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Abstract 

This study proposes a wavelets approach to estimating time–frequency-varying betas 
in the capital asset pricing model (CAPM) framework. The dynamic of systematic risk 
across time and frequency is analyzed to investigate stock risk-profile robustness. 
Furthermore, we emphasize the effect of an investor’s investment horizon on the 
robustness of portfolio characteristics. We use a daily panel of French stocks from 2012 
to 2022. Results show that varying systematic risk varies in time and frequency, and 
that its short and long-run evolutions differ. We observe differences in short and long 
dynamics, indicating that a stock’s betas differently fluctuate to early announcements 
or signs of events. However, short-run and long-run betas exhibit similar dynamics dur-
ing persistent shocks. Betas are more volatile during times of crisis, resulting in greater 
or lesser robustness of risk profiles. Significant differences exist in short-run and long-
run risk profiles, implying a different asset allocation. We conclude that the standard 
CAPM assumes short-run investment. Then, investors should consider time–frequency 
CAPM to perform systematic risk analysis and portfolio allocation.

Keywords: Maximal overlap discrete wavelets transform, Time, Frequency-varying 
beta, Time, Frequency rolling window, Risk-profile, Systematic risk
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Introduction
The main objective of a portfolio manager or analyst is to assess an investment’s risk 
level (in an equities portfolio). The most well-known benchmark for this purpose is the 
capital asset pricing model (CAPM) (Sharpe 1964), based on Markowitz’s mean–vari-
ance approach. Professionals and researchers have long been interested in improving the 
CAPM model. Numerous quantitative approaches and methods have been developed to 
solve some limitations of the CAPM or Markowitz’s portfolio optimization frameworks.

Moreover, a large portion of the literature focuses on improving risk estimation in 
portfolio optimization. Financial network models enable a better understanding of the 
complex interactions between the various assets in a portfolio (Hautsch et  al. 2015; 
Baitinger et  al. 2017). Thus, Clemente et  al. (2021) modified the model’s optimization 
program with financial network models. Yang et  al. (2021) subsequently improved on 
this approach with a multiobjective model including idiosyncratic variance. Moreo-
ver, Yu and Chang (2020) employed network models to account for the effects of 
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macroeconomic variables. They found that these approaches provide more diverse port-
folios with better performance than standard methods. Following the development of 
Fintech, professionals are increasingly using quantitative approaches to assist financial 
and banking industries in lowering the costs of technology applications while increas-
ing the quality of their services (Kou et  al. 2021a, b). According to Kou et  al. (2021a, 
b), the banking sector is motivated to invest in Fintech to gain a competitive advantage 
and payment and money transfer systems. Furthermore, as part of Fintech, many new 
mathematical and statistical approaches are being developed to improve financial risk 
analysis. According to Kou et al. (2021a, b), a two-stage multiobjective feature selection 
model is used to predict SME bankruptcy and improve firms’ performance classification. 
However, Fintech new approaches can also be used to improve portfolio allocation using 
automatic algorithms, as emphasized by Guidici et al. (2022). They associated the finan-
cial network with the random matrix theory (RMT) in their studies to differentiate the 
nature of a correlation based on a systematic or noise component. Many authors, includ-
ing León et al. (2017), Raffinot (2017), and Ren et al. (2017), have demonstrated the value 
of using RMT to improve portfolio performance.

Another literature section focuses on using wavelets’ time–frequency analysis to 
measure relationships between financial assets across various investment horizons (or 
macroeconomics cycles). The wavelets extract frequency components from time series 
while preserving their time information. Wavelets are then an extension of the spectral 
and cross-spectral analysis. The wavelets approach, which was originally developed for 
signal processing, is well suited to decomposing a time series into time–frequency space. 
In finance and economics, frequency is related to the period of cycles that comprise the 
original time series and is then applied to the investor’s investment horizon. Depend-
ing on the frequency grid, two wavelet transforms were developed: the maximal overlap 
discrete wavelets transform (MODWT) and the continuous wavelets transform (CWT). 
The primary distinction is the frequency grid used to select the accuracy of the results 
in the time and frequency domains. The MODWT provides frequency bands using a 
dyadic scale, whereas the CWT is finer and more accurate in extracting each frequency. 
Consequently, the computational time and effort differ in practice. When compared to 
the CWT approach, MODWT requires less computational effort.

The studies of Gençay et al. (2003, 2005) were the first to use discrete wavelets decom-
position in finance. They used a time–frequency least squares regression to estimate the 
beta parameter of the CAPM market line and to analyze the frequency-varying system-
atic risk and the frequency risk profiles of the stocks. They emphasize the wavelets’ inter-
est in assessing the frequency dynamics of systematic risk. Other authors use wavelets in 
finance as a result of their research. Several studies have focused on its use in finance 
to model interdependencies and relationships between commodities, stock indexes, 
and other financial assets such as cryptocurrencies (Rua and Nunes 2012; Vacha and 
Barunik 2013; Aguiar-Conraria and Soares 2014; Bekiros and Marcellino 2014; Bekiros 
et al. 2016; Kahraman and Unal 2019). Recently, partial continuous wavelet approaches 
have been developed to examine better relationships between various financial asset 
classes, such as equities or cryptocurrencies (Athari and Hung 2022), Islamic equities 
(Al-Yahyaee et al. 2020), or metals and energy future prices (Michis 2022). These studies 
discover that investment horizons (frequencies) influence risk’s diffusion. As a result, the 
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characteristics of the assets and their degree of correlation are related to different time–
frequency schemes describing risk contagion mechanisms.

As Gençay et  al. (2003, 2005) demonstrated, using wavelets and a time–frequency 
analysis allows us to differentiate the beta parameter of the CAPM based on different 
investment horizons. The beta parameter of the market’s line is commonly used to estab-
lish an equity risk-profile. A beta of 1 indicates that the stock follows market movement 
in the same proportions that a beta greater (respectively lesser) than 1 indicates that the 
stock amplified (respectively attenuated) market fluctuation. Their results imply that the 
risk-profile (of a portfolio or a stock) is frequency dependent because the beta is fre-
quency-varying. Mestre and Terraza (2018), McNevin and Nix (2018), Shah et al. (2018), 
and Sakemoto (2020) all confirmed that systematic risk is conditional on an investment 
horizon (frequencies). These studies also discovered that frequency dynamics differ 
across industries. These results are also observed and confirmed for CAPM extensions, 
such as Sakemoto’s (2020) intertemporal CAPM and Mestre’s (2021) arbitrage pricing 
theory (APT) and Fama–French models. Alexandridis and Hasan (2020) used wavelets 
to investigate the effect of the Global Financial Crisis on systematic risk. They found that 
the beta rises during the crisis period compared to the pre-crisis period, particularly at 
lower frequencies.

The CAPM’s hypothesis of homogeneity of the agents’ behavior can then be relaxed 
using wavelets. In this case, we assume that agents are distinguished by their trading 
behavior related to a specific investment horizon (short-run investors vs. long-run inves-
tors). We suppose that agents’ investment strategies should include a better measure of 
the market risk that is more in line with their trading behaviors. As a result, we propose 
comparing short and long-run estimations of the CAPM market’s line to discuss the 
robustness of the stock’s risk-profile across frequency.

Previous research has shown that systematic risk (the beta) varies with frequency. 
However, the authors assume that it is time-invariant. This is a well-known issue in 
the literature. Numerous studies on the CAPM in the literature highlight the instabil-
ity of the beta parameter over time (Black et al. 1972; Fama and McBeth 1973; Fabozzi 
and Francis 1978). To overcome these constraints, scholars have used various methods, 
such as the GARCH process, Kalman–Bucy filter, or rolling window, to perform for-
ward regression (Faff et al. 1992, Faff and Brooks 1998; Brooks et al. 1992, 1998; Groe-
newold and Fraser 1997). The time-varying systematic risk is an important extension of 
the CAPM to monitor the risk-profile time-robustness for various market conditions 
(e.g., expansion, turmoil, and crisis), especially with the recent COVID-19 pandemic and 
Ukrainian conflict affecting market conditions. Lopez et  al. (2022) demonstrated that 
static beta estimation is irrelevant in COVID-19 because time-varying parameters are 
more appropriate. Similarly, Jain (2022) emphasized the value of time-varying betas. She 
observed increasing betas in the Indian stock market during the first COVID-19 wave 
but not during the second wave. She also claimed that beta dynamics are affected by firm 
sectors.

Many studies in the literature, such as Zhang et al. (2020), He et al. (2020), and Hui and 
Chan (2022), highlighted the increasing risk during the COVID-19 crisis confirming Alex-
andridis and Hassan (2020)’s results for the Global Financial Crisis. However, they did not 
include wavelet decomposition. The main goal of the preset study is to highlight the role 
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of investment horizons on systematic risk in different market conditions. Following the 
research of Mestre and Terraza (2019) and McNevin and Nix (2018), we combine time-
varying estimation and frequency decomposition. They proposed a rolling time–frequency 
estimation of the market line and developed the concept of time–frequency-varying beta 
parameters. The evolution of time–frequency-varying betas can highlight various sys-
tematic risk patterns in the short and long-run. They demonstrated, among other things, 
that the time dynamics of systematic risk differ significantly, depending on the frequencies 
used. Therefore, we assume that various time–frequency patterns are influenced by agents’ 
perceptions of market conditions related to risky (or not) events. Furthermore, time–fre-
quency-varying systematic risk assume that portfolio features (in the short or long-run) can 
change compared with a standard approach. The robustness of stock/portfolio risk profiles 
during expansion and turmoil periods can then be investigated. Thus, a risk-profile can be 
considered robust or not based on the volatility of the beta over time and frequency. Thus, 
analyzing systematic risk in the time–frequency space can induce adjustments in portfolio 
allocation based on the time and frequency characteristics of stocks.

This study uses the time–frequency rolling window developed by Mestre and Terraza 
(2019) to analyze the time–frequency robustness of the initial risk-profile. We use the daily 
returns of selected stocks and the Eurostoxx index from 2012 to June 2022. Moreover, we 
provide a method for promptly assessing the time–frequency characteristics of stocks or 
portfolios.

We also analyze the short-run and long-run patterns of systematic risk. We confirm the 
frequency differentiation of systematic risks observed in the literature and find that risk 
dynamics differ as well. The short-run patterns of time–frequency betas closely resemble 
the standard CAPM time-varying estimation approach, whereas the long-run pattern dif-
fers. We also highlight that the static CAPM beta’s initial value influences the stock risk-pro-
file’s time–frequency robustness. The closer the beta is to 1, the less robust the risk-profile. 
These results are observed during periods of expansion and turmoil. However, during crisis, 
beta volatility is higher, resulting in drastic changes in stock and portfolio risk profiles. The 
different reactions of short-run and long-run betas to the early stages of the COVID-19 and 
Ukrainian conflict suggest that agents perceive these events differently depending on their 
investment horizon.

The remainder of this paper is structured as follows. Section 2 presents the theoretical 
aspects of time–frequency approach. Section 3 estimates the time–frequency-varying betas 
using the standards rolling approach and the time–frequency-varying rolling window. We 
use a standard approach to compare short and long-run time–frequency dynamics. We 
also created three portfolios with distinct features and present our methodology for evalu-
ating the time–frequency robustness of their respective risk profiles. Section 4 examines 
the time–frequency robustness of these portfolios’ risk profiles during the COVID-19 and 
Ukraine war periods (2020–2022). Finally, Sect. 5 concludes the paper.

Theoretical aspects of wavelets time–frequency analysis in the CAPM 
framework
This section discusses the various types of wavelet decomposition and the approach used 
to perform time–frequency-varying estimations. The mathematical theory is presented 
using Mallat’s (2009a) notation. The frequency decomposition of time series results in 
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the loss of time representation of a time series’ frequency components. The wavelets 
decompositions are then an extension of the spectral analysis to overcome this limita-
tion (Meyer et al. 1986; Grossmann and Morlet 1984; Meyer 1990; Mallat 1989, 2009a, 
b; Daubechies 1992). The decomposition of a wavelet is then based on a wavelet-mother, 
�(t), which uses a filter basis of a time series x(t) to extract frequency components while 
maintaining a time representation of them. The wavelet-mother should respect a admis-
sibility conditions to preserver the energy/variance of the initial time series x(t) (Gross-
mann and Morler 1984).

Consequently, the wavelet �(t) is a zero-mean and normalized function written as 
follows:

The wavelets �(t) is shifted by a parameter τ and scaled by the parameter s to generate 
the wavelets-daughters �τ,s(t) representing the wavelets-mother in different subspaces 
determined by varying s and τ:

Consequently, by considering all the wavelets-daughters across s and τ , we project the 
chronic x(t) into each subspace �τ,s(t) to have the wavelets coefficients W (s, τ ) at each 
scale s and across time:

The wavelet coefficients represent variations of the original series at frequency scale s 
and time scale t. As a result, the CWT generates a sub-chronic with the same length N as 
the initial time series at each frequency scale. We can reconstruct the initial chronic x(t) 
by the reverser process known as the inverse continuous wavelets transform (ICWT):

Equation (4) highlights the admissibility conditions Cψ of the wavelet-mother (Calde-
ron 1964; Daubechies 1992):

where f is the frequency and �̂ f  is the Fourier’s transform of wavelets-mother.
Equation (5) is respected if the wavelets-mother satisfies Eq. (1). In this paper, we use 

the complex Morlet wavelets ψM(t) as wavelet-mother because it provides a good bal-
ance in the time and frequency representation.
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With i2 = −1 and f0 , the non-dimensional frequency is equal to 6 to satisfy the con-
dition on Cψ.

In practice, frequency sampling is used to empirically implement the CWT (Lau 
and Weng 1995; Torrence and Compo 1989), specifying the optimal level of decom-
position, noted J, and the related set of frequency scale noted,sj , depending on the 
time step, δt , of the time series and a frequency step, δs:

In this framework, the degree of frequency resolution of the CWT can be modified 
by varying δs as ( 1

δj
− 1) intermediary frequencies will be caught between two dyadic 

scales. The value of δs is also related to the wavelets-mothers chose to perform the 
CWT.

The CWT is then relatively complex to implement, necessitating the development 
of discretized versions to ease practical use by reducing computational efforts. The 
discrete wavelet transform and, in particular, its improved version, the MODWT, 
are the most well-known. The MODWT is theoretically a simplification of the CWT 
because it employs a dyadic frequency scale grid and the cascade algorithm (Mallat 
1989, 2009a, b) to recursively decompose the initial time series while retaining its var-
iance. The outputs of the MODWT are the frequency bands instead of frequency. In 
this framework, the frequency bands regroup frequencies between each multiple of 2, 
until an optimal order of decomposition J is found. J is then the number of frequency 
bands resulting from a MODWT that can be used to describe the original series x(t) 
without losing information.

The MODWT is based on the Mallat’s cascade algorithm, which uses low-pass 
and high-pass filters to successively decompose J time the time series. The wavelets-
mother is a high-pass filter, and the wavelet-father φ(t) is a low-pass filter (also called 
scaling function). The previous ψτ ,s(t) and φτ ,s(t) are the wavelet-mother and father 
shifted by τ and dilated by s.

Mallat’s algorithm is completely iterative because the previous filters are applied 
to the initial series and the output of the filtering J times while taking rescaling and 
subsampled coefficients into account at each step j (Gençay et al. 2003). In addition, 
the MODWT provides sub-chronic at each step j = 1,….J known as the detail coef-
ficients Dj or frequency bands (similar to the wavelets coefficient in the CWT case). 
The frequency bands describe the fluctuation on a range of frequencies related to the 
periods of these cycles (see Appendix 1). The high-frequency bands capture short-run 
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fluctuations, whereas the low-frequency bands capture long-run fluctuations. Note 
that Dj has the same length N as the initial series. The MODWT provides the related 
frequency bands DJ  and a rough approximation of the SJ  series for the final level J. 
This approximation is usually the series mean or a basic trend approximation. By add-
ing the frequency bands, we can reconstruct the original series:

Because the MODWT provides frequency bands of length N, the wavelets variance of 
each band can be computed as follows:

where d̃
2

j,x,t are the wavelets coefficients at the level j. Nj is the number of coefficients 
non-affected by boundary (see Gençay et al. 2003).

In a multivariate framework, considering another time series yt , we can compute the 
wavelets covariance between the frequency bands of level j of each series such as:

Consequently, for each frequency band, we can perform a time–frequency coefficient, 
βj as follows:

In our paper, we used the following market’s line equation of the basic Sharpe’s CAPM 
to establish a relationship between asset risk premium yt and market premium xt.

In Eq. (14), yt and xt are stationary processes and εt is a i.i.d(0,σε ) process.
Equation  (13) provides a constant coefficient for each frequency band based on the 

standard representation of the market’s line. However, a rolling time–frequency window 
can be used to estimate a time-varying coefficient on each band (Mestre and Terraza 
2019; McNevin and Nix 2018). McNevin and Nix (2018) used an L-sized rolling win-
dow to estimate time-varying betas on each frequency band from a unique MODWT. 
This approach is applicable and intuitive for evaluating the time–frequency-varying beta 
parameter in the CAPM framework. However, it is based on a unique wavelet decom-
position based on N points (the length of the initial series decomposed), whereas the 
estimation is realized into the window size (based on L points). As a result, the wave-
let coefficients are not rescaled or subsampled because the algorithm used an N-based 
MODWT to perform these operations. Such operations are useful for satisfying decom-
position properties, particularly variance preservation. Furthermore, as Mestre and 
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Terraza (2019) demonstrated, some bias can affect parameter estimations, particularly 
in the long-run.

Mestre and Terraza (2019) proposed the time–frequency rolling window performing 
the MODWT inside the L-sized window. Thus, all rescaling and subsampling operations 
are compatible with estimating the beta parameter based on L points. Furthermore, the 
empirical application of this approach is tailored to the price discovery process because 
the window incorporates the new prices directly into the computation, whereas the intu-
itive approach necessitates redefining the basis points used to perform the MODWT. 
They compared these two approaches in their paper’s CAPM framework and concluded 
that the time–frequency rolling window provides more accurate estimators than the 
intuitive approach.

Time–frequency‑varying systematic risk and profiling of stocks and portfolios
The time–frequency rolling window is applied to French stocks listed on the CAC40 
indexes for the daily period 2012–2019. We retain the Eurostoxx index as the Market 
index (factor) and the OAT 10-year rates as a risk-free asset. Then, we compute the log 
returns (first difference of natural logarithm of daily closed prices) to generate the mar-
ket premium and equities premia variables of the market’s line. Using these variables, we 
estimate a static beta by ordinary least square (OLS) and rolling beta series, denoted βr , 
using a 260-day rolling window (1 trading year). Investors can change the size of the win-
dow to suit their needs. The results will be qualitatively similar. The static betas are used 
as a benchmark to establish the initial risk-profile of each stock based on their respective 
values relative to 1 (greater, lower, equal to 1), whereas the βr is used to analyze the time 
dynamics of risk.

Furthermore, we employ the MODWT transformation in conjunction with a least-
asymmetric Daubechies wavelet (La8) to estimate frequency betas parameters by OLS. 
The investment horizon associated with each frequency band is presented in Appen-
dix 1. To simplify the analysis and interpretation of the results, we keep only the short-
term band D1 and the long-term band D6, which correspond to investment horizons 
of 2 to 4 days and 3 to 6 months, respectively. The betas calculated for D1 and D6 are 
time-invariant and are used to establish the frequency risk profiles. Then, by comparing 
their respective values, we analyze the frequency robustness of the initial risk-profile. To 
understand the time dynamics of these parameters, we use Mestre and Terraza’s (2019) 
approach (with a 260-day time–frequency rolling window) to estimate the rolling time–
frequency betas noted βTF . We obtained a time series representing the beta for a par-
ticular frequency band.

Based on an analysis of the time–frequency dynamics of the betas, we propose the fol-
lowing methods for quantifying the robustness of the risk-profile over time and across 
frequencies.

To categorize each stock using standards CAPM and stand the initial risk-profile, we 
test the value of the static beta (equal, greater, or lesser than 1). We calculate the stand-
ard deviation of the rolling betas series to quantify the degree of betas volatility and then 
the time-robustness of the initial risk-profile. The rolling beta values are tested to 1 and 
compared to the initial risk-profile. We count the number of rolling betas greater, equal, 
or lesser than 1 and 0 (if required). As a result, when a large portion of the rolling betas 
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match the initial risk-profile, the risk-profile is assumed to be robust over time. Con-
versely, when rolling betas fail to satisfy initial characteristics, the initial risk-profile is 
supposed to be non-robust.

We follow this methodology for βr and βTF on D1 and D6 frequency bands, and the 
results are recorded in Table 1. The first two columns in these tables present the OLS 
beta and its T-stat to test its equality to 1. The fifth column calculates the rolling beta 
series’ standard deviation, and the last columns show the percentage of rolling betas in 
each category (greater, lesser and equal to 1 and 0). The Sharpe and Treynor ratios are 
also assigned. However, in the frequency domain, they are closed to 0 because frequency 
bands are zero-mean variables. Tables 1 presents all the results.

To analyze the frequency robustness of the initial risk-profile, we compare the betas 
on D1 and D6 to the standard CAPM betas. We find that the values of the short-run 
and long-run betas can differ from the beta of the standard CAPM. The frequency dif-
ferentiation of systematic risk (beta values) is consistent with the results of Gençay et al. 
(2005), Mestre and Terraza (2019), Alexandridis and Hassan (2020), and Mestre (2021). 
However, beta frequency differentiation does not always imply a risk-profile that is not 
robust in the frequency domain. Indeed, stocks with an OLS beta of less than 1, indicat-
ing a defensive risk-profile, retain this feature in the short and long-term. Only Kering 
and Capgemini stocks have long-run betas that are significantly equal to or greater than 
1, resulting in a different risk-profile in the long-term.

The aggressive stocks (having a CAPM’s beta greater than 1), particularly the financial 
stocks (Crédit Agricole, BNP, Société Générale, AXA) and Schneider maintain the same 
feature in the short and long-term. Others’ risk profiles are altered by beta frequency 
differentiation, as example Stmicroelectronics (STMI) stock with long-term beta signifi-
cantly equal to 1. The long- and short-run betas for the two stocks with a CAPM beta of 
1 (Airbus and LVMH) differ, so their risk-profile changes.

The previous results are consistent with the literature. To improve the risk analysis, 
we include the time dynamics of the frequency risk-profile in this paper. The results 
obtained from the βr serve as a time benchmark, defining the robustness of the initial 
risk-profile over time.

Regardless of the initial risk-profile, we make the following observations and draw the 
following remarks. Long-term βTF are more volatile than short-term ones. This result 
suggests that the underlying mechanism of systematic risk differs fundamentally in the 
long-run. Furthermore, the short-term volatility of βTF is similar to the volatility of βr . 
The time-varying systematic dynamics of standard rolling beta estimations and wave-
lets decomposition are relatively similar. Then, we assume that CAPM standards and 
time-varying parameters implicitly suppose a short-run investment horizon. For some 
stocks, the high volatility of long-term beta implies a non-robust risk-profile, as their 
initial characteristics change from time to time. Some stocks’ risk profiles may change 
more frequently in the long-term while remaining stable in the short-term. Then, inves-
tors should monitor this fact when building a long-term portfolio. For example, Hermes 
stock has a standard CAPM beta lower than 1 and is classified as a defensive stock 
because 99.46% of the βr are lower than 1, whereas only 0.54% are equal to 1. Therefore, 
the risk-profile is robust over time. Its defensive risk-profile is also robust in frequency 
because its short and long-term betas are both less than 1. However, in the long-run, 
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βTF is more volatile (standard deviation equal to 0.56). Only 58.07% are lower than 1, 
whereas 17.70% are greater than 1, and 10.23% are lower than 0. Therefore, we suppose 
that the long-term risk-profile will be unstable over time as many changes occur. The 
benchmark and the short-term risk-profile have similar characteristics. Similar observa-
tions and conclusions can be drawn for other stocks.

We make the following observations after interpreting the results in light of the initial 
risk-profile:

For stocks with a defensive or low-risk profile (beta < 1), the short-run volatility of βTF 
is relatively low (or medium compared with long-run); hence, the risk-profile is robust. 
However, long-run βTF is more volatile, and increasing volatility affects the robustness of 
the risk-profile. We note negative betas, for example, in Dassault, Teleperformance, and 
Hermes. In this case, a graphical monitoring of the time–frequency-varying betas shows 
when the change occurs. For stocks with a beta equal or closed to one, the fluctuation of 
the parameters around 1 indicates a non-robust risk-profile in both the short and long-
run. The closer the standard beta is to 1, the less robust the risk-profile. Total stock is 
an exception because of the low volatility of its short- and long-run betas, which can be 
interpreted as relatively robust. Note that investors can use their own criteria to deter-
mine whether the risk-profile is robust or not. The volatility of βTF is higher in the long-
run than in the short-run for stocks with an aggressive or high-risk profile (beta > 1). We 
also observe that the closer the beta is to 1, the less robust the risk-profile. However, 
due to large differences in beta volatility, we cannot determine whether the risk-profile 
is robust. We note that banking stocks (BNP, SG, and CA) have highly volatile betas, 
particularly in the long-run, but the risk-profile can be assumed to be robust because 
80%–85% of rolling betas are greater than 1.

To demonstrate the utility of our approach in terms of short- and long-run risk moni-
toring, we build three portfolios with distinct characteristics. We build a defensive port-
folio using five stocks with the lowest beta based on the static value of the CAPM beta. 
In contrast, we build an aggressive portfolio by selecting five stocks with the highest 
beta. The two stocks with betas equal to 1 are used to construct a portfolio that tracks 
market movements. Portfolio 1 (Pf1) is composed of Hermes, Ricard, Dassault, Thales, 
and Publicis, whereas Portfolio 2 (Pf2) of Airbus and LVMH. Lastly, Portfolio 3 (Pf3) is 
composed of Crédit Agricole, BNP, Société Générale, Stellantis, and STMI. We used the 
same wavelet time–frequency window and methods to characterize rolling beta volatil-
ity. Table 2 displays the results, and Fig. 1 depicts the rolling betas graphically.

As expected, we note similarities with Table  1: the long-run volatility of the βTF is 
greater than the short-run volatility. The previous one is very closed the volatility of the 
benchmark βr . Figure  1 depicts the differentiation of the time dynamics of the short-
term and long-run betas. The beta values fluctuate in the long-run while being more 
“smooth” in the short-run. Portfolio 3 results emphasize this point. In the long-run, the 
standard deviation of βTF is 0.37, and the betas are in the [0.30–2.6] range. Therefore, 
9.09% of the betas are lower than 1. Figure 1 shows, for example, that the initial aggres-
sive risk-profile is not observed in summer 2014 and autumn 2017. However, the beta 
values are less volatile in the short-run, with 83.13% of betas greater than 1, and the 
remaining 16.87% equal to 1. The risk-profile is then more robust in the short-run. Port-
folio 2 depicts the effects of beta frequency differentiation and volatility on risk-profile 
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Fig. 1 Time–frequency-varying betas of portfolios
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robustness. The long-run beta is greater than 1, despite the portfolio being designed 
to be a tracker. As previously indicated, both Airbus and LVMH have long-run betas 
greater than 1; thus, the portfolio’s initial feature is lost. Figure 1 shows that the long-run 
properties of Portfolio 2 are not robust, as betas are less than 1 in 2018 and greater than 
1 in 2019. Because 100% of betas are less than 1, Portfolio 1 risk-profile is assumed to be 
robust in both the short and long-run.

Time–frequency‑varying systematic risk during turmoil and crisis times
We used our methodology in the previous section during a relatively quiet and expand-
ing period. In this section, we assess the robustness of the portfolio risk profiles during 
turbulent and crisis periods, namely, COVID-19 and the start of the Ukrainian–Russian 
conflicts.

We reiterate previous computations for daily data from January 2020 to June 2022. 
Table 3 and Fig. 2 present our results for the three portfolios we created. Appendix 2 
presents the results for all stocks (due to numerous results, graphics are available upon 
request).

We note many differences when comparing Tables  1 and 2 because many stocks 
changed risk profiles during the crisis. Furthermore, because the difference between 
its short- and long-run betas is significant, more stocks have a mixed risk-profile. As 
previously stated, we select stocks to construct various types of portfolios with mixed 
time–frequency features. For example, during a crisis, we build a portfolio with short-
run betas less than or close to 1 to attenuate shocks in the short-run, but we construct a 
portfolio with long-run betas greater than 1 to capitalize on the first signs of recovery in 
the long-run. We choose Capgemini, Publicis, or Axa (see Appendix 2) to create a port-
folio with a short-run beta of 0.93 and a long-run beta of 1.46.

According to standard CAPM, the beta value of Portfolio 2 during this crisis period is 
greater than 1. The risk-profile established during the expansion period does not hold. It 
is worth noting that the long-run beta estimated in Table 2 also indicated a beta greater 
than 1. Hence, if we built Portfolio 2 during the expansion period without considering 
the long-run beta, we would have underestimated the systematic risk. Airbus is the main 
source of risk in this portfolio, with betas of 2 in the long-run and 1.50 in the short-term. 
During the COVID-19 crisis, the tracker portfolio (by design) is actually riskier than 
the market-like portfolio 3. However, Portfolio 3 is, by construction, riskier because we 
only included stocks with betas greater than 1. Both short- and long-run betas in Port-
folio 3 showed no change in its risk-profile in the frequency domain. The same conclu-
sions can be drawn for Portfolio 1, whose defensive profile is preserved in the frequency 
domain. As a result, changes to Portfolio 2 are required to conform to the initial tracker 
characteristic. As an example, we exclude Airbus and include Veolia, which has a short-
run beta of 0.89. Because the short-term beta of LVMH is 1.09, the adjusted Portfolio 2 
has a short-term beta of 0.99. Michelin can also be included in portfolio 2. In the long-
run, LVMH betas are 0.81, and Veolia is 1.21, which is the inverse of the situation in the 
short-run. The readjusted Portfolio 2 has a beta value of 1. Other stock combinations are 
possible, with different characteristics, such as a tracker in the short-run but an aggres-
sive in the long-run. Note that we are currently only concerned with static beta in the 
short and long-run. The following is an example of dynamic adjustments.
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Fig. 2 Time–frequency-varying betas of portfolios in the crisis period
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In terms of the time dynamics of systematic risk, we observe short and long-run differ-
ences in beta volatility. We continue to observe that long-run dynamics are highly erratic 
compared to short-run dynamics. The short-run risk profiles of portfolios 1 and 3 are 
robust, as 100% of the rolling betas are lower and greater than 1 across time, respec-
tively. Their respective long-run risk profiles are also considered stable over time. Port-
folio 2 and Portfolio 3 have the same profile during this period. Given the revision of Pf2 
with Veolia, the long and short-run betas are closer to 1 (see Appendix 3). We propose a 
potential adjustment, but agents are free to choose other stocks to optimize their portfo-
lio in the long or short-run for a more stable beta over time.

Figure 2 shows a flattening rolling betas curve for the three portfolios from May 2020 
to March 2021 due to financial measures and lockdowns during the COVID-19. As betas 
values vary around their respective static estimations, both short and long-run volatil-
ities are low. Portfolio risk profiles matched their initial features perfectly during this 
time period. However, the short and long-run risk dynamics become more volatile after 
the first year of a pandemic.

Long-run rolling betas for Portfolio 1 begin to rise sharply in February 2020. This 
period corresponded to the Covid-19 outbreak and China’s first quarantine of Hubei 
province (the most affected areas). The betas reach 1 at the end of March and gradually 
fall below 1 after the European lockdown. Portfolio 3’s long and short-run betas have 
been reacting to the Chinese situation since the end of January (Wuhan quarantine). 
However, short-run betas fall while long-run betas rise. This fact implies that risk per-
ceptions differed early in the pandemic.

The market returned to the post-crisis level around March 2021 (in Europe), and beta 
volatility became more significant after that date. We also note a break in the beta series 
around September 2021, which corresponds to the end of the recovery period and the 
emergence of inflationary pressures and price tensions on energy and raw materials. 
From September 2021 to February 2022 (market crash), both short and long-run betas 
for Pf3 fall below 1. During this time, the market exhibits a “plateau effect,” with finan-
cial stocks reaching high prices (near highest prices since 2017). The Ukrainian conflict 
caused a significant increase in betas, followed by a highly erratic fluctuation. Similar 
conclusions can be drawn for Pf2. However, after the start of the Ukraine war, long-run 
betas are equal to 1, and the tracker characteristic reappears. However, betas are still 
greater than 1 in the short-run. Pf1 betas rise from September 2021 to February 2022, 
reaching greater than 1 just after the Ukrainian conflict and then falling below 1. The 
“defensive” characteristic is confirmed when the market is stressed, whereas aggressive 
stocks continue to rise.

Conclusions
In this paper, we perform forward regression on a time–frequency rolling window to 
estimate a dynamic beta across time and frequency. We apply this strategy to French 
stocks and create three portfolios with varying risk profiles. Based on systemic risk 
dynamics, we propose a method for quantifying the volatility of betas to perform 
stock profiling monitoring. When the short and long-run betas share the same fea-
tures (lesser, greater, or equal to 1), the risk-profile is frequency-robust; otherwise, it 
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is not. Furthermore, a risk-profile is time robust when a large part of its rolling betas 
shares the same features.

The risk profiles of stocks with high beta (high-risk) and low beta (low-risk) tend to 
be frequency-robust, but the closer the beta to 1, the less frequency-robust the risk-
profile is. However, we can identify stocks with short-run betas that differ from long-
run betas. The portfolio can then be allocated using a mixed-frequency risk-profile. 
This result is more frequent during a crisis period. We should also mention that char-
acteristic (aggressive, defensive, or tracker) depends on investment horizons. Our 
results support the literature by highlighting the frequency differentiation of betas 
and systematic risks. We should note that a portfolio’s and stocks’ long-run risk-pro-
file can differ from the short-run risk-profile. Agents are free to tailor their portfolio 
to their preferences.

However, we extend this result because the time–frequency dynamics of risk are 
also different. Despite high beta volatility, the risk-profile of stocks with high beta 
is time robust in the long-run, particularly the financial stocks. However, we note a 
higher proportion of betas equal to or less than 0 for low beta stocks. During a cri-
sis, beta volatility increases, causing drastic changes in the risk-profile of stocks and 
portfolios. We also notice that the short-run beta dynamics are similar to traditional 
rolling betas, whereas the long-run dynamics are completely different. The results 
show that the standard CAPM implicitly assumes short-run investment horizons for 
both risk (static betas) and time–frequency dynamics. Our application to portfolios 
also supports this conclusion: long-run investors should consider the time–frequency 
CAPM rather than the standard CAPM to assess their systematic risk. We confirm 
Alexandridis and Hassan’s (2020) results that lower frequency beta is more important 
than higher frequency beta in times of crisis.

Consequently, portfolio risk monitoring should consider investment horizons and 
the time–frequency dynamics of risk. The differences in short-run and long-run beta 
dynamics highlight the impact of agents’ perceptions on their systematic risk level. 
Moreover, the different reactions of short- and long-run betas to the early stages of 
COVID-19 and the Ukrainian conflict suggest that agents perceive these events dif-
ferently depending on their investment horizon.

However, we observe that the longer an event lasts, the more the short and long betas 
tend to follow the same dynamics. We observe a flattening of the betas curve between 
2020 and 2021, but the dynamics of short- and long-run betas differ after 2021. These 
results contradict those of Jain (2022) and Alexandridis and Hasan (2020), who found 
an increase in beta during the crisis period. Our results are consistent with those of 
Cao et al. (2022), who found that stock betas tend to decrease as the pandemic sever-
ity increases. According to Abd-Alla (2020) and Jain (2020), capitalization and firm 
sector tend to modify the effect of the crisis on beta coefficients. On this point, we par-
tially confirm their results because we note different evolutions of the beta parameters 
depending on the equities. Concerning the effects of the Ukrainian conflict, our results 
are consistent with the literature, which indicates an increasing beta in times of crisis. 
Finally, the effects of COVID-19 and the Ukrainian conflict on equity betas are related to 
investment horizons and initial risk-profile. We can conclude that the COVID-19 period 
impacts the systematic risk differently than the Ukrainian Conflict.
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In sum, the methodology developed in this paper can be tailored to the users’ needs 
by varying the window length or by performing a recursive regression backward or for-
ward. Furthermore, this wavelet approach can be associated with other clustering algo-
rithms, such as a multiple criteria decision-making model, to automate the risk-profile 
or stock selection, as demonstrated by Li et al. (2021) and Kou et al. (2014). This meth-
odology is then suitable to easily access the time–frequency volatility of the systematic 
risk, providing a powerful tool for better tailing and monitoring portfolio characteristics 
at each new price discovered and according to its investment horizon.

Appendix
Appendix 1 MODWT Frequency Bands and related investment horizons in days

Frequency Bands Inf Border Sup Border

D1 2 4

D2 4 8

D3 8 16

D4 16 32

D5 32 64

D6 64 128

D7 128 256

D8 256 512

D9 512 1024

D10 1024 2048

D11 2048 4096

Appendixes 2 Stocks time‑frequencies risk characteristics in turmoil period

a) For stock with an OLS Beta equal to 1

2020–
2022

OLS 
beta

Tstat1 Sharpe Treynor SD %Beta < 1 %Beta = 1 %Beta > 1 %Beta < 0%Beta = 0

Veolia 0.94 1.79 − 1.32 − 0.03 0.16 74.20 21.50 4.30 0 0

Veolia D1 0.89 3.29 0.00 0.00 0.16 90.45 5.73 3.82 0 0

Veolia D6 1.21 7.01 − 0.15 0.00 0.38 36.62 6.53 56.69 0 0.16

Michelin 0.98 0.68 − 1.72 − 0.03 0.11 40.92 52.55 6.53 0 0

Michelin 
D1

0.92 2.51 0.08 0.00 0.10 60.35 39.65 0 0 0

Michelin 
D6

1.01 0.46 − 0.06 0.00 0.46 57.96 20.70 21.34 0 0

Capgem-
ini

0.99 0.18 0.32 0.01 0.04 32.48 64.81 2.71 0 0

Capgem-
ini D1

0.92 2.32 0.04 0.00 0.10 65.29 23.09 11.62 0 0

Capgem-
ini D6

1.52 18.82 − 0.11 0.00 0.28 4.14 5.57 90.29 0 0

Publicis 1.00 0.00 − 2.60 − 0.06 0.15 37.58 21.02 41.40 0 0
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2020–
2022

OLS 
beta

Tstat1 Sharpe Treynor SD %Beta < 1 %Beta = 1 %Beta > 1 %Beta < 0%Beta = 0

Publicis 
D1

0.87 3.07 0.05 0.00 0.16 71.02 17.99 10.99 0 0

Publicis 
D6

1.20 7.46 − 0.08 0.00 0.55 22.93 3.34 64.65 6.37 2.71

b) For stock with an OLS Beta lesser than 1

2020–
2022

OLS 
beta

Tstat1 Sharpe Treynor SD %Beta < 1 %Beta = 1 %Beta > 1 %Beta < 0 %Beta = 0

Sanofi 0.49 18.37 − 2.85 − 0.08 0.10 100 0 0 0 0

Sanofi D1 0.50 19.59 − 0.05 0.00 0.10 100 0 0 0 0

Sanofi D6 0.54 22.49 − 0.11 0.00 0.34 86.78 2.07 8.12 0.96 2.07

Eurofins 0.49 9.99 1.73 0.08 0.29 86.62 0.80 2.87 0.16 9.55

Eurofins 
D1

0.59 8.27 0.09 0.00 0.33 82.32 2.39 3.66 0.16 11.46

Eurofins 
D6

0.31 14.65 − 0.18 0.00 0.65 61.94 0.16 3.50 31.53 2.87

Carrefour 0.51 12.99 − 2.42 − 0.08 0.14 100 0 0 0 0

Carrefour 
D1

0.53 12.73 0.01 0.00 0.16 100 0 0 0 0

Carrefour 
D6

0.34 21.14 − 0.18 0.00 0.37 74.04 3.66 6.37 10.51 5.41

Orange 0.51 17.98 − 7.66 − 0.20 0.17 100 0 0 0 0

Orange D10.53 17.76 − 0.08 0.00 0.19 100 0 0 0 0

Orange D60.37 22.16 − 0.22 0.00 0.39 75.96 6.53 14.49 0.32 2.71

Danone 0.55 15.60 − 6.18 − 0.16 0.08 100 0 0 0 0

Danone 
D1

0.59 14.95 0.16 0.00 0.06 100 0 0 0 0

Danone 
D6

0.65 14.52 − 0.22 0.00 0.27 85.19 4.46 4.14 6.05 0.16

Vivendi 0.62 8.55 − 3.22 − 0.11 0.16 100 0 0 0 0

Vivendi D10.63 8.32 0.03 0.00 0.24 100 0 0 0 0

Vivendi D60.72 6.94 − 0.38 0.00 0.67 61.62 2.71 29.14 5.89 0.64

Ricard 0.63 13.99 − 3.51 − 0.08 0.06 100 0 0 0 0

Ricard D1 0.62 14.39 0.14 0.00 0.10 100 0 0 0 0

Ricard D6 0.60 16.92 0.00 0.00 0.24 94.59 0.32 0 1.91 3.18

Dassault 0.68 8.44 − 0.07 0.00 0.15 96.18 3.03 0.80 0 0

Dassault 
D1

0.74 6.75 0.15 0.00 0.17 92.36 1.75 5.89 0 0

Dassault 
D6

0.78 5.51 − 0.09 0.00 0.64 61.15 3.03 17.83 11.46 6.53

Téléper-
formance

0.73 6.63 0.81 0.02 0.21 97.45 2.55 0 0 0

Téléper-
formance 
D1

0.78 5.18 0.09 0.00 0.26 90.45 9.24 0.32 0 0

Téléper-
formance 
D6

0.89 3.19 − 0.07 0.00 0.52 46.97 24.04 7.64 15.29 6.05

Thales 0.74 6.39 − 3.06 − 0.08 0.33 50.80 23.89 23.09 0 2.23
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2020–
2022

OLS 
beta

Tstat1 Sharpe Treynor SD %Beta < 1 %Beta = 1 %Beta > 1 %Beta < 0 %Beta = 0

Thales D1 0.67 8.80 0.03 0.00 0.30 69.59 12.42 10.35 0 7.64

Thales D6 0.98 0.48 − 0.03 0.00 0.81 47.13 7.80 30.10 13.22 1.75

Air liquide 0.75 12.07 − 1.33 − 0.02 0.10 99.84 0.16 0 0 0

Air liquide 
D1

0.83 8.24 0.09 0.00 0.17 82.01 17.04 0.96 0 0

Air liquide 
D6

0.65 18.35 − 0.09 0.00 0.19 88.69 5.25 6.05 0 0

L’oreal 0.77 8.63 − 1.19 − 0.02 0.08 98.09 1.91 0 0 0

L’oreal D1 0.80 7.57 0.20 0.00 0.10 89.97 10.03 0 0 0

L’oreal D6 0.53 18.19 − 0.17 0.00 0.44 73.57 5.41 21.02 0 0

Hermès 0.81 6.62 1.31 0.03 0.13 86.94 12.74 0.32 0 0

Hermès 
D1

0.86 4.84 0.10 0.00 0.12 85.67 6.05 8.28 0 0

Hermès 
D6

0.61 10.38 0.00 0.00 0.56 65.76 3.50 14.81 12.74 3.18

Alstom 0.84 3.58 − 4.50 − 0.12 0.13 89.17 3.98 6.85 0 0

Alstom D1 0.89 2.43 0.12 0.00 0.12 89.17 5.41 5.41 0 0

Alstom D6 0.98 0.34 − 0.12 0.00 0.86 45.38 0.96 47.93 2.87 2.87

Legrand 0.88 4.54 − 1.20 − 0.02 0.11 88.85 11.15 0 0 0

Legrand 
D1

0.88 4.62 0.18 0.00 0.15 70.22 29.30 0.48 0 0

Legrand 
D6

0.73 10.88 − 0.14 0.00 0.32 86.15 1.91 10.83 0.64 0.48

Essilor 0.88 3.94 − 2.12 − 0.04 0.06 89.49 10.51 0 0 0

Essilor D1 0.85 4.89 0.06 0.00 0.08 90.61 9.08 0.32 0 0

Essilor D6 0.82 7.58 − 0.09 0.00 0.43 79.46 7.17 6.85 6.53 0

Engie 0.91 2.81 − 3.95 − 0.08 0.14 60.51 39.49 0 0 0

Engie D1 0.84 5.46 − 0.01 0.00 0.11 99.68 0.32 0 0 0

Engie D6 1.28 7.01 − 0.13 0.00 0.37 42.99 4.94 52.07 0 0

iii) For stock with an OLS Beta greater than 1

2020–
2022

OLS 
beta

Tstat1 Sharpe Treynor SD %Beta < 1 %Beta = 1 %Beta > 1 %Beta < 0 %Beta = 0

Bou-
ygues

1.07 2.20 − 3.32 − 0.06 0.29 25.80 17.68 56.53 0 0

Bou-
ygues 
D1

1.10 3.24 − 0.01 0.00 0.32 22.61 20.06 57.32 0 0

Bou-
ygues 
D6

0.82 6.60 − 0.28 0.00 0.50 63.06 2.71 32.48 0 1.75

LVMH 1.09 3.45 1.30 0.02 0.13 16.08 37.58 46.34 0 0

LVMH D11.09 3.70 0.06 0.00 0.13 5.57 40.76 53.66 0 0

LVMH D60.81 10.60 − 0.03 0.00 0.26 56.85 6.69 36.46 0 0

Total 1.09 2.65 − 2.14 − 0.04 0.23 29.62 1.59 68.79 0 0

Total D1 1.04 1.31 0.00 0.00 0.20 32.32 4.30 63.38 0 0

Total D6 1.19 4.70 − 0.04 0.00 0.93 13.54 1.75 74.52 9.24 0.96

Schnei-
der

1.09 3.92 0.71 0.01 0.09 18.15 30.73 51.11 0 0

Schnei-
der D1

1.08 3.28 0.12 0.00 0.09 19.43 36.78 43.79 0 0
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2020–
2022

OLS 
beta

Tstat1 Sharpe Treynor SD %Beta < 1 %Beta = 1 %Beta > 1 %Beta < 0 %Beta = 0

Schnei-
der D1

0.80 6.95 − 0.19 0.00 0.37 72.13 3.82 24.04 0 0

AXA 1.10 3.74 − 2.47 − 0.04 0.16 31.21 0.96 67.83 0 0

AXA D1 1.00 0.19 0.03 0.00 0.13 52.71 5.57 41.72 0 0

AXA D6 1.66 27.45 − 0.14 0.00 0.61 0 0 100 0 0

Kering 1.11 3.38 − 2.06 − 0.04 0.10 3.03 38.22 58.76 0 0

Kering 
D1

1.10 3.15 0.06 0.00 0.11 12.42 38.85 48.73 0 0

Kering 
D6

0.72 8.95 − 0.04 0.00 0.56 67.52 4.46 27.23 0.32 0.48

Saint 
Gobain

1.20 6.13 0.11 0.00 0.12 4.46 26.59 68.95 0 0

Saint 
Gobain 
D1

1.13 4.13 0.12 0.00 0.13 24.36 14.01 61.62 0 0

Saint 
Gobain 
D6

1.31 14.29 − 0.15 0.00 0.32 19.43 3.82 76.75 0 0

Vinci 1.23 7.43 − 1.93 − 0.03 0.21 22.45 5.57 71.97 0 0

Vinci D1 1.26 8.22 0.02 0.00 0.25 16.72 8.76 74.52 0 0

Vinci D6 1.28 10.78 − 0.10 0.00 0.49 22.77 2.39 71.66 2.39 0.80

CA 1.31 8.66 − 2.53 − 0.05 0.16 4.46 6.21 89.33 0 0

CA D1 1.28 8.09 0.05 0.00 0.14 3.34 9.39 87.26 0 0

CA D1 1.93 25.35 − 0.08 0.00 0.73 5.57 1.75 92.68 0 0

STMI 1.32 7.22 2.03 0.04 0.23 0 10.19 89.81 0 0

STMI D1 1.32 7.40 0.12 0.00 0.21 0 0 100 0 0

STMI D6 1.22 6.67 − 0.14 0.00 0.66 12.90 5.41 66.24 10.51 4.94

BNP 1.36 9.96 − 1.69 − 0.03 0.15 0 1.27 98.73 0 0

BNP D1 1.34 10.35 0.02 0.00 0.11 0 0.16 99.84 0 0

BNP D6 1.74 17.60 − 0.10 0.00 0.69 10.83 1.75 86.94 0.48 0

Stellantis 1.43 10.80 − 1.31 − 0.02 0.07 0 0 100 0 0

Stellantis 
D1

1.43 11.14 0.15 0.00 0.10 0 0 100 0 0

Stellantis 
D6

1.30 11.33 − 0.14 0.00 0.42 0.16 1.59 98.25 0 0

Safran 1.51 11.06 − 2.80 − 0.05 0.22 0 7.48 92.52 0 0

Safran 
D1

1.48 11.19 0.13 0.00 0.22 2.71 5.73 91.56 0 0

Safran 
D6

1.86 21.25 0.01 0.00 0.83 19.27 2.87 74.36 2.55 0.96

Airbus 1.52 10.49 − 1.50 − 0.03 0.17 0 0 100 0 0

Airbus 
D1

1.49 11.05 0.06 0.00 0.11 0 0 100 0 0

Airbus 
D6

2.04 23.37 − 0.04 0.00 0.92 19.43 1.59 72.93 4.94 1.11

SG 1.60 13.34 − 2.50 − 0.05 0.18 0 0 100 0 0

SG D1 1.59 13.42 0.02 0.00 0.22 0 0 100 0 0

SG D6 1.78 14.21 − 0.10 0.00 0.78 7.80 2.07 89.65 0 0.48

Renault 1.61 11.41 − 4.68 − 0.09 0.23 0 1.59 98.41 0 0

Renault 
D1

1.65 12.46 0.09 0.00 0.27 0.16 3.66 96.18 0 0

Renault 
D6

1.83 15.06 − 0.02 0.00 0.79 4.14 3.03 89.01 3.66 0.16
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Appendixes 3 Short and Long run Rolling Betas of adjusted portfolio 2

The new portfolio 2 (noted NPf2) is adjusted with LVMH and Veolia while original port-
folio 2 is composed by LVMH and Airbus.
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