on the mean 
performances while ignoring information in the variance of performances. Such second-
moment information is used only in some formal tests of relative forecast performance 
such as Diebold and Mariano (2002).8 This first-moment-oriented practice should look 
alarming to financial economists because it ignores risk, which is the core of investment 
performance evaluation. Additionally, the variance of relative performance is actually 
common in economics and finance.9 For example, in “Keeping-up-with-the-Joneses” 

E[L(a)] − E[L(m)] = E[�L(b,m)] − E[�L(b,a)].

7  Roll (1992) defines tracking error volatility as a square root of the sample second moment of differences in a portfolio 
and benchmark return. The TEV-efficient frontier shows a trade-off between relative risk premium and relative risk to 
the benchmark, while the standard efficient frontier in the portfolio theory is a special case where the benchmark is the 
risk-free asset.
8  Note this second moment is not the variance of forecast errors but that of differences in squared forecast errors, 
defined relative to the choice of benchmark. That is, the variance of relative performance is related to the fourth, not the 
second, moment of forecast errors.
9  However, unlike the first moment, the second (central) moment comparison requires caution with existence of the 
benchmark forecast:

Var(L(a))− Var(L(m)) �= Var(�L
(b,a))− Var(�L

(b,m)).
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preferences, an agent’s utility is determined relative to others’ consumption level (Abel 
1990, Gali 1994). Similarly, stock market movements do not compensate or penalize a 
mutual fund manager whose official benchmark is the market portfolio.

A Robust monitoring forecast is “a monitoring forecast switching between a proposed 
forecast and a benchmark.” It has a built-in shrinkage effect when the forecast is eval-
uated relative to a benchmark in terms of �L(b,m) . The monitoring technique in this 
context makes a newly proposed forecast robust, and exploits shifts in the conditional 
predictability between two forecasts. Its mechanism is simple. If monitoring is informa-
tive, then the monitoring forecast will become a benchmark forecast f (m) = f (b) when 
the other forecast f (a) is unlikely to outperform the benchmark. Whenever f (m) = f (b) , 
the loss difference �L(b,m) becomes exactly zero, and the total variance of the loss differ-
ence becomes lower than that of the proposed forecast f (a) . In the monitoring model of 
the previous section, the law of total variance implies

where pa ≡ Prob[f (m) = f (a)] = pmps + (1− pm)(1− ps) denotes the unconditional 
probability that the monitoring forecast deviates from the benchmark f (m) = f (a) . The 
second term is negligible unless the proposed forecast f (a) outperforms the bench-
mark significantly and persistently, which implies the benchmark is improperly chosen 
as a straw man. Therefore, we can approximate the ratio of variance of loss differences 
�L(b,m) as pa:

The variance ratio in the left-hand-side is always lower than one by construction. There-
fore, monitoring with a benchmark forecast always lowers the variance of loss difference 
�L(b,m) , and the monitoring forecast will produce more statistically significant evidence 
on superior forecasting performance. This is a hidden benefit of forecast monitoring.

However, this benefit is never a free lunch. The following trade-off between accuracy 
gain and variance reduction in loss difference exists10:

We derive this result by eliminating pm by combining pa = pmps + (1− pm)(1− ps) and 
Eq. (8). Informative monitoring (i.e., high pm ) improves the accuracy of the monitoring 
forecast but decreases the reduction in loss-difference variance, as follows.

Var(�L(b,m)) = E[Var(�L(b,m)|M)] + Var[E(�L(b,m)|M)]

= paVar(�L(b,a))+ pa(1− pa){E(�L(b,a))}2,

(10)
Var(�L(b,m))

Var(�L(b,a))
≈ pa ≤ ps < 1 and pa ∈ [1− ps, ps].

(11)

[
2ps − 1

σ 2
s

]

︸ ︷︷ ︸

Constant (+)

·
[

E(�L(b,m))− E(�L(b,a))
]

︸ ︷︷ ︸

Increase in average accuracy

+ (1− pa)
︸ ︷︷ ︸

Reduction
in variance
of loss diff.

= 2ps(1− ps)
︸ ︷︷ ︸

Constant (+)

.

10  This trade-off relationship is from Yae (2018).
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Note that this trade-off is beyond the bias-variance trade-off in statistical estimators or 
machine learning algorithms. The bias-variance trade-off aims to maximize the average 
forecasting performance. Equation (11) then represents a trade-off between the aver-
age forecasting performance and its variance. This new kind of trade is about the mean 
and variance of squared forecast errors, which correspond to the second and fourth 
moments of forecast errors, while the bias-variance trade-off is about the first and sec-
ond moments of forecast errors. In a numerical example with ps = pm = 3/4 , we can 
still expect a 37.5% reduction in variance of loss-difference with the same accuracy as the 
originally proposed forecast in terms of the mean squared error.

The definition of variance of loss difference depends on the choice of benchmark fore-
cast. In many applications, the benchmark is not subjective. For example, the classical 
view in the stock market is that price follows a random walk, with absolutely no pre-
dictability. In other words, the market risk premium is unconditionally constant and 
investors have no conditioning variables to predict it. If researchers want to show the 
existence of a successful predictor or predictability of market risk premium, then they 
needs to set up a constant market risk premium as a null hypothesis and use a historical 
average stock market return as a benchmark forecast.11

Metrics for robust monitoring performance

We adopt two metrics for robust monitoring performance from Yae (2018). The metrics 
are analogous to investment performance measures: the risk premium as a raw metric 
and alpha as a risk-adjusted metric.12 Here, we use concise notations for performance 
metric inputs:

Monitoring Risk Premium Suppose a researcher chooses a forecast f (a) when consider-
ing a benchmark forecast f (b) as a reference point. Then, E[da] can represent the aver-
age forecasting performance as the expected reduction in mean squared forecast errors 
relative to the benchmark. If the researcher chooses f (b) instead, then she obtains only 
E[db] , which is zero by definition. We interpret E[da] as a kind of premium in the fore-
casting context. As an analogy, if an investor chooses the stock market portfolio over 
her benchmark risk-free asset, then the expected return difference between these two is 
called a market risk premium. The investor deviates from the benchmark risk-free asset 
in hope of earning the premium. Likewise, a researcher deviates from the benchmark 
forecast f (b) to f (a) in hope of earning E[da] . She can earn E[dm] instead by switching 
between f (a) and f (b) as a robust monitoring forecast f (m) . Then, E[dm] scaled by E[da] 
is called the monitoring risk premium.

(12)
∂(1− pa)

∂pm
= 1− 2ps < 0 if ps >

1

2
.

dm � �L(b,m) and da � �L(b,a).

11  Sect. 5 shows an empirical example.
12  We do not consider a utility-function-based measure such as a certainty equivalent although, for example, smooth 
ambiguity preference (Klibanoff et al. 2005) can internalize Var(�L

(b,m)) and Var(�L
(b,a)).
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where R2
OS,a and R2

OS,m are the out-of-sample R2 for the proposed forecast f (a) and the 
robust monitoring forecast f (m) that switches between f (a) and the benchmark forecast 
f (b) , respectively. If monitoring is sufficiently informative as in Condition (8), then RPm 
can be larger than one.

Monitoring Alpha Monitoring risk premium measures average forecasting perfor-
mance but ignores any risk adjustment. By contrast, imagine investors who use CAPM 
alpha (or alpha from a multi-factor model) as a risk-adjusted investment performance 
metric. Similarly, we define the monitoring alpha as

where m∗ is the uninformed monitoring forecast that shifts randomly between the 
forecasts f (a) and f (b) . It is a random strategy whose mixing probability is set so that 
its E[d2m∗ ] equals E[d2m] . Thus, E[dm∗ ] represents accuracy gain by randomly shifting 
between the forecasts, and the real gain by informative monitoring should not include 
E[dm∗ ] . For example, if αm = 0.4 , then informative monitoring adds 40% of relative 
accuracy of the proposed forecast on top of the benefit from random switching. Alterna-
tively, we can also express the monitoring alpha as13

The first term is the total accuracy gain through monitoring—scaled by the accuracy gain 
through the forecast f (a) ; that is, the monitoring risk premium, while the second term 
adjusts the relative risk increased by the monitoring procedure. When the unpredictable 
component is large in its scale σy , we have (E[dm])2 ≪ Var[dm] , so E[d2m] ≈ Var[dm] . 
Therefore, the monitoring alpha is analogous to a utility level of mean-variance pref-
erence. Note that the monitoring alpha of the two forecasts f (a) and f (b) are zero by 
definition.

Robust monitoring machine
Data snooping is a common issue in empirical research. The problem arises when a 
researcher reports only the best model or statistically significant variable after numer-
ous failed trials. The same problem can also appear when numerous researchers try only 
one model or variable, but only a few researchers can successfully publish their results, 
which is dictated by luck, as shown in Chordia et al. (2017). This fundamental problem 
of empirical research is difficult to avoid and persists even in the forecasting context. 
Robust monitoring is not an exception.

(13)(Monitoring Risk Premium): RPm =
E[dm]

E[da]
=

R2
OS,m

R2
OS,a

,

(14)(Monitoring Alpha): αm =
E[dm] − E[dm∗ ]

E[da]
,

(15)αm =
E[dm]

E[da]
−

E[d2m]

E[d2a]
.

13  It is easy to show E[dm∗ ]/E[d2
m∗ ] is invariant and so E[dm∗ ] is linearly proportional to E[d2

m∗ ].
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Out‑of‑sample R 2‑hacking problem

Data snooping (or p-hacking) comes from two root causes: data and models (algo-
rithms). First, researchers face infinite combinations of choices of variables, sample peri-
ods, and training-evaluation sample splits. Second, they must also choose a model along 
with tuning parameters, algorithms, and estimation methods. Analyzing the whole data-
model space exceeds an individual researcher’s cognitive ability. Therefore, they end up 
selecting one or a few combinations arbitrarily or deliberately, which might even worsen 
data snooping issues.

The p-hacking problem regarding variable choices is well known in the in-sample fit-
ting context, but the same problem also exists in out-of-sample analysis regarding both 
variable and model choices. For example, in the return predictability literature, out-of-
sample R2 is mainly used as a forecasting performance metric. Nonetheless, out-of-sam-
ple R2 (or any other cross-validation metric) still faces the multiple testing problem and 
look-ahead bias. For example, some early papers, such as the one by Pesaran and Tim-
mermann (1995), report that predictability is time-varying and conditional on other var-
iables. That is, the predictability is stronger in recessions than during expansions. Then, 
many follow-up papers internalize such empirical facts in a specific time-series model to 
further improve out-of-sample predictability, ex-post.

The pitfall of this practice is that researchers select such successful models and vari-
ables based on their intuition, which did not exist in the sample period of the back tests. 
The intuition is formed by empirical knowledge only available now but unavailable at 
the beginning of the out-of-sample test period, such as information that the predictabil-
ity is stronger in recession than expansions. Therefore, applying such models and vari-
ables since the beginning of the out-of-sample test period is highly unlikely for the real 
forecasters at that time due to lack of prior evidence. That is, all sophisticated models 
inspired by such ex-post intuition are subject to this unintended look-ahead bias. The 
best option for a forecaster at that time, if feasible, was to compare all possible models 
and variables to find the best one (or best combination) ex-ante since the beginning of 
the out-of-sample testing period while repeating the process sequentially.

A machine learning solution

Machine learning algorithms are often criticized because of their black-box-like nature. 
Despite their superior prediction ability, they make researchers blind to hidden mecha-
nisms by blurring economic intuition. Here, we focus on the bright side of the black-box-
like nature and transform this criticism into a crucial device in our study. We make our 
solution for the robust monitoring problem intentionally blind to any intuition based on 
the information in the evaluation (test) sample period, as Yae (Forthcoming) suggests. 
Therefore, the goal of our approach is to confirm the existence of useful information for 
monitoring in the real-time data rather than maximize the average forecasting perfor-
mance ex-post. To achieve this goal, we implement the following three steps.

Robust Monitoring Machine

1.	 Choose a set of conditioning variables for monitoring, independent of information 
from the evaluation sample period.
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2.	 Approximate the entire time-series model space of the conditioning variables with 
feature engineering.

3.	 Apply a combination of ensemble machine learning algorithms instead of choosing 
what works best ex-post after trying many.

Each step is designed to exclude the out-of-sample R2-hacking associated with selecting 
data, models, and optimization algorithms. Therefore, how to implement the first two 
steps are as important as the last step. We emphasize that this three-step approach is 
beyond a well-known ensemble technique which is only the step 3 here.

We call this machine learning approach the robust monitoring machine and implement 
each step as follows. First, we make the most parsimonious choice of conditioning vari-
ables rather than the most universal. In monitoring, a researcher needs to have at least 
one forecast target and two competing forecasts. We use a single time-series loss differ-
ence between two competing individual forecasts, �L

(b,a)
t  , to predict its next sign. The 

other extreme is to consider the entire information space, yet it is difficult to fathom, col-
lect, or even approximate. Furthermore, many data sources are private or highly costly 
and are thus out of reach of some researchers. As the entire information space is neither 
known nor accessible, random sampling from it is also impossible. Second, we expand a 
single time-series of a conditioning variable �L

(b,a)
t  into hundreds of time-series features 

as building blocks to approximate the entire time-series model space. Finally, we com-
bine multiple ensemble machine learning algorithms. We rely on machine learning algo-
rithms to handle the complexity of the feature set, but avoid cherry-picking an algorithm 
that appears to work best ex-post.

Applications: robust monitoring for return‑predictability
We apply our robust monitoring machine to the US stock market prediction problem. 
Section  Data, benchmark, and proposed forecasts explains the data source and our 
choice of benchmark and proposed forecasts. Section  Robust monitoring machine in 
action describes our three-step approach in detail.

Data, benchmark, and proposed forecasts

The random-walk hypothesis is the traditional view of the stock market. If investors are 
rational and fully utilize public information to price stocks, then such public information 
should not predict future stock returns. Following the literature on return predictability, 
we set the target variable to predict, as monthly stock market excess returns: continu-
ously compounded returns rsp,t+1 on the S &P 500 index, including dividends, in excess 
of the risk-free rate rf ,t implied by the Treasury bill rate.14 Henceforth, we call the target 
variable simply ‘‘return.’’

Suppose the random-walk hypothesis is true. Then, econometricians will find that 
no publicly available variables are correlated with the subsequent return rt+1 or its 

(16)Target Variable: rt+1 = rsp,t+1 − rf ,t .

14  Since the risk-free rate is known at the time of forecast, predicting raw returns is informationally equivalent to pre-
dicting excess returns.
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conditional expectation E[rt+1|Ft ] , where Ft denotes the information set of econo-
metricians at time t. The expected return, therefore, should look like a constant 
E[rt+1|Ft ] = E[rt+1] , whether it truly is or not. The natural benchmark forecast under 
the random-walk hypothesis as a null will be an estimate for the unconditional expected 
return E[rt+1] . That is, the historical average of the past returns is the benchmark 
forecast.

The idea of the random-walk hypothesis is theoretically appealing and relates to the well-
known efficient market hypothesis. However, it was mostly difficult to reject the hypoth-
esis early on because of the insufficient sample size. Later researchers, however, began 
to find some statistical evidence on a few variables predicting stock market returns 
based on in-sample regression analysis.15 However, Goyal and Welch (2008) examine the 
out-of-sample performance of the real-time individual OLS regression estimators of 14 
variables xi,t and find that none of them have out-of-sample predictability. From the fol-
lowing 14 individual predictive regressions:

Goyal and Welch (2008) and Rapach et al. (2010) define the real-time individual fore-
casts as

where α̂i,t and β̂i,t are the OLS coefficient estimates of αi and βi , respectively, using infor-
mation up to time t (expanding window), consistent with Goyal and Welch (2008) and 
Rapach et al. (2010). Later, following Hendry and Clements (2004), Timmermann (2006), 
and many others, Rapach et al. (2010) construct the equal-weighted average of these 14 
individual forecasts as follows and show it outperforms the benchmark forecast (17) in 
out-of-sample prediction.

We use this equal-weight combination forecast as our proposed forecast in monitor-
ing.16 Then, we will optimally switch our choice on forecast between the benchmark 
forecast in (17) and the proposed forecast in (20).

We obtain the monthly data for the returns and predictor variables from Amit Goy-
al’s website.17 The sample period is from January 1927 to December 2017. Note that the 

(17)Benchmark Forecast: f
(b)
t+1|t =

1

t

t∑

τ=1

rτ .

(18)rt+1 = αi + βixi,t + ǫi,t+1 for i = 1, ..., 14.

(19)f
(i)
t+1|t = α̂i,t + β̂i,txi,t ,

(20)Proposed Forecast: f
(a)
t+1|t =

1

14

14∑

i=1

f
(i)
t+1|t

15  It is worth noting that the rejection of the random-walk hypothesis does not necessarily mean the stock market is 
inefficient in information processing or investors are irrationally inattentive. It simply means the expected return is time-
varying and correlated with some publicly available variables because, roughly speaking, investors’ risk tolerance is time-
varying. For example, in recession investors become less risk-tolerant because of their reduced income and wealth. They 
avoid investing in stocks even if they know the expected return is higher than in the boom periods.
16  Alternatively, we can optimize the combination weights or construct a new forecast utilizing nonlinearity and inter-
actions between 14 variables. However, our goal is to build a robust and general approach that can be applied to fore-
casts from human forecasters or different models/algorithms as well.
17  The data used in this paper can be found at http://www.hec.unil.ch/agoyal/ along with detailed descriptions.
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combination forecast in our analysis differs slightly from that of Rapach et  al. (2010) 
because their training sample starts in 1947. However, this is barely an issue because we 
do not attempt to criticize their combination forecast. On the contrary, we need only 
to demonstrate our idea using some forecast that overall outperforms the benchmark 
forecast but its performance varies. The 14 predictor variables in our example include 
dividend-price ratio (dp), dividend yield (dy), earning-price ratio (ep), dividend-payout 
ratio (de), equity risk premium volatility (rvol), book-to-market ratio (bm), net equity 
expansion (ntis), treasury bill rate (tbl), long-term yield (lty), long-term return (ltr), term 
spread (tms), default yield spread (dfy), default return spread (dfr), and inflation (infl). 
See Appendix 1 for detailed descriptions.

Robust monitoring machine in action

This section explains how we implement the robust monitoring machine in detail.
Labeling for Binary Classification We define a new dependent variable yt as follows to 

convert the monitoring problem to a binary classification.

where �L
(b,a)
t = (rt − f

(b)
t|t−1)

2 − (rt − f
(a)
t|t−1)

2 is the difference in squared forecast errors 
as a loss function. Target variable rt , benchmark forecast f (b)t|t−1 , and proposed forecast 
f
(a)
t|t−1 are as defined in Sect. Data, benchmark, and proposed forecasts. This binary time-

series variable yt , as a label, indicates which forecast outperform the other, ex-post. Note 
the resulting dependent variable yt is identical whether the definition of �L

(b,a)
t  is based 

on L2-norm or L1-norm.
Features for Monitoring As we discussed in Sect.  A machine learning solution, we 

include no arbitrary conditioning variables in the monitoring task. Instead, we use a sin-
gle time-series of �L

(b,a)
t−1  to predict yt . Following (Christ et al. 2018), we perform feature 

engineering. We transform the past 60 months of �L
(b,a)
t  into 441 time-series model fea-

tures Zt−1.18 These features include the entire characteristics of the time-series such as 
the number of peaks, average, maximal value, autocorrelation, and linear trend.19

The features for monitoring Zt−1 offer building blocks to approximate the entire space of 
time-series models that predict yt.

Three Ensemble Decision-Tree Algorithms To handle hundreds of features, we use 
the three flagship ensemble decision-tree algorithms to predict yt : the random forest, 
extremely randomized trees, and gradient boosting. They can effectively accommodate 
nonlinearity and interaction in features. They also avoid overfitting problems in traditional 
logistic regressions by combining the forecasts from many small trees into a single fore-
cast. We summarize the technical differences of these three algorithms in Appendix 3.

(21)yt =

{

1, if �L
(b,a)
t > 0,

0, otherwise,

g : Xt−1 → Zt−1 where Xt−1 = {�L
(b,a)
t−1 ,�L

(b,a)
t−2 , ...,�L

(b,a)
t−60}.

18  Using the past sixty month is a standard practice in finance literature due to changing nature of the market: for exam-
ple, CAPM beta estimation.
19  See TSFRESH package in Python.
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Training and Tuning Parameters To predict yt , we train the tree using input-label 
pairs (yt−τ ,Zt−τ−1) for τ = 1, 2, ..., 120 (ten years of monthly data). As feature engineer-
ing requires the past 60 months of data, we need 15 years of data to predict yt . Note 
that using rolling-window is a natural choice since the idea of monitoring is based on 
time-varying performance. We choose a tuning parameter that maximizes the ROC-
AUC statistic measure which is the Area Under The Curve (AUC) of Receiver Operating 
Characteristics (ROC) curve. In simple terms, this procedure maximizes TPRs relative 
to false positive rates. We split these 120 sample pairs into three of 40 sample pairs D1 , 
D2 , and D3 chronologically. Then, we train trees using D1 and test on D2 . Again, we train 
the tree using D1 and D2 and test on D3 . We choose the optimal tuning parameters based 
on these two test results (i.e., validation sample). The out-of-sample forecast starts from 
January 1947, following (Goyal and Welch 2008).

Ensemble At time t, the three different algorithms will produces their best guesses on 
the probability of yt+1 = 1 ; say, Prob[yt+1 = 1|Ai,Ft ] for i = 1, 2, 3 , where Ai is an algo-
rithm and Ft is an information set. Then, we compute the equal-weight average of such 
probabilities relying on the wisdom of crowds in the algorithm domain.

The following rule will determine our monitoring forecast of yt+1 at time t:

Empirical performance of monitoring forecasts
Performance of the proposed forecast

The first row of Table 1 shows the performance of the proposed forecast f (a) in Eq. 
(20). The out-of-sample R2 of the proposed forecast is 0.5% when the evaluation 
sample starts in 1947. The performance metric, however, is unstable and sensitive 
to the sample split date. When we gradually change the date from 1947 to 2007, the 
out-of-sample R2 decreases and even becomes negative since 1987. The proposed 
forecast performs poorly, showing no predictability ( R2

OS = −0.24% ) when the evalu-
ation sample starts from 2007 and ends in 2017.

Figure 1 Panel (a) also confirms that the performance of the proposed forecast f (a) 
significantly varies over time, with a downward trend. The time-series in the plot is 
the 60-month trailing moving average of the loss difference between the benchmark 
and the combination forecasts �Lb,at  , which measures the performance of the pro-
posed forecast relative to the benchmark. The plot shows two deep negative values, 
implying that the proposed forecast often greatly underperforms the benchmark, 
especially in recent periods. Such unstable and deteriorating performance can be a 
serious concern to investors, although the proposed forecast overall outperforms the 
benchmark during the testing period 1947–2007.

(22)Prob[yt+1 = 1|Ft ] =
1

3

3∑

i

Prob[yt+1 = 1|Ai,Ft ],

(23)f
(m)
t+1|t =

{

f
(a)
t+1|t , if Prob[yt+1 = 1|Ft ] >

1
2 ,

f
(b)
t+1|t , otherwise.
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The unstable performance of the proposed forecast is a fundamental problem of 
a class of combination forecasts, as Rapach et  al. (2010) suggests. We explore dif-
ferent weighting schemes in combination forecasts to demonstrate the severity of 
the problem rather than propose improved weighting schemes. First, we use the 
median of 14 forecasts instead of their mean. Second, following (Stock and Watson 
2004) Equation (4), we compute the combination weights of 14 individual forecasts 
based on their Discounted Mean Squared Forecast Errors (DMSFEs) with two tun-
ing parameters: 1) the trailing sample period and 2) discount factor δ.

However, the unstable pattern of performance persists in all cases of different 
combination weights. For example, the out-of-sample R2 can rise up to 1.17% with 
weights proportional to the DMSFE (up to the past one month of data with a dis-
count factor δ = 1 ). Yet the out-of-sample R2 drops to −1.26% when the evaluation 
sample starts from 2007 and ends in 2017. Here, suppose we focus only on the aver-
age performance metric R2

OS=1.17% and argue that we find a superior forecast. If 
we really do so, then this is cherry-picking, an example of out-of-sample R2-hack-
ing. Furthermore, it comes with a high price tag. This cherry-picked forecast has 
the worst performance of all forecasts over the recent decade. This unstable perfor-
mance is a red flag that implies cherry-picking practices. To tackle this problem, we 
propose a machine learning solution in the next section.

Robust monitoring performance

We first evaluate how well our robust monitoring machine can conditionally choose 
between f (a) and f (b) . The confusion matrix in Table 2 analyzes the monitoring perfor-
mance as an out-of-sample classification problem without any look-ahead biases. Sensi-
tivity and specificity are 57.0% and 56.8%, respectively, both higher than 50%. The 95% 
analytic confidence interval of the sum of sensitivity and specificity is (1.07, 1.21), above 
one, implying informative monitoring. Note that the sum of sensitivity and specificity 

Table 1  Out-of-sample R2 (%) of Traditional Combination Forecasts

This table reports the forecasting performance of the proposed forecast and its variations, in terms of out-of-sample R2 (%). 
The main proposed forecast is a equal-weighted combination forecast from Rapach et al. (2010). Its variational forms include 
a combination as a median and combinations using discounted mean square forecast error (DMSFE) from Stock and Watson 
(2004). We exploredifferent holdout windows of 1, 12, 24 and 60 months and discount factors of 0.5 and 1. Each column 
corresponds to a different sample split year from 1947 to 2007. All evaluation period ends in December 2017

First year in evaluation sample

1947 1957 1967 1977 1987 1997 2007

Proposed forecast: f (a) 0.50 0.37 0.36 0.14 − 0.09 − 0.10 − 0.24

Alternative combination forecasts

 Median 0.40 0.37 0.38 0.21 0.09 0.08 0.04

 DMSFE (60 months, δ = 1.0) 0.50 0.37 0.37 0.15 − 0.08 − 0.09 − 0.24

 DMSFE (24 months, δ = 1.0) 0.49 0.36 0.37 0.14 − 0.04 − 0.03 − 0.19

 DMSFE (12 months, δ = 1.0) 0.56 0.43 0.42 0.18 − 0.03 − 0.00 − 0.14

 DMSFE (1 month, δ = 1.0) 1.17 1.09 1.18 1.13 − 0.31 − 0.34 − 1.26

 DMSFE (60 months, δ = 0.5) 0.57 0.45 0.43 0.14 − 0.08 − 0.01 − 0.08

 DMSFE (24 months, δ = 0.5) 0.57 0.45 0.43 0.14 − 0.08 − 0.01 − 0.08

 DMSFE (12 months, δ = 0.5) 0.57 0.45 0.43 0.14 − 0.08 − 0.01 − 0.08
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should be one if a classifier is uninformative and purely random. Similarly, The PPV and 
NPV are 55.5% and 58.3%, respectively, and both are greater than 50%. The 95% analytic 
confidence interval of the sum of PPV and NPV is (1.07, 1.21), which is also above one. 
Furthermore, the p-values of Fisher’s exact test and Chi-square test are both less than 
0.01%. Our robust monitoring machine is informative in the out-of-sample prediction 
context.

Figure  2 visualizes two performance metrics for robust monitoring. The monitor-
ing risk premium RPm is the ratio of E[dm] to E[da] . The metric RPm is larger than one 
since E[dm] > E[da] , and therefore the monitoring forecast f (m) outperforms the pro-
posed forecast f (a) in term of average out-of-sample R2 . On the other hand, the moni-
toring alpha αm is the ratio of E[dm] − E[dm∗ ] to E[da] . This metric adjusts the risk in 
forecasts with respect to the benchmark forecast f (b) . Note that E[dm∗ ] represents the 
baseline performance of an uninformative monitoring forecast. Thus, the monitor-
ing alpha is the net gain of performance by our robust monitoring machine, in addi-
tion to the risk reduction by robust monitoring described in Eqs. (10) and (11). The 
monitoring premium and alpha of our robust monitoring machine are 1.15 and 0.61, 
respectively, as Table 3 reports. Their Bootstrap p-values are lower than 5%. Robust 
monitoring machine truly predicts which forecast performs better. Our monitoring 
performance metrics are consistent with the Diebold-Marino (DM) test results. The 
p-values of the DM test for the robust monitoring machine is 0.4% while 6.8% for the 
proposed forecast. The robust monitoring machine shows stronger statistical signifi-
cance (lower p-values) as E[dm] > E[da] though Var[dm] < Var[da] . The monitoring 
forecast boosts the average loss difference by 15.1% but reduces its variance by 46.3%, 
which is a typical benefit of robust monitoring.

Figure 1 Panel (b) repeats Panel (a) but for the robust monitoring machine, show-
ing the 60-month trailing average of �L

(b,m)
t  . This forecasting performance metric still 

fluctuates but rarely drops below zero. Its variation is much lower relative to the pro-
posed forecast in Figure Panel (a). Table  4 shows the out-of-sample R2 with differ-
ent sample split dates. Unlike the proposed forecast f (a) , the out-of-sample R2 of the 
robust monitoring forecast f (m) never becomes negative. For the full sample period 
starting in 1947, the out-of-sample R2 is 0.57% for the robust monitoring forecast and 
0.50% for the proposed forecast. Our robust monitoring machine increases average 

tsacerofgnirotinoM)b(tsacerofdesoporP)a(

Fig. 1  Time-Varying Performances of the Proposed and the Monitoring Forecasts This figure plots the 
performances of the proposed and the monitoring forecasts relative to the benchmark. Positive values mean 
a forecast outperforms the benchmark. The horizontal axis is year while the vertical axis is the 60-month 
trailing moving average of difference in squared forecast error, multiplied by 104
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performance by 14% in terms of out-of-sample R2 while reducing the variation of con-
ditional performance. A shrinkage forecast, which is a simple average of f (a) and f (b) , 
fails to improve the performance. We include a few alternative approaches to robust 
monitoring for comparison. They all fail to improve the proposed forecast; that is, the 
superior performance of the robust monitoring machine is not easy to achieve.

Certainty equivalent return

Following (Campbell and Thompson 2008) and (Ferreira and Santa-Clara 2011), we 
compute the certainty equivalent return (CER) for an investor with a mean-variance 
preference who monthly allocates her capital across equities and risk-free bills using 
market return forecasts. At the end of month t, the investor optimally allocates the share 
wt of the portfolio to a market index fund and the remaining share 1− wt to a risk-free 

Table 2  Monitoring performance measures

This table evaluates the performance of out-of-sample binary classification (without look-ahead bias) by robust monitoring 
machine for the evaluation period from 01/1947 to 01/2017. Panel A shows a confusion matrix based on predicted binary 
outcomes: positive (the proposed forecast outperforms the benchmark) or negative (otherwise). Sensitivity, or True 
Positive Rate (TPR), is calculated as the number of true positives divided by the number of real positives. Specificity, or True 
Negative Rate (TNR), is computed as the number of true negatives over the number of real negatives. PPV stands for Positive 
Predicted Value, calculated as the number of true positives divided by the number of predicted positives. NPV, or Negative 
Predictive Value, is computed as the number of true negatives divided by the number of predicted negatives. Accuracy is 
equal to the number of correctly predicted as a fraction of the total number of the sample observations. Panel B reports the 
95% confident intervals for ‘Sensitivity + Specificity’ and ‘PPV + NPV’

True positive True negative

Panel A: confusion matrix

Predicted positive 236 189 PPV = 55.5%

Predicted negative 178 249 NPV = 58.3%

TPR = 57.0% TNR = 56.8% Accuracy = 57.0%

(Sensitivity) (Specificity)

Estimate 95% C.I. P-value

Panel B: classification performance tests

TPR + TNR 1.14 (1.07, 1.21)

PPV + NPV 1.14 (1.07, 1.21)

Fisher’s exact test 6.84× 10
−5

Chi-square test 5.29× 10
−5

Table 3  Robust Monitoring Performance Measures

This table reports monitoring performance measures: monitoring risk premium and monitoring alpha. E[di] and Var[di] for 
i ∈ {a,m, b} denote the expected value and variance of loss difference, which represent average forecasting performance 
and its relative risk, respectively. Diebold-Mariano tests are to show if a forecast has significantly different predictability 
from a benchmark. The (two-sided) p-values in parentheses are calculated via bootstrapping for Monitoring Alpha and 
Monitoring Risk Premium. All forecasts are free from look-ahead bias

Forecast Monitoring Monitoring E[di] Var[di] Diebold-Mariano
Risk Premium Alpha ×10

−6
×10

−8 Statistic

Robust Estimate 1.15 0.61 9.81 0.99 2.87

Monitoring (m) (p-value) (0.017) (0.021) (0.004)

Proposed (a) Estimate 1 0 8.52 1.86 1.82

(by definition) (by definition) (0.068)

Benchmark (b) By definition 0 0 0 0 N/A
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bill. The investor holds the position until the end of month t + 1 and repeats her asset 
allocation task every month. Then, we can compute the optimal share wt as

where rt+1 is the excess return (raw return less the risk-free rate) and E[rt+1|Ft ] and 
Var[rt+1|Ft ] are its conditional mean and variance, respectively. Following (Campbell 
and Thompson 2008), we assume the followings. First, the investor replaces the condi-
tional mean and variance by a given return forecast and simple variance estimator from 
the past five-year monthly returns. Second, we restrict the share proportion wt to lie 
between 0 and 1.5. Third, we assume the relative risk coefficient γ to be 5. Then, the CER 
measure of the portfolio is

where µ̂p and σ̂ 2
p  are the time-series average and variance estimate, respectively, of the 

investor’s portfolio return rp,t+1 over the forecast evaluation period. We can easily cal-
culate the portfolio return rp,t+1 for month t + 1 as rp,t+1 = wtrt+1 + (1− wt)rf ,t+1 , ex-
post. Unlike out-of-sample R2 , the CER measure explicitly accounts for the risk taken by 
an investor during the out-of-sample test period. One can interpret the CER as the risk-
free rate of return that an investor is willing to trade with her optimal risky portfolio.

The CER gain is the difference between the CER for the investor who uses any candi-
date forecast f (i) of the market return and the CER for an investor who uses the histori-
cal average benchmark forecast f (b).

(24)wt =
1

γ

E[rt+1|Ft ]

Var[rt+1|Ft ]
,

(25)CER = µ̂p −
1

2
γ σ̂ 2

p ,

Fig. 2  Risk and Returns in Forecasting Performance This figure visualizes forecasts in the plot of risk 
and returns. The vertical axis is the the expected loss difference that represents the average forecasting 
performance relative to the benchmark. The horizontal axis is the expected squared loss difference as risk 
in forecasting performance. The benchmark forecast, by definition, is located at the origin. The proposed 
forecast f (a) and the monitoring forecast f (m) are also located in the plot according to their performance and 
risk metrics
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We multiply CER gain by 1,200 so it represents the annual percentage portfolio manage-
ment fee that an investor would be willing to pay to have access to the given forecast f (i) 
instead of the historical average benchmark forecast f (b).

Table  5 repeats the analysis in Table  4, but reports the annualized CER gains; that 
is, the economic values of forecasting market returns by given forecasts instead of the 
benchmark forecast. We observe the same pattern in the outcomes, confirming the 
results expressed in terms of out-of-sample R2 in Table 4. The CER gain is 1.05% from 
1947 to 2017, while the combination forecast has a CER gain of 0.90% . The improvement 
increases when we evaluate more recent samples since 2007 (0.84 over 0.40) and since 
1997 (1.22 over 0.36). Therefore, the CER gains using the robust monitoring machine are 
relatively stable over time.

Discussion
Out‑of‑sample performance

We further investigate the recent poor performance of the combination forecast by 
Rapach et al. (2010). We repeat the rolling-correlation tests in Rapach et al. (2010) by 
extending the ending date of the data from 2005 to 2017. We compute the correlations 
between the equity premium and 14 individual predictors in Sect.  Data, benchmark, 
and proposed forecasts based on 10-year rolling windows. The correlation plots (Fig. 5 
in Appendix 2) reveal the following. First, the correlations between realized risk pre-
mium and the 14 predictor variables that make up the combination forecasts are highly 
unstable since 2006. Therefore, any forecasts trained using the past predictor variable 
data suffer from this strong instability, which is too severe to be mitigated even by roll-
ing-window estimation rather than expanding window. Second, we do not find that the 
recent poor performance is particularly linked to business cycles. We have several busi-
ness cycles in the 1947–2017 sample period, but the performance in the 2007–2017 
period is much worse than the rest. Therefore, the recent poor performance probably 

(26)(CER gain of forecast f (i)) = CER(i) − CER(b).

Table 4  Out-of-sample R2 (%) of Monitoring Forecasts

This table repeats Table 1 reporting the forecasting performance of monitoring forecasts in terms of out-of-sample R2 
(%). Traditional robust monitoring forecasts are based on discounted mean square forecast error (DMSFE) from Stock and 
Watson (2004) and logistic regressions. Each column corresponds to a different sample split year from 1947 to 2007. All 
evaluation period ends in December 2017

Forecasts First year in evaluation sample

1947 1957 1967 1977 1987 1997 2007

Proposed forecast f (a) 0.50 0.37 0.36 0.14 − 0.09 − 0.10 − 0.24

Robust monitoring machine: f (m) 0.57 0.55 0.52 0.34 0.35 0.32 0.18

Shrinkage: ( f (a)+f (b))/2 0.29 0.21 0.21 0.09 − 0.02 − 0.03 − 0.12

Traditional robust monitoring forecasts

 DMSFE (60 months, δ = 1.0) 0.40 0.30 0.39 0.24 0.04 0.01 − 0.10

 DMSFE (60 months, δ = 0.5) 0.45 0.42 0.38 0.19 0.10 0.14 0.09

 Logistic regression (feature engineering) 0.21 0.11 0.06 − 0.05 − 0.36 − 0.48 − 0.46

   Logistic regression (no feature engineering) 0.37 0.23 0.25 0.15 − 0.08 − 0.30 − 0.60
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differs from the usual business cycle narrative that return predictability is better in bad 
times than in good times.

We stress that we do not argue that our robust monitoring forecast is better than the 
combination forecast only because of their relative performance (measured by out-of-
sample R2 ) in the recent period (2007–2017), ignoring their previous performances. 
Instead, we argue that a forecast should be chosen based on not only their average per-
formances (e.g., out-of-sample R2 or average loss difference, E[d]) but also the (in)stabil-
ity of their performance; for example, the variance of loss difference, var(d). Suppose 
we live in the end of 2005 (when the test sample ends in Rapach et al. 2010) and try to 
choose between the robust monitoring forecast and the combination forecast. Table 6 
shows that their average performances up to 2015 are practically identical, consist-
ent with Rapach et al. (2010). However, Table 6 also shows that the combination fore-
cast displays twice larger forecast instability than the robust monitoring forecast. The 
2006–2017 period then demonstrates how dramatically a forecast with unstable perfor-
mance (i.e., combination forecast) can fail in extreme times such as the financial crisis. 
Therefore, we consider the financial crisis as an extreme observation that tests forecast 
instability, not as an outlier to remove. This interesting pattern resembles the poor per-
formance of ETFs after their inceptions (Brightman and Li 2015) and vanishing anoma-
lies after academic publications (McLean and Pontiff 2016).

Empirical relationship to the economy

Mounting evidence shows that return predictability increases in bad economic 
times.20 This established empirical fact produces hindsight theories that try to 
explain it and allows prediction models to take advantage of it for better ex-post 
performance.21 However, the real question is if we can create a prediction model 
that can foresee the concentration of return predictability before the observed data 

Table 5  Certainty Equivalent Return Gains of Monitoring Forecasts

This table repeats Table 4 reporting the forecasting performance of monitoring forecasts, but in terms of certainty 
equivalent returns (%, annualized). Traditional robust monitoring forecasts are based on discounted mean square forecast 
error (DMSFE) from Stock and Watson (2004) and logistic regressions. Each column corresponds to a different sample split 
year from 1947 to 2007. All evaluation period ends in December 2017

First year in evaluation sample

1947 1957 1967 1977 1987 1997 2007

Proposed forecast f (a) 0.90 0.77 0.81 0.33 0.10 0.36 0.40

Robust monitoring machine: f (m) 1.05 1.08 1.13 0.81 0.92 1.22 0.84

Shrinkage: ( f (a)+f (b))/2 0.51 0.44 0.46 0.21 0.10 0.23 0.18

Traditional robust monitoring forecasts

 DMSFE (60 months, δ = 1.0) 0.69 0.59 0.76 0.45 0.26 0.30 0.54

 DMSFE (60 months, δ = 0.5) 0.91 0.94 0.90 0.51 0.48 0.63 0.67

 Logistic regression (feature engineering) 0.54 0.35 0.44 0.30 0.06 − 0.33 − 0.61

 Logistic regression (no feature engineering) 0.46 0.36 0.30 0.13 − 0.17 0.01 0.14

20  See (Rapach et al. 2010; Henkel et al. 2011), and (Dangl and Halling 2012) among others.
21  Cujean and Hasler (2017) provide theoretical model to explain why stock return predictability concentrates in bad 
times.
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reveals it. To answer this question, we compare our robust monitoring machine out-
puts with two variables that represent bad economic times.

We first consider a variable for stock valuation. The log dividend-price ratio of S 
&P500 is commonly used in prior studies as the valuation ratio and a return pre-
dictor. High dividend-price ratios mean low valuation of stocks and thus bad eco-
nomic times. Figure 3 displays both the log divided-price ratio (dotted line) and the 
computed real-time probability pt (solid line) that the proposed forecast f (a) will 
outperform the benchmark f (b) , calculated by the robust monitoring machine. The 
fluctuation patterns of two graphs are similar. When stock valuation is low, the 
robust monitoring machine favors the proposed forecast over the benchmark. How-
ever, determining whether the dividend-price ratio is low or high is often a hindsight 
observation because the true long-run mean of the dividend-price ratio is unknown, 
For example, the divided-price ratio is systematically lower in the last two decades 
than in the twentieth century because of either a permanent regime change or tem-
poral abnormality. By contrast, the computed real-time probability pt is always 
measured between zero and one so that a forecaster can easily interpret its meaning 
and magnitude.

Table 6  Forecasting Performance Before and Since 2006

This table reports forecasting performance measures for two sub-periods: 1947–2005 and 2006–2017. E[di] and Var[di] for 
i ∈ {a,m} denote the expected value and variance of loss difference, which represent average forecasting performance and 
its relative risk, respectively. Diebold-Mariano tests are to show if a forecast has significantly different predictability from a 
benchmark. All forecasts are free from look-ahead bias

Forecast 1947–2005 2006–2017

Out-of-sample E[d·] Var[d·] Diebold-Mariano Out-of-sample

R
2 (%) (×10

−6) (×10
−8) Test (p-value) R

2 (%)

Robust (m) 0.65 11.2 0.275 0.004 0.17

Proposed (a) 0.64 11.1 0.519 0.040 − 0.25

Fig. 3  Return Predictability and Stock Valuations This figure shows the log dividend-price ratio (dotted line) 
and the probability that the proposed forecast outperforms the benchmark, computed by robust monitoring 
machine (solid line). The probability in the figure is shown as its 24-month trailing moving-average. The 
horizontal axis is year
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Similarly, Fig. 4 plots the macro uncertainty measure from Jurado et al. (2015) (dot-
ted line) and the probability pt (solid line). When macro uncertainty is high (usually 
during bad economic times), the robust monitoring machine favors the proposed fore-
cast over the benchmark. This macro uncertainty measure consists of the principal 
components that require a full-sample estimation. By contrast, the computed real-
time probability pt captures the same information in real time. From these two plots, 
we confirm that our robust monitoring machine can foresee the concentration of 
return predictability before the observed data explicitly reveals it to econometricians, 
although high correlations between pt and market cycles are not surprising per-se.

Factors in the cross‑sectional variation of stock returns

Starting from the market factor, researchers proposed hundreds of new factors (or 
anomalies) for cross-sectional variation of stock returns, such as information discrete-
ness by Da et  al. (2014) or betting-against-beta by Novy-Marx and Velikov (2022), 
among many others.22

We find that not all factors are free from look-ahead bias. Some factors are naturally 
subject to look-ahead bias because of their empirical construction. Some factors are 
impossible to construct in real-time because of poor database availability in early days. 
Finally, some factors have insufficient statistical evidence in early periods; therefore, a 
portfolio strategy based on such factors may look unwise to investors in those periods. 
The last type of bias is well explained by Martin and Nagel (2022).

Although look-ahead bias does not directly affect formal asset pricing tests, the per-
formance of portfolio strategies derived from the proposed anomalies and factors can 
mislead readers in the presence of look-ahead bias. The framework proposed in this 
paper can potentially help researchers distinguish factors with or without look-ahead 
bias. However, this task is crucially important and sensitive, so it is beyond the scope of 
this study, and we leave it for future research.

Fig. 4  Return Predictability and Macroeconomic Uncertainty This figure shows the macroeconomic 
uncertainty (dotted line) and the probability that the proposed forecast outperforms the benchmark, 
computed by robust monitoring machine (solid line). The probability in the figure is shown as its 24-month 
trailing moving-average. The horizontal axis is year

22  See (Harvey et al. 2016; McLean and Pontiff 2016), and (Hou et al. 2020) for a complete list of factors and anomalies 
studied in the literature.
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Trustworthy machine learning solutions

The underlying topic in this study extends to general requirements for trustworthy machine 
learning. We emphasize the pursuit of robustness and eliminating look-ahead biases. Such 
desirable qualities are pre-requisites for trustworthy machine learning. Similarly, Holzinger 
(2021) argues that trustworthy machine learning solutions, or Artificial Intelligence (AI) 
solutions in a broader sense, should bear other qualities such as comprehensibility, explain-
ability, and interpretability for the human expert, in addition to robustness. Holzinger (2021) 
emphasizes the importance of human experts in decision processes using artificial intel-
ligence system to achieve such qualities. We relate our study to the lesson from Holzinger 
(2021), as our approach provides a way of curbing unintentional biases by human experts.

Conclusion
Forecasting is a cornerstone for decision-making. Recently, the superior forecasting per-
formance of machine learning methods drew significant attention. However, the black-
box nature of machine learning methods often exacerbates the out-of-sample R2-hacking 
problem, which exaggerates the true forecasting performance through over-fitting. In 
contrast, this study exploits the black-box nature of machine learning methods to avoid 
out-of-sample R2-hacking.

We provide a machine-learning solution for the out-of-sample R2-hacking problem in 
robust monitoring. The resulting forecast improves the average performance of a proposed 
forecast by 15% and reduces its variance of performance by 46.3%. The DM test statistic 
becomes significant, with its p-value falling from 0.068 to 0.004. The sensitivity and speci-
ficity of monitoring as a classifier are 57.0% and 56.8%, respectively, and are statistically 
different from those of random classifiers. The robust monitoring machine predicts the 
time-variation of return-predictability over business cycles without look-ahead bias.

The proposed forecast in our application is a combination forecast from Rapach et al. 
(2010), yet we can apply the robust monitoring machine to any forecast to improve its 
performance and robustness. Therefore, professional forecasters can use our approach as 
a final touch to any sophisticated prediction model they choose. Our approach facilitates 
other forecasting methods instead of competing with them. Additionally, our three-step 
approach can be implemented in many different ways for further practical improvements.

The framework of the robust monitoring machine can be applied to other types of 
forecasting examples, such as predicting macro-economic variables or corporate earn-
ings. Furthermore, the underlying idea of our approach can extend to other fields in 
finance. For example, we can construct a trading strategy for a mutual fund manager 
whose performance is evaluated based on the benchmark portfolio. Using machine 
learning techniques, a fund manager can deviate from the benchmark only when the sig-
nal is strong enough to earn extra trading profits above a pre-determined threshold. We 
leave such extensions for future research.

Appendix 1: A list of individual predictor variables
We list the names and brief descriptions of 14 predictor variables we use as follows: 
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	 1.	 Dividend-price ratio (dp): log of a 12-month moving sum of dividends paid on the S 
&P 500 Index minus the log of stock prices (S &P 500 Index)

	 2.	 Dividend yield (dy): log of a 12-month moving sum of dividends minus the log of 
lagged stock prices.

	 3.	 Earning-price ratio (ep): log of a 12-month moving sum of earnings on the S &P 500 
Index minus the log of stock prices.

	 4.	 Dividend-payout ratio (de): log of a 12-month moving sum of dividends minus the 
log of a 12-month moving sum of earnings.

	 5.	 Equity risk premium volatility (rvol): based on a 12-month moving standard devia-
tion estimator

	 6.	 Book-to-market ratio (bm): book-to-market value ratio for the Dow Jones Industrial 
Average

	 7.	 Net equity expansion (ntis): ratio of a 12-month moving sum of net equity issues by 
NYSE-listed stocks to the total end-of-year market capitalization of New York Stock 
Exchange (NYSE) stocks.

	 8.	 Treasury bill rate (tbl): interest rate on a three-month Treasury bill (secondary mar-
ket).

	 9.	 Long-term yield (lty): long-term government bond yield.
	10.	 Long-term return (ltr): return on long-term government bonds.
	11.	 Term spread (tms): long-term yield minus the Treasury bill rate.
	12.	 Default yield spread (dfy): difference between Moody’s BAA- and AAA-rated corpo-

rate bond yields.
	13.	 Default return spread (dfr): long-term corporate bond return minus the long-term 

government bond return.
	14.	 Inflation (infl): calculated from the CPI for all urban consumers.

Appendix 2: Time‑varying correlation of predictor variables

See Fig. 5 
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Fig. 5  Correlations between the equity premium and individual predictors based on 10-year rolling windows 
The figure repeats the rolling-correlation tests of Rapach et al. (2010) by extending the ending date of the 
data from 2005 to 2017. The date on the horizontal axis gives the end date of the 10-year period. Dashed lines 
indicate 95% confidence intervals
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Appendix 3: Machine learning algorithms used in the paper

1.	 Random Forest This is an bagging method that combines forecasts from many small 
decision trees. This algorithm introduces extra randomness when growing trees. 
Instead of trying to fit the whole sample, each small decision tree will only use a sub-
sample of the dataset. Averaging the results from small decision trees can improve 
the predictive accuracy and control over-fitting. This brings greater diversity, which 
trades a higher bias for a lower variance and yields an overall better model. This algo-
rithm repeats the process for multiple times while producing one decision tree for 
each time. At the end, it combines multiple decision trees and averages their fore-
casts. We use default loss function Gini impurity of RandomForest in scikit-learn 
package.

2.	 2. Extremely Randomized Trees Instead of using sub-sample of the dataset and 
searching for the best possible threshold for each feature when splitting a node, this 
algorithm uses the full sample and random thresholds for each feature. This trades 
more biaes for a lower variance and usually will be faster to train than regular ran-
dom forecast since finding the best possible threshold for each feature at every node 
is very time-consuming. We use default loss function Gini impurity of ExtraTrees in 
scikit-learn package.

3.	 3. Gradient Boosting This algorithm works by sequentially adding a new decesion tree 
to an ensemble of previous trees with each new one trying to correct the forecasting 
errors from its predecessor. It fit the new predictor to the residual errors made by the 
previous predictor. Shallow trees on their own are “weak learners” with weak predic-
tive power. The theory behind boosting suggests that many weak learners may, as an 
ensemble, comprise a single “strong learner” with greater stability than a single com-
plex tree. We use default loss function friedman-mse of GradientBoosting in scikit-
learn package.
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