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Abstract 

Rapidly increasing cryptocurrency prices have encouraged cryptocurrency miners to 
participate in cryptocurrency production, increasing network hashrates and electricity 
consumption. Growth in network hashrates has further crowded out small cryptocur‑
rency investors owing to the heightened costs of mining hardware and electricity. 
These changes prompt cryptocurrency miners to become new investors, leading 
to cryptocurrency price increases. The potential bidirectional relationship between 
cryptocurrency price and electricity consumption remains unidentified. Hence, this 
research thus utilizes July 31 2015–July 12 2019 data from 13 cryptocurrencies to inves‑
tigate the short‑ and long‑run causal effects between cryptocurrency transaction and 
electricity consumption. Particularly, we consider structural breaks induced by external 
shocks through stationary analysis and comovement relationships. Over the examined 
time period, we found that the series of cryptocurrency transaction and electricity con‑
sumption gradually returns to mean convergence after undergoing daily shocks, with 
prices trending together with hashrates. Transaction fluctuations exert both a tempo‑
rary effect and permanent influence on electricity consumption. Therefore, owing to 
the computational power deployed to wherever high profit is found, transactions are 
vital determinants of electricity consumption.

Keywords: Transaction behavior, Electricity consumption, Cryptocurrency, 
Comovement

JEL Classification: E31, G12

Introduction
Since emerging in 2009, cryptocurrencies have received significant attention (Mensi 
et al. 2019; Sigaki et al. 2019; Cui and Maghyereh 2022), with investors and news media 
emphasizing their initial skyrocketing prices (Rauchs et al. 2018). Bitcoin, the most pop-
ular cryptocurrency, was priced in 2011 at $0.296 (US) per Bitcoin, closing at $11,583 
on July 12, 2019 after falling back from its peak of over $20,000. Ethereum, another well-
known cryptocurrency, also experienced significant gains, increasing from $0.734 to 
$273 on January 1, 2015 and July 12, 2019, respectively. New cryptocurrencies like Terra 
have once again pushed interest and expectations onto them, with investors hoping for 
another round of strong price growth in the cryptocurrency market.
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The rapid rise in cryptocurrency transaction behaviors is accompanied by growth in 
the network hashrate and electricity consumption. Electricity consumption from cryp-
tocurrency mining has maintained an upward trend and has grown over time (Stoll et al. 
2019). Krause and Tolaymat (2018) show that the mining 1 Bitcoin required 1,005 kWh 
in the beginning of 2016 but rose to 60,461 kWh in June 2018. According to the Digicon-
omist,1 the electricity consumption of Bitcoin roughly equates to 131.26 TWh annually, 
which can be compared to power consumption in Argentina. Cryptocurrencies aside 
from Bitcoin also consume enormous amounts of electricity during validation and trans-
actions (Li et al. 2019). Gallersdorfer et al. (2020) note that cryptocurrencies besides Bit-
coin comprise about 33% of electricity consumption in the cryptocurrency market. The 
fast-growing energy consumption of cryptocurrency has led to concerns about its envi-
ronmental effect and carbon footprint (Jiang et al. 2021; Sarkodie et al. 2022; de Vries 
et al. 2022). Mora et al. (2018) show that cryptocurrencies can potentially raise global 
temperatures by over 2 Celsius within less than three decades.

Owing to the cryptocurrency market’s massive electricity consumption, some stud-
ies examine its influencing factors through trading volume, return, and financial indica-
tors. Corbet et al. (2021) find that Bitcoin returns positively influence the price volatility 
of Chinese and Russian electricity companies. Huynh et  al. (2022) study how return 
and volume interact with Bitcoin energy consumption. Based on bidirectional causal-
ity, energy usage and Bitcoin return are correlated. Huynh et al. (2022) further find that 
Bitcoin volume exhibits higher connectedness with energy usage. Sarkodie et al. (2022) 
agrees with Huynh et  al. (2022) who highlight that Bitcoin trade volume can boost 
long-term energy consumption. Erdogan et  al. (2022) further focus on the asymmet-
ric relationship between cryptocurrency and environmental sustainability and show 
that the positive shock of Bitcoin demand exerts a causal influence on environmental 
degradation.

With increasing electricity consumption and transaction behavior in practice, their 
cointegration remains undetermined. Does cryptocurrency transaction behavior co-
move with electricity consumption? Related literature neglects the comovement and 
causal relation between transaction behaviors and electricity consumption (Hayes 2017; 
Fantazzini and Kolodin 2020). Huynh et al. (2022) show that transaction behavior inter-
act with cryptocurrency energy consumption. Schinckus et al. (2022) suggest that cryp-
tocurrency hashrates positively cointegrate with electricity consumption. Hence, in this 
study, we explore the long-run dynamics between cryptocurrency transaction behav-
ior and electricity consumption. Indeed, understanding interaction dynamics between 
transaction behavior and electricity consumption could help investors make investment 
decisions and governments develop regulatory policy  (Wang et al. 2022c). Our under-
standing of the causal relationship between price and electricity consumption must be 
improved by utilizing reliable and advanced statistical approaches.

Cryptocurrency transaction behavior theoretically affects electricity consumption and 
vice versa. On the one hand, cryptocurrency miners must provide computational power 

1 Digiconomist is a platform that provides reports, data and articles of digital trends. In particular, Digiconomist pro-
vides energy consumption and carbon footprint data on multiple crypto assets, including Bitcoin, Ethereum, and Doge-
coin.
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to the mining system for mining, validations, and transactions (Baldwin 2018; Stoll et al. 
2019; Zięba et al. 2019). Increased computational power with proof-of-work algorithm 
prompts market participants to add more cryptocurrency mining investment, bring-
ing significant growth in network hashrates and subsequent electricity consumption 
(Georgoula et al. 2015; Hayes 2017; Kjærland et al. 2018; Kristoufek 2015). On the other 
hand, greater electricity consumption requirements increase the cost of special hard-
ware and electricity needed by cryptocurrency miners, reducing the obtained rewarded 
coins from mining and crowding out miners. Das and Dutta (2020) state that energy 
costs exert a significant effect on the exit decision of miners and serve as a weakness. As 
these miners lose their channel for investing in cryptocurrency through mining activi-
ties, they shift their role to become investors in the cryptocurrency market and enlarge 
the demand for cryptocurrencies, which exerts a promoting effect on their transactions. 
Hence, transaction behaviors tend to be associated with network hashrates and electric-
ity consumption theoretically in a bidirectional way in the cryptocurrency market.

This study thus first utilizes data of 13 cryptocurrencies to investigate the comove-
ment relationship and short- and long-run causal effects among variables. The crypto-
currency market has witnessed large fluctuations and exhibits structural breaks (Canh 
et al. 2019; Sahoo 2021), which may affect the relationship between transaction behav-
iors and electricity consumption. Specifically, we consider structural breaks induced by 
external shocks (e.g., passing of recognition law for Bitcoin as official payments in Japan 
and Bitcoin’s hard fork in July 2017) in the stationary analysis and comovement relation-
ship during the period of concern. This study further uses the vector error correction 
model to identify the daily (short-run) and persistent (long-run) causal effects between 
transaction behaviors and electricity consumption. Our findings from July 2015 to July 
2019 show that transaction behavior and electricity consumption follow a very station-
ary process without unit root after considering external shocks. Hence, market partici-
pants could infer the future trend of the two and conveniently develop an investment 
strategy. Moreover, our evidence indicates that cryptocurrency electricity consumption 
presents a trend of moving together with transaction behavior during the sample time. 
Furthermore, transaction fluctuations not solely exert daily effects but also permanent 
influences on electricity consumption. Conversely, the effects of electricity consumption 
on transactions converge to zero quickly.

Our results suggest that the government should examine transaction dynamics in the 
cryptocurrency market as transactions drive electricity consumption growth (Fu et  al. 
2022)  and, hence, generate environmental costs like  CO2 emissions from the electric-
ity needed for cryptocurrency mining. Our stationary analysis results also suggest that 
cryptocurrency market investors need not adjust their investment when facing market 
fluctuations as external shocks are short-lived, and market forces can pull prices back 
toward equilibrium level.

This research offers two improvements for extant literature. First, it employs the 
cointegration test with structural breaks included and cross-sectional dependence to 
examine comovement between transaction behaviors and electricity consumption. 
Previous studies have discussed the nexus of Bitcoin return and electricity consump-
tion (Huynh et  al. 2022) or cointegration relationship between them (Fantazzini and 
Kolodin 2020). However, no one has considered a structural break and cross-sectional 
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dependence when exploring cointegration between cryptocurrency transaction behav-
iors and electricity consumption. Disregarding structural break and cross-sectional 
dependence may lead to misleading results. Our research advances examines comove-
ment between them using the panel cointegration technique with structural breaks and 
cross-sectional dependence. Second, we identify short- and long-run causalities between 
transaction behaviors and electricity consumption. While causality between financial 
determinants and energy consumption of cryptocurrency has been explored (Sarkodie 
et al. 2022), structural breaks are not included in the causality analysis (Fantazzini and 
Kolodin 2020). Our study covers short- and long-run causalities simultaneously and 
includes breaks obtained from the cointegration test, which can support the credibility 
of causality.

The reminder of this paper is structured as follows. "Methods and data" section 
describes the empirical setting, including the data sources, variable definitions, and the 
model. "Results" section presents empirical results. “Discussion and conclusion” sec-
tion offers discussion and conclusion.

Methods and data
Panel unit toot test with structural breaks

In financial economics, the panel unit root test is widely used to investigate the stabil-
ity of a series (Peng et al. 2022; Yin et al. 2022; Charfeddine and Khediri 2016; Jung and 
Maderitsch 2014). As booms and busts occur in the cryptocurrency market, checking 
the stability of transaction behaviors and electricity consumption should consider poten-
tial structural breaks (Bouri et al. 2019; Cheah and Fry 2015). We employed the panel 
Lagrange multiplier (LM) unit root test (Im et  al. 2005) to determine the stationarity 
of the series of cryptocurrency transaction behaviors and electricity consumption. The 
panel LM unit root allows us to explore the stability of series during structural breaks 
induced by external shocks and can discover the changing direction of level shifts.

Our analysis examined structural breaks and their significance. The null hypothesis of 
the panel LM unit root test is that the series have a unit root and are not stationary (Wen 
et al. 2021; Wang et al. 2022a). The data-generating process of the panel LM unit root 
test is given by the following:

where yit denotes the concerned variable, including cryptocurrency transaction behav-
iors and electricity consumption; t = 1,…,T represents the time period; i = 1,…N rep-
resents the number of cryptocurrency; uit = φiuit-1 + εit; TBit = 1 (time break) for t > BPi 
and 0 otherwise; BPi (break point) is the estimated break for cryptocurrency i; and εit 
represents the error term. δi denotes the coefficient of break. φi represents the correla-
tion parameter for the error term. We constructed a panel LM unit root test statistics by 
averaging univariate LM test statistics for each cryptocurrency. The asymptotic distribu-
tion of these panel LM statistics follows a standard normal distribution.

While the panel LM unit root test shows structural breaks, the source of this non-sta-
tionarity remains clear. We then used the PANICCA test (Reese and Westerlund 2016) 
to investigate whether the nonstationary source of transaction behaviors and electric-
ity consumption come from common, specific, or common and specific shocks. The 

(1)yit = γ1i + γ2it + δiTBit + uit ,
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PANICCA test combines principal components-based panel analysis of non-stationarity 
in idiosyncratic and common components and cross-section average test. PANICCA 
can quantify the driving forces of a series’ non-stationarity and decompose the non-
stationarity into shocks of common factors and specific factors. In the model, the data-
generating process for the variable is given as follows:

where yit denotes the concerned variable, including cryptocurrency price and net-
work hashrate; Dt,p denotes a polynomial trend function; Gt represents an r*1 vector of 
common factors; ηi refers to the corresponding factor loading; and uit is the idiosyn-
cratic error term. We chose option p = 1 for Dt,p, wherein both intercept and trend are 
included. To test whether cryptocurrency-specific shocks lead to non-stationarity, we 
used Pap, Pbp, and PMSBp (panel-modified Sargan–Bhargava) tests (Bai and Ng 2004). 
To test whether a common shock is part of the non-stationarity, we employed the aug-
mented Dickey-Fuller (ADF) test.

If the ADF test rejects the null hypothesis of unit root, the common shock is attributed 
to non-stationarity. If Pap, Pbp, and PMSBp tests reject the null hypothesis, a specific 
shock leads to non-stationarity. If all tests reject the null hypothesis, common shocks 
and specific shocks contribute to non-stationarity. Once structural breaks are examined 
for both series to test, the long-run cointegration relationship is determined. Notably, 
the panel cointegration test with structural breaks is utilized as the unit root test consid-
ers structural breaks.

Comovement analysis

To examine the long-run cointegrated relationship between variables (Yang et al. 2022a), 
we employed the panel cointegration test (Banerjee and Carrion‐i‐Silvestre 2015). Panel 
cointegration not only explores structural breaks in both the deterministic compo-
nents and the cointegrating vector but also considers cross-section dependence among 
units  (Yang et  al. 2022b; Dey et  al. 2022). The data-generating process with structural 
break form is given as follows:

where t = 1, … T represents the time period; i = 1, …, N represents units; and Priceit and 
Hashit refer to price and hashrate, respectively. Moreover, Ft refers to the common fac-
tors; and eit is the error term. δ it denotes break fraction vector. π denotes the loadings of 
common factor. Panel cointegration test statistics are constructed based on the sum of 
the individual ADF cointegration test as follows:

Panel statistics’ limiting distribution follows a standard normal distribution.

(2)yit = φ
′

iDt,p + η
′

iGt + uit ,

(3)Priceit = Dit +Hash′itδit + F
′

tπi + eit ,

(4)SADFτ (�) =

N

i=1

tτẽ∗i
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Vector error correction model

Once cointegration can be established, we employed the panel vector error correction 
model (VECM) to investigate short- and long-run dynamic corrections between cryp-
tocurrency transaction behaviors and electricity consumption (Zheng et  al. 2022). We 
applied a two-step procedure (Engle and Granger 1987). First, we ran the regression in 
Eqs. (5) and (6) to obtain the residual uit and εit (error correction term; EM henceforth).

Here, BP refers to the estimated breakpoints in the cointegration test. Second, by incor-
porating the error correction term, we estimated the following model based on panel 
Granger causality:

By testing the significance of the coefficients of explanatory variables in Eqs.  (7) and 
(8), we can identify short- and long-run causalities between cryptocurrency price and 
network hashrate. For short-run causality, we check H0:φ1k = 0 for all k in Eq.  (7) or 
H0:γ1k = 0 for all k in Eq. (8). Hence, we test the significance of the speed of adjustment 
λ to examine long-run causality  (Omonijo and Zhang 2022; Maiti 2022). For long-run 
causality, we test H0: λ1i = 0 for all i in Eq. (7) or H0: λ2i = 0 for all i in Eq. (8). Moreover, 
we utilize the joint test to analyze long-run causality (Jiang et al. 2022; Feng and Zheng 
2022).

Figure 1 illustrates the empirical test process. First, we used the panel unit root test 
with breaks to check the stationarity of the series of transaction behaviors and electric-
ity consumption. After identifying potential breaks, we use the PANICCA test to find 
the source of external shocks. We then apply the panel cointegration test with breaks 
to explore the long-run equilibrium relationship between cryptocurrency transaction 
behavior and electricity consumption. Finally, a cointegrated relationship exists, we then 

(5)Hashit = α1i + β1it + χ1iPriceit + δ1BP + uit

(6)Priceit = α2i + β2it + χ2iHashit + δ2BP + εit

(7)
�Hashit = θ1i + �1iEMit−1+

∑
k
γ1k�Hashit−k +

∑
k
ϕ1k�Priceit−k + η1BP+ωit

(8)
�Priceit = θ2i + �2iEMit−1 +

∑
k
γ2k�Hashit−k +

∑
k
ϕ2k�Priceit−k + η2BP+ vit .

Fig. 1 the empirical process in this paper
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use the VECM model to discover short- and long-run causalities between these two var-
iables (Lee and Hussain 2022; Hao et al. 2022).

Data sources

We use daily data of 13 cryptocurrencies from July 31, 2015 to July 12, 2019 to analyze 
the long-run integrated relationship between cryptocurrency transaction behaviors and 
electricity consumption (Table 1). Particularly, we use market price to proxy transaction 
behavior and network hashrate to proxy electricity consumption. This is because higher 
price is positively associated with more transactions, and the electricity consumption 
of mining is calculated based on network hashrate. Owing to positive cointegration 
between hashrate and electricity consumption, Schinckus et  al. (2022) argue that the 
former well reflects cryptocurrency electricity consumption. As our methodology only 
applies to balanced panel data, these coins were selected based on data availability and 
completeness.

As our methodology required constructing a balanced panel, the analyzed period 
ranged from July 31, 2015 to July 12, 2019. We obtained cryptocurrency price data and 
network hashrates from https:// bitin focha rts. com. Cryptocurrency’s price is measured 
by average price (exchange rate) per day in US dollars. Our sample enjoys good repre-
sentativeness as the capitalization of the selected cryptocurrencies considers 80% of 
total global cryptocurrency capitalization on July 12 2019. The analysis utilized the natu-
ral logarithm of cryptocurrency price and network hashrate.

Table 2 offers descriptive statistics about Price and Hashrate. We found that among 
the 13 cryptocurrencies, the mean values of Price and Hashrate for Bitcoin are highest. 
Similarly, Bitcoin has the largest standard deviation, suggesting that Price and Hashrate 
are widely distributed in the series of Bitcoin. The mean Price values for Dogecoin and 
Reddcoin are the lowest at 0.002, implying that these two cryptocurrencies are underde-
veloped compared to others.

Table 1 Selection of cryptocurrency

The price, network hashrate, and market capitalization of 13 cryptocurrencies on July 12, 2019. Price and hashrate take the 
average over the full time span

Cryptocurrency Price(US$) Hashrate(KH/s) Market 
capitalization 
(US$)

Bitcoin 11,583 6.732e+19 2.063e+11

Blackcoin 0.0526 6.943e+13 4,083,737

Dash 144.363 3.722e+15 1.288e+09

Dogecoin 0.003 4.249e+14 3.995e+08

Ethereum 273.617 1.793e+14 2.924e+10

Feathercoin 0.020 5.914e+09 4,146,440

Litecoin 104.539 4.742e+14 6.550e+09

Monero 91.675 3.069e+08 1.567e+09

Namecoin 0.866 5.649e+19 14,017,153

Novacoin 0.583 1.859e+11 1,498,238

Peercoin 0.352 1.173e+16 8,968,640

Reddcoin 0.002 6.433e+09 47,995,389

Vertcoin 0.399 6.875e+11 20,096,402

https://bitinfocharts.com
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Results
Stationary and external shocks in transaction behaviors and electricity consumption

Our analysis employed the logarithm of cryptocurrency price (Price, in USD) and of 
the network hashrate (Hashrate). As a comovement relationship cannot established in 
an unstable series, we first examined the stationarity of the Price and Hashrate series 
over three subperiods: the full subperiod of 7/31/2015–7/12/2019 and the two subperi-
ods representing before and after the peak price date, December 17, 2017 (Ciaian et al. 
2018; Corbet et al. 2018). We considered these two subperiods as most cryptocurrencies 
reversed following that day. Before the peak price date, prices stayed on an upward trend 
but then significantly pulled back (Fig. 2) after the date, leading to the Price–Hashrate 
nexus varying in different time periods.

When examining the stationarity of Price and Hashrate, addressing structural breaks 
improperly will lead to biased inferences owing to bull and bear markets in cryptocur-
rencies (Cheah and Fry 2015). One structural break involved the price bubble of April 
2017 accompanied by the passing of a recognition law for Bitcoin as official payments 
in Japan. Moreover, structural breaks are also essential in modeling series in mature 

Table 2 Summary statistics

Crypto Variable N Mean SD Min Max

Bitcoin Price 1443 3881.961 3813.727 213.673 19,401.000

Hashrate 1443 1.776e+19 1.976e+19 3.183e+17 7.261e+19

Blackcoin Price 1443 0.125 0.153 0.021 1.108

Hashrate 1443 7.170e+13 1.787e+13 3.754e+13 1.172e+14

Dash Price 1443 164.554 226.763 2.088 1436.000

Hashrate 1443 9.259e+14 1.132e+15 5.579e+10 4.011e+15

Dogecoin Price 1443 0.002 0.002 0.000 0.016

Hashrate 1443 8.488e+13 1.097e+14 9.600e+11 4.422e+14

Ethereum Price 1443 205.027 255.812 0.444 1356.000

Hashrate 1443 1.012e+14 1.033e+14 5.138e+10 2.959e+14

Feathercoin Price 1443 0.060 0.095 0.003 0.612

Hashrate 1443 2.619e+09 2.591e+09 31,340,743.000 1.335e+10

Litecoin Price 1443 50.439 61.222 2.696 352.799

Hashrate 1443 1.019e+14 1.287e+14 9.706e+11 4.742e+14

Monero Price 1443 71.068 88.909 0.369 439.391

Hashrate 1443 2.454e+08 2.640e+08 9,946,912.000 1.075e+09

Namecoin Price 1443 1.004 0.949 0.174 7.442

Hashrate 1443 1.317e+19 1.534e+19 8.562e+16 6.487e+19

Novacoin Price 1443 2.030 2.048 0.378 11.354

Hashrate 1443 1.568e+11 1.610e+11 1.072e+10 9.714e+11

Peercoin Price 1443 1.098 1.166 0.211 9.118

Hashrate 1443 1.511e+16 1.195e+16 7.960e+14 5.881e+16

Reddcoin Price 1443 0.002 0.003 0.000 0.029

Hashrate 1443 5.996e+09 2.785e+09 1.628e+09 1.686e+10

Vertcoin Price 1443 0.894 1.607 0.019 9.386

Hashrate 1443 7.207e+11 1.069e+12 4.026e+09 5.427e+12

Total Price 18,759 336.790 1476.382 0.000 19,401.000

Hashrate 18,759 2.380e+18 8.947e+18 9,946,912.000 7.261e+19
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financial markets (Bouri et al. 2019; Mensi et al. 2019; Thies and Molnár 2018; Palamalai 
et al. 2021). Hence, we addressed these breaks in the model.

We noted that both Price and Hashrate series follow a stationary process for the 
whole period 7/31/2015–7/12/2019 and its subperiods (divided by 12/17/2017) after 
considering potential external shocks. This reflects the existence of external shocks, 
and the common price bubbles in December 2017 do not affect the series’ stationarity. 
We found that both Price and Hashrate for each cryptocurrency were stationary in 
each subperiod, suggesting that daily shocks do not affect the mean-reverting behav-
iors of Price and Hashrate. This implies that price and network hashrate show sta-
ble growth trends in the cryptocurrency market after considering breaks. Our results 
corroborated Bariviera (2017), Sensoy (2019), López-Martín et  al. (2021) and Kang 
et al. (2022) who support the argument that the cryptocurrency market has become 
more efficient over time. Charfeddine and Maouchi (2019), Lahmiri et  al. (2018), 
Aggarwal (2019), and Aharon and Qadan (2019) also found persistence in several 
cryptocurrency market through ordinary least squares and generalized autoregres-
sive conditional heteroskedasticity models but may have neglected the disturbance 
of structural breaks. Bai and Perron (2003) note that structural breaks can result in 
misleading results relative to stationarity. Owing to peer-to-peer transactions and 
anonymous trading (Fang et al. 2022), fluctuations in the cryptocurrency market are 
drastic. Applying digital technologies and machine learning approaches in crypto-
currency trading also leads to frequent price jumps for cryptocurrencies (Wang et al. 
2022b; Sebastião and Godinho 2021). Hence, structural breaks exist in the cryptocur-
rency market. Additionally, our results showed the importance of structural breaks in 
testing the stationarity of cryptocurrency.

Table 3 presents the effects of structural breaks on the inherent trend (intercepts) 
for Price and Hashrate over the full subperiod. For Price, while 3/13 cryptocurrencies 
exhibited insignificant breakpoint effects, most cryptocurrencies experienced struc-
tural change induced by external shocks (e.g., government claims on cryptocurrency 
or production mechanism changes). Ethereum witnessed a positive external shock in 
its price series on February 11, 2016 owing to the upcoming birth of the new version 

Fig. 2 Price evaluation of 13 cryptocurrencies. Notes: We choose the price of each cryptocurrency on the first 
day of each month to represent the monthly price. Daily data are used in the remaining parts of this paper
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“Homestead” in the second hard fork of Ethereum. Moreover, Dash enjoyed a sharp 
price growth on April 9, 2017 owing to cooperation between Dash and digital pay-
ments service BlockPay and speculative activity. Additionally, Bitcoin’s price experi-
enced a negative shock on April 9, 2017, which is accompanied by the People’s Bank 
of China’s declaration that Bitcoin is not a circulated currency but a commodity (Su 
et  al. 2018). Of the 10 cryptocurrencies with significant shocks, 40% and 60% wit-
nessed negative and positive shocks, respectively. Therefore, most cryptocurrencies 
remain on the way toward transaction growth.

Additionally, only 23% of the cryptocurrencies explored (Dogecoin, Peercoin, and 
Reddcoin) experienced significant external shocks in the Hashrate series, includ-
ing 2 negative shocks and 1 positive shock. Hence, Price series are more affected by 
external shocks versus Hashrate series. This may be because large speculative demand 
induced structural breaks for Price, while stable supply mechanism of coin produc-
tion created less Hashrate fluctuation. Another interesting phenomenon is that most 
external shocks are in 2017, which witnessed price co-explosivity in the cryptocur-
rency market (Bouri et al. 2019).

After confirming the existence of stationary and external shocks, we next checked 
sources of common shocks and specific shocks using the recent developed PANICCA 
test (Reese and Westerlund 2016). PANICCA can help explore the underlying sources 
of non-stationarity and has been applied to various studies (e.g., efficient market 
hypothesis) (Hu et al. 2019), energy economics (Feng et al. 2021), and financial eco-
nomics (Salisu 2019). Table 4 displays sources of external shocks wherein the exter-
nal shock for the Price series changes at different times. The external effect mainly 
originates from cryptocurrency-specific shocks before December 17, 2017 and from 
both common and specific shocks after December 17, 2017. Hence, common shocks 
are becoming more prominent in external shocks for the Price series (Beneki et  al. 
2019; Bouri et al. 2019). For Hashrate, external shocks always originate from specific 
shocks. Hence, cryptocurrency mining behavior is less affected by the market’s com-
mon shocks and participants in the market have helped maintain the growth trend.

Comovement relationship between transaction behaviors and electricity consumption

Once the stationarity of a series is confirmed, the comovement relationship should be 
explored. A cryptocurrency with a high price tends to have a larger network hashrate 

Table 4 Sources of external shock: PANICCA test

*, ** and *** show significance at the 10%, 5% and 1% levels, respectively

Samples Variable Common factors Idiosyncratic component

ADF Pap Pbp PMSBp

Before 2017/12/17 Price − 16.985*** 0.110 0.126 0.838

Hashrate − 23.010*** − 3.020 − 1.820 − 1.510

Full sample Price 12.934 − 5.173*** − 3.28*** − 2.076**

Hashrate − 28.528*** − 0.232 − 0.224 − 0.211

After 2017/12/17 Price 4.108 0.620 0.688 0.763

Hashrate − 23.154*** − 5.861 − 3.465 − 2.005
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and market capitalization on July 12, 2019, implying that Price and Hashrate are likely 
to positively correlate (Table 1). For example, Bitcoin was priced at $11,583 and had 
the largest day-average network hashrate of 67.36 exahashes per second. Conversely, 
Reddcoin had a lower price at $0.002 and a network hashrate of 6.43 gigahashes per 
second. Overall, in our examined period, Price seems to positively correlate with 
Hashrate. Hence, Price fluctuations are accompanied by Hashrate changes during 
2015–2019, and Price has a comovement trend with Hashrate.

Given the existence of external shocks, the above controversial findings may be 
biased. Thus, we consider external shocks in our comovement analysis. Table 5 shows 
that Price tends to co-move with Hashrate in the full sample, and two subsamples 
once potential external shocks are considered. In the full sample, most break dates 
(10 out of 13) are found in March 2017–December 2017. This period corresponds to 
the passing of the law recognizing Bitcoin as an official payment method in April 2017 
for Japan, increased attention to cryptocurrencies, and Bitcoin’s hard fork in July 2017 
(Bouri et  al. 2019). Moreover, we also see that a comovement relationship between 
Price and Hashrate is affected by common shocks for all cryptocurrencies. Notably, 
the break date for Bitcoin is December 16, 2017, which is close to December 17, 2017 
when the price of Bitcoin hits its historical peak. This reflects that the comovement 
relationship between Price and Hashrate for Bitcoin is affected by external shocks.

For the period before December 17, 2017, break dates concentrate over March 2017 
to May 2017, which coincides with explosive prices in some cryptocurrencies. For 
instance, Litecoin and Dash experienced significant price surges in April 2017. For the 
period after December 17, 2017, break dates are distributed dispersedly, correspond-
ing to weaker interdependence among cryptocurrencies. Similar findings suggest 
that the break date is close to the date wherein prices change sharply. One example 
involves Bitcoin’s price drop on November 11, 2018 and the break date on November 

Table 5 Banerjee and CIS (2015) Panel cointegration test

Panel bayesian information criterion is used to estimate the common factor

***Shows significance at the 1% levels

Cryptocurrency Price-Hashrate

Samples Full sample Before 2017/12/17 After 2017/12/17

Panel test − 5.898** 3.898*** 4.754***

Bitcoin 2017/12/6 2017/5/3 2018/11/24

Blackcoin 2017/6/8 2017/6/8 2018/12/11

Dash 2017/3/1 2017/3/1 2018/8/27

Dogecoin 2017/5/20 2016/1/26 2018/8/31

Ethereum 2016/6/17 2016/6/17 2018/9/5

Feathercoin 2016/4/17 2016/4/16 2018/6/23

Litecoin 2017/12/11 2017/3/29 2019/4/2

Monero 2016/8/27 2016/8/27 2018/11/24

Namecoin 2017/3/12 2017/3/12 2018/12/6

Novacoin 2017/9/15 2017/3/15 2018/8/24

Peercoin 2017/11/28 2017/5/3 2018/11/14

Reddcoin 2017/5/21 2017/5/21 2018/8/31

Vertcoin 2017/4/9 2016/1/26 2019/2/16
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24, 2018. This indicates that when predicting Price or Hashrate, market investors 
should note possible market changes even if a valid comovement relationship exists 
between transaction behavior and electricity consumption.

Our results on the comovement between cryptocurrency transaction behaviors and 
electricity consumption are partly in line with Hayes (2017), Fantazzini and Kolodin 
(2020) and Mueller (2020). Hayes (2017) showed that hashrate has a positive effect 
on price. Mueller (2020) found that Bitcoin miners only responded to negative dis-
equilibria, while Ethereum miners react to disequilibria symmetrically. Fantazzini 
and Kolodin (2020) state that the Bitcoin price cointegrated with the hash rate during 
11/12/2017–24/02/2020 but did not connect with hashrate before 4/12/2017. How-
ever, these studies do not consider breaks. With the inclusion of breaks, we confirm a 
cointegrated relationship between cryptocurrency transaction behaviors and electric-
ity consumption, complementing current literature.

Short-term and long-term causal effects

Price tends to co-move with Hashrate during the study’s time period, which means that 
there is an equilibrium relationship between the two over a long time. That is, once 
external regime shifts bring a shock or bias to the Price–Hashrate nexus, the equilibrium 
will correct this bias and induce it to converge to zero over time. Simultaneously, daily 
short-run price fluctuations change the profits of mining cryptocurrencies and network 
hashrates, and vice versa. Hence, as Price and Hashrate are interdependent, they tend to 
present a significant dynamic relationship, whether for a day or for a long time.

Table 6 shows the interaction between Price and Hashrate in the short run with daily 
shocks and long-run persistent influences. In the short run, Price significantly affects 
Hashrate in the full sample and the two subsamples. Hence, Price fluctuations lead to 
daily shocks on Hashrate. However, in all samples, the causal effect of Hashrate on Price 
is insignificant in the short run. Thus, Hashrate changes do not critically determine 
daily Price fluctuations. These results are consistent with Fantazzini and Kolodin (2020) 
and Rehman and Kang (2021) who find unidirectional causality from Bitcoin price to 
hashrate.

Table 6 The causal effect between price and hashrate

*, ** and *** show significance at the 10%, 5% and 1% levels, respectively

Dependent variable Short run Long run

ΔPrice ΔHashrate λ λ/ΔPrice λ/ΔHashrate

Full sample

 ΔPrice 1.86 − 0.001 1.25

 ΔHashrate 104.95*** 0.001** 72.31***

Before 2017/12/17

 ΔPrice 0.95 0.00001 0.63

 ΔHashrate 91.32*** 0.0005** 63.22***

After 2017/12/17

 ΔPrice 2.21 − 0.00004 1.50

 ΔHashrate 14.03*** 0.00003 9.37***
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When turning to the long run with the permanent case, Price has a significant causal 
effect on Hashrate in the full sample and subperiod before December 17, 2017. This 
reflects that price shocks result in a permanent effect on network hashrates. Neverthe-
less, causal effects of Price on Hashrate disappear in the subperiod after December 17, 
2017. Thus, Hashrate is gradually less affected by Price. Additionally, the causal effects of 
Hashrate on Price do not appear long term. This implies that shocks from Hashrate on 
Price gradually vanish and prices eventually return to their permanent equilibrium level.

Discussion and conclusion
Unprecedented transactions on growth and market capitalization in the cryptocurrency 
market along with the possibility of considerable profit have increased the interests of 
financial investors, mainstream media, speculators, and regulators on cryptocurren-
cies. Hence, understanding the underlying driving forces of cryptocurrency transac-
tion dynamics has attracted greater attention from academia.2 Possible macroeconomic, 
technological, or other influential factors including internet search queries, gold prices, 
financial stress, hashrate, and trade volume have been explored (Kristoufek 2013, 2015). 
We contribute to this strand of literature by investigating the interactive relationship 
between electricity consumption and cryptocurrency transactions dynamics. We prove 
that electricity consumption to transaction behaviors do not have a causal direction, 
regardless of daily or longer time periods and network hashrates failing to drive crypto-
currency prices. However, transaction behavior comoves with electricity consumption 
under possible external shocks in the long term, helping investors or regulators predict 
future transactions trends by noting electricity consumption under the sign of common 
market shocks.

Moreover, we show that transaction behaviors have causal impact on electricity con-
sumption for both daily and longer time periods. Hence, electricity consumption do not 
solely respond to daily transactions changes, but their impacts evolve into persistent 
shocks. As electricity consumption is closely associated with energy consumption and 
greenhouse gas emissions (Chai et al. 2022; Ren et al. 2022; Xue et al. 2022; ), environ-
mental organizations and governments should prioritize the promoting effect of crypto-
currency prices on these two (Luo et al. 2022; Hao et al. 2023). Notably, many studies in 
the literature argue that cryptocurrency mining consumes much electricity and gener-
ates considerable  CO2 emissions (Foteinis 2018; Krause and Tolaymat 2018; Mora et al. 
2018; Stoll et  al. 2019). As transaction behaviors exert persistent effects on electricity 
consumption and lead to environmental costs, regulators should revisit their attitudes 
toward cryptocurrency development.

Our results contain implications for developing market investment strategies. Over-
all, cryptocurrency transactions return to their equilibrium trend in the long term after 
facing temporary shocks, and the price series show mean-reverting behavior. While 
external shocks may exist in price series, structural breaks are short-lived and do not 
affect the stationary characteristics. Stationarity implies that market participants (e.g., 
cryptocurrency miners or speculators) have a limited role in determining price trends. 

2 Xu et al. (2019) provide a systematic review on research progress in blockchain and cryptocurrency.
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Thus, market investors need not adjust their investment excessively after daily shocks or 
weekly shocks. Moreover, market investors could use such hidden information to con-
struct a strategy to obtain more profits.

Future research can employ other advanced methodologies to identify the cointegra-
tion nexus of cryptocurrency electricity consumption and price (Ferreira et al. 2020). A 
detrended cross-correlation analysis can identify integration for nonstationary series 
(Ferreira et al. 2016). Detrending moving-average cross-correlation analysis can also pre-
sent the correlation for possible nonstationary series (Kristoufek 2014). As Demir et al. 
(2020) found a cointegration between cryptocurrencies and COVID-19  (Wang et  al. 
2021; Long et al. 2022), investigating the effect of COVID-19 on cointegration between 
cryptocurrency electricity consumption and price would be of interest.
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