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Abstract 

In the nonparametric data envelopment analysis literature, scale elasticity is evaluated 
in two alternative ways: using either the technical efficiency model or the cost effi-
ciency model. This evaluation becomes problematic in several situations, for example 
(a) when input proportions change in the long run, (b) when inputs are heterogene-
ous, and (c) when firms face ex-ante price uncertainty in making their production 
decisions. To address these situations, a scale elasticity evaluation was performed using 
a value-based cost efficiency model. However, this alternative value-based scale elastic-
ity evaluation is sensitive to the uncertainty and variability underlying input and output 
data. Therefore, in this study, we introduce a stochastic cost-efficiency model based 
on chance-constrained programming to develop a value-based measure of the scale 
elasticity of firms facing data uncertainty. An illustrative empirical application to the 
Indian banking industry comprising 71 banks for eight years (1998–2005) was made 
to compare inferences about their efficiency and scale properties. The key findings 
are as follows: First, both the deterministic model and our proposed stochastic model 
yield distinctly different results concerning the efficiency and scale elasticity scores at 
various tolerance levels of chance constraints. However, both models yield the same 
results at a tolerance level of 0.5, implying that the deterministic model is a special case 
of the stochastic model in that it reveals the same efficiency and returns to scale char-
acterizations of banks. Second, the stochastic model generates higher efficiency scores 
for inefficient banks than its deterministic counterpart. Third, public banks exhibit 
higher efficiency than private and foreign banks. Finally, public and old private banks 
mostly exhibit either decreasing or constant returns to scale, whereas foreign and new 
private banks experience either increasing or decreasing returns to scale. Although the 
application of our proposed stochastic model is illustrative, it can be potentially applied 
to all firms in the information and distribution-intensive industry with high fixed costs, 
which have ample potential for reaping scale and scope benefits.
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Introduction
Performance analysis of multi-product firms has been conducted using several eco-
nomic concepts, such as economies of scale (returns to scale), economies of scope, 
and marginal rates of technical substitutions. However, this study concentrates on the 
determination and measurement of returns to scale, as it has important implications for 
policy design and industry regulation. Scale elasticity is a quantitative measure of the 
returns-to-scale characterization of a firm1 operating on the production frontier, and is 
used to determine improvement or deterioration in productivity by resizing their scales 
of operation.

In the literature, there are two analytical approaches to the empirical estimation of 
scale elasticity: the neoclassical and axiomatic approaches (Färe et al. 1988). While the 
former is usually estimated using parametric techniques such as stochastic frontier anal-
ysis (SFA), the latter is estimated nonparametric via data envelopment analysis (DEA). 
However, DEA2 has distinct advantages over stochastic frontier estimation (Sahoo and 
Tone 2022). First, DEA avoids the choice of specific functional forms and the choice 
of the stochastic structure, which the stochastic frontier approach suffers from due to 
which it can confound the effects of misspecification of functional form with scale econ-
omies (Fusco et al. 2018; Sahoo and Acharya 2010; Sahoo et al. 2017; Sahoo and Gstach 
2011). Second, contrary to the general belief, DEA is a full-fledged statistical methodol-
ogy based on the characterization of firm efficiency as a stochastic variable. DEA esti-
mators have desirable properties and provide a basis for constructing a wide range of 
formal statistical tests (Banker 1993; Banker and Natarajan 2004; Banker et  al. 2022). 
Third, DEA reflects individual firm efficiency or inefficiency, which is particularly con-
venient for managerial decision making.

In the DEA literature, both qualitative and quantitative approaches are used to evalu-
ate the returns-to-scale characterization of firms. While the former deals with the iden-
tification of the types of returns to scale (i.e., increasing, decreasing, or constant), the 
latter deals with the computation of scale elasticity (Førsund 1996; Sahoo et  al. 1999, 
2012; Tone and Sahoo 2003, 2004; Podinovski et  al. 2009; Sahoo and Sengupta 2014; 
Sahoo and Tone 2015). Most studies that apply bespoke computational methods to 
evaluate scale economies are confined to specific DEA technologies under the constant 
returns to scale (CRS) specification of Charnes et  al. (1978) and the variable returns 
to scale (VRS) specification of Banker et  al. (1984). However, there is a large class of 
polyhedral technologies that include CRS and VRS technologies with production trade-
offs and weight restrictions (Tone 2001; Atici et al. 2015; Podinovski 2004a; 2007, 2015, 
2016), and weak and managerially disposable technologies (Kuosmanen 2005; Kuos-
manen and Podinovski. 2009), hybrid returns to scale (Podinovski 2004b), technology 
with multiple component processes (Cook and Zhu 2011; Cherchye et  al. 2013, 2015, 

1 The concepts—‘firm’, ‘decision-making unit, DMU’, and ‘production unit’—are used synonymously in this paper. How-
ever, they are conceptually different. The concept of a firm is much broader as it includes not only the technology of the 
production unit but also the entire gamut of organization, management, learning by doing, reorganization of inputs, and 
other capabilities of the firm.
2 DEA (Charnes et  al. 1978; Banker et  al. 1984) has also been widely used in various application areas, inter alia, 
economic efficiency performance of countries (Koengkan et  al. 2022), resource and energy efficiency of countries 
(Kazemzadeh et al. 2022), human development index (Despotis 2005; Lozano and Gutierrez 2008), and strategy (Saen 
and Azadi 2009). See Emrouznejad et al. (2008) for an excellent survey on the scholarly literature on the evaluation of 
research in efficiency and productivity.
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2016), and network technologies (Sahoo et al. 2014a, b), etc. See Podinovski et al. (2016) 
for a discussion of scale elasticity evaluation using a more general methodology.

Scale elasticity evaluation was also performed using the cost efficiency model of Färe 
et al. (1985) (Sueyoshi 1997; Tone and Sahoo 2005, 2006). The use of this model requires 
that input prices are exogenously given and measured with full certainty. However, in 
real-life situations, input prices are not exogenous but vary according to the actions of 
firms (Sahoo and Tone 2013). In addition, firms often face ex-ante price uncertainty3 
when making production decisions (Camanho and Dyson 2005). Furthermore, input 
prices are synthetically constructed and hence represent average prices. Since decisions 
are made at the margin, the measure of allocative efficiency based on average prices 
can be distorted (Fukuyama and Weber 2008). Finally, the cost efficiency measure of 
Färe et al. (1985) reflects only input inefficiencies, but not market (price) inefficiencies 
(Camanho and Dyson 2008).4 Therefore, to account for both input and market ineffi-
ciencies, Tone’s (2002) alternative cost-efficiency model can be used. Furthermore, the 
use of this value-based technology is more appropriate for computing the scale elastic-
ity scores of real-life firms in several situations, for example (a) when input proportions 
change in the long run, (b) when inputs are heterogeneous, and (c) as the cost can be 
more easily related to economies of scale and size-specific costs due to indivisibility.

Scale elasticity evaluation in DEA has thus far been made using only deterministic 
technologies. These technologies were developed based on the premise that the inputs 
and outputs are precisely measured. However, in real-life situations, general produc-
tion processes are often stochastic,5 and the concepts of efficiency and scale elasticity 
are inextricably related to how firms deal with uncertainty underlying stochastic inputs 
and outputs. Therefore, when there are variations in inputs and outputs owing to uncer-
tainty, the evaluation of efficiency and scale elasticity in a deterministic DEA setting 
becomes sensitive to such variations. Consequently, one expects to observe whether the 
efficiency and returns-to-scale characteristics of firms are subject to change in this sto-
chastic environment.

To account for random variations in inputs and outputs underlying any production 
process, several authors (Banker and Morey 1986; Cooper et al. 2004, 2011, 1996, 1998; 
Jess et al. 2001; Lamb and Tee 2012; Olesen 2006; Sengupta 1990) have considered vari-
ous approaches in DEA setting to compute efficiency. Sengupta (1982) and Cooper et al. 
(1996) were the first to introduce the theory of chance constraints in DEA to formu-
late an efficiency evaluation for firms. This formulation was later extended by several 
scholars (Sengupta and Sfeir 1988; Land et al. 1993, 1994; Li 1995a, b, 1998; Olesen and 
Petersen 1995, 2000; Grosskopf 1996; Morita and Seiford 1999; Huang and Li 2001; 
Kao and Liu 2014; Wei et al. 2014). Cooper et al. (2011), Simar and Wilson (2015), and 

3 Even Farrell (1957) cautioned against the use of prices in determining the economic efficiency behavior of firms due to 
fluctuations in demand and prices (Sengupta 2000).
4 For a detailed account of how this cost efficiency measure is of limited use in real-life applications, c.f., inter alia, 
Fukuyama and Weber (2004); Camanho and Dyson (2008), Park and Cho (2011), and Sahoo et al. (2014a, b, c).
5 The stochastic production relationship in a DEA setting may arise in different situations, for example, when stochastic 
variations in inputs and outputs affect the production frontier; when inputs and outputs are faced with stochastic prices 
while measuring allocative efficiency; when the slacks obtained from the DEA efficiency frontier are analyzed in terms 
of their statistical distribution; when an economic method is applied to estimate the stochastic production frontier; etc. 
(Sengupta 1982, 1987, 1990).
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Olesen and Petersen (2016) provided extensive reviews of the development of various 
stochastic DEA models.

To the best of our knowledge, no studies in the DEA literature has dealt with the esti-
mation of scale elasticity using a technology setup that allows such stochastic variations 
in the data. Therefore, in this study, we focus on the estimation of scale elasticity when 
inputs and outputs are uncertain in stochastic form. The existence of random changes in 
the data permits the prediction of changes in the inputs and outputs. Because determin-
istic programs are sensitive to such variations, we need the technique of chance-con-
strained (CC) programming6 (see Charnes and Cooper (1959, 1962, 1963) for its early 
developments) because this method can potentially deal with the cases in which the con-
straints–the minimal (maximal) inputs (outputs)–are required to be no more (less) than 
the actual inputs (outputs) may be violated, but not too frequently. Although stochastic 
variation around the production function is allowed, most observations must fall below 
it.

To set up value-based measures of efficiency and scale elasticity, first, we formulate, 
using the CC-programming method, the stochastic version of the alternative cost effi-
ciency model of Tone (2002), which is essentially a quadratic model. Second, we set up 
a deterministic equivalent of the stochastic quadratic model. Third, with the help of a 
one-factor assumption, we converted this deterministic quadratic model into a linear 
model using the goal programming theory of Charnes and Cooper (1977). Fourth, we 
solved this linear model to compute the value-based efficiency scores of firms at pre-
determined tolerance levels of chance constraints. Finally, we set up the dual of this lin-
ear model to compute the value-based scale elasticity scores of firms at these tolerance 
levels.

The method employed to convert the quadratic model into a linear model is based on a 
simplified single-factor assumption, which has long been used in economics. This single-
factor assumption is extremely convenient for finding solutions but requires some addi-
tional assumptions that the correlation coefficient between any two stochastic inputs/
outputs and between input and output for any firm is always 1 (Kao and Liu 2019). Thus, 
there is a tradeoff between a quadratic (nonlinear) model, which is inconvenient to solve, 
and a linear model, which is easy to solve but requires some additional assumptions. 
However, we believe that this perfect correlation assumption between inputs/outputs is 
certainly important as it helps convert a quadratic model into a linear one, which not 
only removes the inconveniences associated with solving a quadratic model, but also 
helps compute the scale elasticity scores of firms using its dual.

To demonstrate the ready applicability of our proposed model, we exhibited an illustra-
tive empirical application wherein we employ Indian banking data, which was used ear-
lier by Sahoo and Tone (2009a, b). It is important to investigate the extent of economies 
of scale in the banking industry in general, and the banking industry of a fast-growing 

6 Alternatively, one may consider using the semi-parametric stochastic frontier analysis (SFA) approach. The advantage 
of using this approach over the chance-constrained DEA (CC-DEA) approach is that it has a solid statistical founda-
tion. However, the underlying problem here is that it is not well suited to accommodate the firm-specific distributions 
of noise and inefficiency, due to which the results may not be useful from an individual decision-making point of view 
in the short run. The CC-DEA approach, on the other hand, accommodates measurement error and management inef-
ficiency in the technology by replacing the observed inputs and outputs with the firm-specific distributions of inputs 
and outputs.



Page 5 of 36Amirteimoori et al. Financial Innovation            (2023) 9:31  

economy like India, in particular. The banking industry is technology-driven, and tech-
nical progress is scale augmenting (Berger 2003). The evaluation of scale economies in 
India’s banking industry during the post-reform period from 1998 to 2005 is considered 
important because this exercise has important implications for policy design and regu-
lation due to changing regulatory environments and different ownership types (public, 
private, and foreign). The Indian financial sector had initially been operating in a closed 
and regulated environment until 1992 and then underwent a radical change during the 
nineties. To promote the efficiency and profitability of banks, in 1991–92 the Reserve 
Bank of India (RBI) initiated a process of liberalization through various reforms such 
as entry deregulation, branch de-licensing, deregulation of interest rates, allowing pub-
lic banks to raise their equity in the capital markets, gradual reduction in cash reserve 
ratio, statutory liquidity ratio, and relaxation of several restrictions on the composition 
of their portfolios. All of these have given rise to heightened competitive pressure in the 
banking industry. In this scenario, we believe that banks were in the pursuit of enlarging 
their size using available scale economies to enhance their asset base and profit to cre-
ate systemic financial efficiency and shareholder value. Furthermore, the introduction 
of several reform measures and technological advances has put the banking industry in 
a more challenging and volatile position, making the underlying bank production pro-
cesses stochastic. In this environment, following Shiraz et al. (2018), stochasticity in the 
inputs and outputs is first introduced, and our proposed stochastic efficiency model is 
then applied to these stochastic input–output data to produce valid efficiency and scale 
elasticity estimates.

In our empirical illustration, we examine the efficiency and returns-to-scale charac-
teristics of banking in India across three ownership types: public, private, and foreign. 
This enables us to investigate the economic linkage between ownership and efficiency 
performance by considering the property rights hypothesis (De Alessi 1980) and public 
choice theory (Levy 1987; Niskanen 1975). According to the property rights hypothesis, 
private enterprises should perform more efficiently than public enterprises because of 
the strong link between the markets for corporate control and the efficiency of private 
enterprises. While this argument may apply more to developed countries, testing for 
efficiency differentials across ownership types in the banking industry of a developing 
country such as India can yield insights into the success of the reform process.

Although our current empirical application to Indian banking is illustrative, our pro-
posed chance-constraint efficiency model can potentially be applied to analyze the 
efficiency and scale properties of many real-life firms whose underlying production 
processes are stochastic. Examples of these firms can be found in many industries, for 
example agriculture, where unpredictability in weather makes the input–output rela-
tionship stochastic; manufacturing industries, where firms face considerable variation in 
the quality of their inputs and outputs produced; product development industries, where 
firms face uncertainty regarding their new designs; and high-technology industries, 
where firms face hyper (dynamic) completion in the new (Internet) economy.

Finally, Fig. 1 depicts the conceptual framework of our investigation, highlighting both 
the methodological and applied approaches.

The remainder of the paper is organized as follows: “A value-based measure of effi-
ciency and scale elasticity in the deterministic case” section discusses the evaluation of 
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value-based scale elasticity measures in a deterministic DEA technology defined in the 
cost-output space. In “A value-based measure of TE and SE in the stochastic case” sec-
tion, we first set up the stochastic version of Tone’s (2002) value-based cost efficiency 
model and then propose its transformation in a deterministic setting for the computa-
tions of value-based measures of efficiency and scale elasticity scores. “The illustrative 
empirical application” section demonstrates an illustrative empirical application of our 
proposed stochastic efficiency model to data on 71 banks in India. “Discussions” section 
presents a discussion of the results. Finally, we conclude with remarks in “Concluding 
remarks” section, followed by the limitations of our study and future recommendations.

A value‑based measure of efficiency and scale elasticity in the deterministic 
case
We suppose there are n firms to be evaluated and each firm uses m inputs to produce 
s outputs. Let xj =

(
x1j , ..., xmj

)T
∈ R

m
≥0 and yj =

(
y1j , ..., ysj

)T
∈ R

s
≥0 be the input and 

output vectors of firm j , respectively, wj =
(
w1j , ...,wmj

)
∈ R

m
≥0 be its unit price vector, 

and J  be the index set of all firms, that is, J = {1, ..., n} . We set up a value-based technol-
ogy (TV ) set as

where cj =
∑m

i=1 wijxij . The � = (�1, �2, . . . , �n) is an intensity vector of dimension n.
To produce the output vector βyo by firm o , its value-based measure of technical effi-

ciency (TE) ,   α(β) is defined as

β is a user-defined value that reflects the proportional output change, and α(β) is 
defined for all β ∈ [0, β̂] , where β̂  is the largest proportion of the output vector yo found 
in units of technology TV .

Based on the definition in (2), α(β) can be determined using the following linear pro-
gram (LP):

s.t.  
∑n

j=1 �jcj ≤ αco, 
∑n

j=1 �jyrj ≥ βyro(∀r), 
∑n

j=1 �j = 1,  �j ≥ 0
(
∀j
)
, andα : free.

Program (3) was used to identify explicit real peer units for each unit under evaluation. 
As previously stated, � = (�1, �2, . . . , �n) is an intensity vector in which each �j shows the 
effect of DMUj on constructing the peer unit for DMUo under evaluation.

The dual formulation of the program (3) can be set up as

s.t. 
∑s

r=1 uryrj − vcj + ω0 ≤ 0, vco = 1, v,u ≥ 0.

Based on program (4) for firm o , we derive its transformation function as

(1)TV = c, y
T
|

n

j=1

�jcj ≤ c,

n

j=1

�jyrj ≥ yr(∀r),

n

j=1

�j = 1, � ≥ 0 ,

(2)α(β) = min{α|
(
αco,βyo

)
∈ TV }.

(3)α(β) = minα

(4)α(β) = max β

s∑

r=1

uryro + ω0
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We assume that the transformation function (5) is differentiable. Differentiating (5) 
with respect to β yields.

In the spirit of Panzar and Willig (1977), Baumol et al. (1982), and Banker et al. (2004), 
we define the value-based scale elasticity (SE) measure of firm o , ε

(
α(β)co,βyo

)
 as the 

ratio of its marginal utilization of input ∂α(β)
∂β

 to its average utilization of input α(β)
β

 . In 
other words,

If the firm o is technically efficient, we have β = α(β) = 1 and ε
(
co, yo

)
= 1− ωo.

In the immediately following section, we extend these results to the stochastic case.

(5)ψ
(
α(β)co,βyo

)
= β

s∑

r=1

uryro − v(α(β)co)+ ω0 = 0,

∂ψ
(
α(β)co,βyo

)

∂β
=

s∑

r=1

∂ψ
(
α(β)co,βyo

)

∂
(
βyro

) yro +
∂ψ

(
α(β)co,βyo

)

∂(α(β)co)
co
∂α

∂β
= 0,

⇒
∂α(β)

∂β
= −

∑s
r=1

∂ψ(α(β)co,βyo)
∂(βyro)

yro

∂ψ(α(β)co,βyo)
∂(α(β)co)

co

= −

∑s
r=1 uryro

−vco
=

α(β)−ωo
β

vco
=

α(β)−ωo
β

1
=

α(β)− ωo

β

(6)ε
(
α(β)co,βyo

)
=

∂α(β)

∂β
•

β

α(β)
=

α(β)− ωo

β
•

β

α(β)
= 1−

ωo

α(β)

Fig. 1 Conceptual framework
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A value‑based measure of TE and SE in the stochastic case
Stochastic value‑based TE measure

Let x̃j =
(
x̃1j , x̃2j , . . . , x̃Mj

)T
∈ R

m
≥0 and ỹj =

(
ỹ1j , ỹ2j , . . . , ỹSj

)T
∈ R

s
≥0 be the random 

input and output vectors of firm j , respectively. Furthermore, let 
(
x̃j
)
= xj , E

(
ỹj
)
= yj , 

and all random inputs and outputs are jointly and normally distributed. The structure of 
our stochastic value-based technology set (TV (S)) in the CC programming setup is 
related to the technology set employed in the BCC program. TV (S) is the union of confi-
dence regions Dj

(
1− γ j

)
 with a probability level (1− γj) (j = 1, . . . , n) . In other words, 

TV (S) is the union of the input and output values that are probably observed for 
DMUj(j = 1, . . . , n) with probability 1− γ j . Using the axioms of free disposability, 
unbounded rays, convexity, minimal extrapolation, and inclusion of observations within 
confidence regions, TV (S) can be set up as follows:

where ĉj =
∑m

i=1 wijx̂ij and Dj

(
1− γ j

)
 is defined as follows:

where �−1
j  represents the inverse of the variance–covariance matrix of (x̃j , ỹj) . Moreover, 

cj is determined by P
(
χ2
M+S ≤ c2j

)
= 1− γj , and χ2

M+S is the Chi-square random varia-

ble with M + S degrees of freedom.
Inspired by the deterministic value-based TE measure α(β) in program (3), we define 

its stochastic counterpart as the greatest possible radial contraction of c̃o possible in 
TV (S) to produce β ỹo . Mathematically, the stochastic value-based TE measure of firm o 
can be computed by solving Eq. (9), where β is a predefined parameter.

�j ≥ 0
(
∀j
)
, and α : free.

(7)

TV (S) =

��
c, yT

�T
∈ R

1+S
+ |∃

�
x̂Tj , ŷ

T
j

�T
∈ Dj

�
1− γj

�
and �j ≥ 0, j ∈ {1, . . . , n}such that

n�

j=1

�j ĉj ≤ c and

n�

j=1

�j ŷrj ≥ yr(∀r),

n�

j=1

�j = 1





(8)

Dj

(
1− γ j

)
=

{(
x̂T , ŷT

)T
∈ R

M+S
+ |

[(
x̂ − xj

)T
,
(
ŷ− yj

)T ]
�−1

j

[(
x̂ − xj

)T
,
(
ŷ− yj

)T ]T
≤ c2j

}
,

(9)α(β) = minα

(9.1)s.t. P




n�

j=1

�j c̃j ≤ αc̃o


 ≥ 1− γ ,

(9.2)P




n�

j=1

�j�yrj ≥ β�yro


 ≥ 1− γ (∀r),

(9.3)
n∑

j=1

�j = 1,
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In program (9), we used the “E-model” form of the marginal chance-constrained 
DEA program, which was introduced by Cooper et al. (2002) with the help of the BCC 
model of Banker et al. (1984). Therefore, we used two separate probability constraints: 
one for the input cost and the other for the set of outputs.

The objective of program (9) is to measure the stochastic value-based TE of any 
firm o (o = 1, 2, . . . , n) because its input and outputs are all assumed to be stochastic. 
This is achieved by minimizing the contraction factor α under certain input and out-
put constraints. On the input side, there is a chance constraint, that is, the best-prac-
tice (minimum) cost must not exceed the observed cost more than γ% of the time. 
With regard to the output side, there are chance constraints that each observed out-
put must not exceed its maximum by more than γ% of the time. Finally, there is a con-
vexity constraint, that is, the sum of the intensity coefficients equals 1. γ is interpreted 
as the tolerance level for the chance constraint.

In stochastic efficiency program (9), the random inputs and outputs of firm j are 
expressed as follows:

where the error terms aijεijandbrjηrj represent the symmetric disturbances of inputs and 
outputs, respectively, which arise because of factors that are entirely outside the firm’s 
control. Furthermore, εij (∀i) and ηrj (∀r) are all assumed to follow a multivariate normal 
distribution, with zero means, that is, E(εij) = E(ηrj) = 0(∀i, r) , and unity variances, that 
is, Var(εij) = Var(ηrj) = 1(∀i, r) . Then, for each firm j(j = 1, . . . , n) , x̃ij ∼ N

(
xij , a

2
ij

)
 

and ỹrj ∼ N
(
yrj , b

2
rj

)
 , where E(x̃ij) = x

ij
 (∀i) , E(ỹrj) = y

ij
 (∀r) ,  Var(x̃ij) = a2ij (∀i) , and 

Var
(
ỹrj

)
= b2rj (∀r).

The firm-specific symmetric disturbance terms—εij (∀i) and ηrj (∀r) allow the tech-
nology set and its resulting efficiency frontier to vary arbitrarily across firms and cap-
ture the presence of measurement and specification errors, if any, in the data. It is 
also important to note that these errors vary with the confidence level specified by the 
user.

Using the CC-programming theory, Land et al. (1993, 1994) proposed a method to 
transform the stochastic efficiency program (9) into a nonlinear programming (NLP) 
problem. However, solving this NLP problem requires information on a substantial 
number of parameters in the covariance matrix between the input and output compo-
nents. Therefore, to reduce the computational time involved in the estimation of such 
parameters, Cooper et al. (1996) suggested a linearization method using a simplified 
assumption that the components of the inputs and outputs are related only through 
a common relationship with a single factor, which has long been used in economics 
(Sharpe 1963; Kahane 1977; Huang and Li 1996, 2001; Li 1995a, b, 1998; Li and Huang 
1996. Following Cooper et al. (1996), we use this single-factor assumption in our pro-
posed stochastic approach. In other words, x̃ij = xij + aijε(∀i) and ỹrj = yrj + brjε(∀r) 
where ε is a standard normal random variable with mean E(ε) = 0 and a constant 
(finite) standard deviation σ(ε).

The use of the single-factor assumption for linearization is not free. This simplifying 
assumption, as Cooper et al. (1996) rightly pointed out, requires further assumptions 

(10)x̃ij = xij + aijεij(∀i), andỹrj = yrj + brjηrj(∀r),
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in the resulting linear program that the correlation coefficient between any two sto-
chastic inputs/outputs, and between input and output, for any firm j is always 1, that 
is, ρ

(
x̃pj , x̃qj

)
= 1 ( p  = q) , ρ

(
ỹrj , ỹsj

)
= 1 ( r  = s) , and ρ

(
x̃pj , ỹsj

)
= 1 , which may not 

be easy to meet in practical applications. However, we believe that this convenient 
unit correlation coefficient assumption is important as it helps convert an NLP prob-
lem into an LP problem, which not only removes the inconveniences associated with 
solving an NLP problem but also helps one, as we will show later, compute the SE 
behavior of firms using its dual.

Using the single factor assumption, we express, for each firm j ( j = 1, . . . , n) , the con-
straint (9.1) as follows:

Hence, we can see that ̃h ∼ N

(∑n
j=1 �j

(∑m
i=1 wioxij

)
− α

∑m
i=1 wioxio ,

(∑n
j=1 �j

(∑m
i=1 wioaij

)
− α

∑m
i=1 wioaio

)2)
.

Now, consider a new variable z̃ = h̃−E(h̃)
σ
h̃

 that follows a standard normal distribution. 

As per the Central Limit Theorem, we have 

P

(
z̃ ≤

−
(∑n

j=1 �j(
∑m

i=1 wioxij)−α
∑m

i=1 wioxio

)

σ̃

∣∣∣
∑n

j=1 �j(
∑m

i=1 wioaij)−α
∑m

i=1 wioaio

∣∣∣

)
≥ 1− γ . Then, 

�

(
−
(∑n

j=1 �j(
∑m

i=1 wioxij)−α
∑m

i=1 wioxio

)

σ̃

∣∣∣
∑n

j=1 �j(
∑m

i=1 wioaij)−α
∑m

i=1 wioaio

∣∣∣

)
≥ 1− γ . Therefore, using the property of invert-

ibility of �(•) , we have 
−
(∑n

j=1 �j(
∑m

i=1 wioxij)−α
∑m

i=1 wioxio

)

σ̃

∣∣∣
∑n

j=1 �j(
∑m

i=1 wioaij)−α
∑m

i=1 wioaio

∣∣∣
≥ �−1(1− γ ).

Consequently, the deterministic form of Constraint (9.1) is expressed as 
∑n

j=1 �j

(∑m
i=1 wioxij

)
−�−1(γ )

∣∣∣
∑n

j=1 �j

(∑m
i=1 wioaij

)
− α

∑m
i=1 wioaio

∣∣∣ ≤ α
∑m

i=1 wioxio. 

Similarly, Constraint (9.2) can be expressed as ∑n
j=1 �jyrj +�−1(γ )σ̃

∣∣∣
∑n

j=1 �jbrj − βbro

∣∣∣ ≥ βyro(∀r).

Thus, we set up the deterministic version of program (9) as

h̃ =

n∑

j=1

�j

(
m∑

i=1

wiox̃ij

)
− α

m∑

i=1

wiox̃io

=

n∑

j=1

�j

(
m∑

i=1

wio

(
xij + aij ε̃

)
)

− α

m∑

i=1

wio(xio + aioε̃)

=

n∑

j=1

�j

(
m∑

i=1

wioxij

)
+

n∑

j=1

�j

(
m∑

i=1

wioaij ε̃

)
− α

m∑

i=1

wioxio − α

m∑

i=1

wioaioε̃

(11)α(β) = minα

s.t.

n∑

j=1

�j

(
m∑

i=1

wioxij

)
−�−1(γ )

∣∣∣∣∣∣

n∑

j=1

�j

(
m∑

i=1

wioaij

)
− α

m∑

i=1

wioaio

∣∣∣∣∣∣
≤ α

m∑

i=1

wioxio,

n∑

j=1

�jyrj +�−1(γ )σ

∣∣∣∣∣∣

n∑

j=1

�jbrj − βbro

∣∣∣∣∣∣
≥ βyro(∀r),



Page 11 of 36Amirteimoori et al. Financial Innovation            (2023) 9:31  

�j ≥ 0
(
∀j
)
, and α : free.

Program (11) is nonlinear owing to the existence of an absolute function. Using the 
goal programming theory of Charnes and Cooper (1977), we transformed it into a quad-
ratic programming problem.7 To proceed, we use the following transformations:

The existence of two constraints, − p+p− = 0andq+r q
−
r = 0 , in our suggested transfor-

mations makes program (11) non-linear. However, if an LP problem exhibits an optimal 
solution vector, it also has an extreme optimal solution vector in which at least one of the 
variables from ( p+, p−) and (q+r , q−r ) is zero. Hence, the nonlinear constraints p+p− = 0 
and q+r q−r = 0 can be safely ignored. Consequently, using the simplex algorithm, pro-
gram (11) can be solved to find extreme optimal solutions.

Using the above transformations and notations, program (11) is converted into the 
following:

  s.t.
∑n

j=1 �j

(∑m
i=1 wioxij

)
−�−1(γ )σ̃

(
p+ + p−

)
≤ α

∑m
i=1 wioxio,

n∑

j=1

�j = 1,

∣∣∣∣∣∣

n∑

j=1

�j

(
m∑

i=1

wioaij

)
− α

m∑

i=1

wioaio

∣∣∣∣∣∣
= p+ + p−,

n∑

j=1

�j

(
m∑

i=1

wioaij

)
− α

m∑

i=1

wioaio = p+ − p−,

p+p− = 0,

∣∣∣∣∣∣

n∑

j=1

�jbrj − βbro

∣∣∣∣∣∣
= q+r + q−r (∀r),

n∑

j=1

�jbrj − βbro = q+r − q−r (∀r),

q+r q
−
r = 0(∀r).

(12)α(β) = minα

n∑

j=1

�j

(
m∑

i=1

wioaij

)
− α

m∑

i=1

wioaio = p+ − p−,

7 To linearize the non-linear program (11), one can also use the properties of the absolute function.
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�, p+, p−, q+, q− ≥ 0, and α : free.

Stochastic value‑based SE measure

To compute the value-based measure of SE of firm o , we set up the dual program (12) as

For each firm o ∈ {1, . . . , n} , its transformation function is considered as follows:

On differentiation of (14) with respect to β yields

n∑

j=1

�jyrj +�−1(γ )
(
q+r + q−r

)
≥ βyro(∀r),

n∑

j=1

�jbrj − βbro = q+r − q−r (∀r),

n∑

j=1

�j = 1,

(13)α(β) = maxβ

(
S∑

r=1

(uryro + µrbro)

)
+ ω0

s.t.

S∑

r=1

(
uryrj + µrbrj

)
−

m∑

i=1

wio

(
vxij − ϑaij

)
+ ω0 ≤ 0

(
∀j
)
,

m∑

i=1

wio(vxio − ϑaio) = 1,

�−1(γ )v − ϑ ≤ 0,

�−1(γ )v + ϑ ≤ 0,

�−1(γ )

S∑

r=1

ur −

S∑

r=1

µr ≤ 0,

�−1(γ )

S∑

r=1

ur +

S∑

r=1

µr ≤ 0,

v,u ≥ 0,ϑ ,µ,ω0 : free.

(14)

ψ
(
α(β)xo,α(β)ao,βyo,βbo

)
≡ β

S∑

r=1

(
uryro + µrbro

)
−α(β)

m∑

i=1

wio(vxio − ϑaio)+ω0 = 0
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The (input-oriented) value-based measure of SE of firm o can then be obtained as follows:

Because DEA technologies are not smooth at vertices, we face multiple optimal values for 
ω0 . Therefore, to compute the maximum (minimum) value of ω0 for firm o , we set the fol-
lowing program.

(15)

∂ψ(·)

∂β
=

s∑

r=1

∂ψ(.)

∂
(
βyro

)yro +
s∑

r=1

∂ψ(·)

∂(βbro)
bro +

m∑

i=1

∂ψ(.)

∂(αxio)
xio

∂α

∂β
+

m∑

i=1

∂ψ(.)

∂(αaio)
aio

∂α

∂β
= 0,

⇒
∂α

∂β
= −

∑s
r=1

∂ψ(·)
∂(βyro)

yro +
∑s

r=1
∂ψ(·)
∂(βbro)

bro
∑m

i=1
∂ψ(·)
∂(αxio)

xio +
∑m

i=1
∂ψ(·)
∂(αaio)

aio

= −

∑s
r=1 uryro +

∑s
r=1 µrbro

−
∑m

i=1 vwioxio +
∑m

i=1 ϑwioaio

=
α(β)

∑m
i=1 wio(vxio − ϑaio)− ω0

β
=

α(β)− ω0

β

(16)ε(γ ) =
∂α(β)

∂β

β

α(β)
=

α(β)− ω0

β

β

α(β)
=

α(β)− ω0

α(β)

(17)ω+
0

(
ω−
0

)
= max(min)ω0

s.t.β

(
S∑

r=1

(uryro + µrbro)

)
+ ω0 = α(β),

S∑

r=1

(
uryrj + µrbrj

)
−

m∑

i=1

wio

(
vxij − ϑaij

)
+ ω0 ≤ 0, (∀j �= o)

m∑

i=1

wio(vxio − ϑaio) = 1,

�−1(γ )v − ϑ ≤ 0,

�−1(γ )v + ϑ ≤ 0,

�−1(γ )

S∑

r=1

ur −

S∑

r=1

µr ≤ 0,

�−1(γ )

S∑

r=1

ur +

S∑

r=1

µr ≤ 0,

v,u ≥ 0, ϑ ,µ,ω0 : free.
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Using the optimal values of program (17), the (input-oriented) right- and left-hand 
value-based SE scores of firm o can be calculated as follows:

We present Theorem  1 to determine, using the formulae in (18), the returns-to-
scale types at each confidence level given the values of ω−

0  and ω+
0 .

Theorem  1 For every confidence level γ , the (input-oriented) returns to scale of 
firm o are (a) decreasing (DRS) (i.e., ε−I (γ ) > 1 ) if ω+

0 < 0, (b) constant (CRS) (i.e., 
ε−I (γ ) ≤ 1 ≤ ε+I (γ ))  if ω

−
0 ≤ 0 ≤ ω+

0 , and (c) increasing (IRS) (i.e., ε+I (γ ) < 1 ) if ω−
0 > 0.

Proof Let v∗,u∗,ϑ∗,µ∗ , and ω∗
0 be optimal solutions of the LP program (13) for the 

radial efficient firm (x̃o, ỹo) , which is defined according to (10) as ̃xio = xio + aioεio(∀i) and 
ỹro = yro + broηro(∀r). So, 

∑S
r=1

(
u∗r yro + µ∗

r bro
)
+ ω∗

0 =
∑m

i=1 wio(v
∗xio − ϑ∗aio) = 1 . 

Furthermore, 
∑S

r=1

(
u∗r yrj + µ∗

r brj
)
−

∑m
i=1 wio

(
v∗xij − ϑ∗aij

)
+ ω∗

0 = 0 is a sup-
porting hyperplane to TV (S) in (7), and the corresponding value at (α(β),β) is pre-
sented in (14). Differentiating (14) for β , the following measure of SE was used: 
ε(γ ) =

α(β)−ω∗
o

α(β)
 . The right- and left-hand SEs can then be easily computed as 

ε+(γ ) =
α(β)−ω∗−

o
α(β)

andε−(γ ) =
α(β)−ω∗+

o
α(β)

 , respectively. It then immediately follows that

(a) ε−(γ ) > 1 if ω∗+
o < 0 and since ω∗−

o < ω∗+
o  , then ε+(γ ) > 1 . Thus, returns to scale 

decrease (DRS).
(b) If ω∗−

o < 0 then ε+(γ ) > 1 and if ω∗+
o > 0 then ε−(γ ) < 1 . Therefore, 

ε−(γ ) ≤ 1 ≤ ε+(γ ) and returns to scale are constant (CRS).
(c) If ω∗−

o > 0 then ε+(γ ) < 1 and since ω∗+
o > ω∗−

o  then ε−(γ ) < 1 . Thus, returns to 
scale (IRS) are increasing.

Regarding the returns-to-scale types between deterministic and stochastic cases, 
we present Theorem 2.

Theorem 2 For a predetermined significance level of γ = 0.5 , the returns-to-scale types 
obtained from deterministic and stochastic programs were the same.

Proof To prove this, it suffices to show that for γ = 0.5 , programs (12) and (3) are 
equivalent. To this end, since programs (12) and (11) are equivalent and �−1(0.5) = 0 , 
replacing it in the constraints of program (11) yields program (3).

For the visual presentation of technology, we consider in Table  1 a hypothetical 
dataset of six firms, each producing one output using one input.

(18)ε+(γ ) =
α(β)− ω−

0

α(β)
, and ε−(γ ) =

α(β)− ω+
0

α(β)
.

�

�
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Based on the data in Table  1, we constructed the stochastic production frontiers in 
Fig. 2 by considering three different levels of tolerance ( γ = 0.1, 0.3, and0.5).8

The piecewise linear line (L3) passing through the mean points of the centers of circles 
represents the production frontier at the tolerance level of 0.5 and according to Theo-
rem 2, this stochastic frontier is the same as the deterministic frontier. Similarly, lines L2 
and L1 represent the production frontiers at tolerance levels of0.3 and 0.1, respectively. 
The TE scores at these tolerance levels are presented in Table 2. At each of these three 
tolerance levels, four firms, A, B, C, and D, are consistently found to be technically effi-
cient. Of the remaining two firms, F becomes efficient at a tolerance level of 0.1, but inef-
ficient at tolerance levels of 0.3 and 0.5. However, E was inefficient at all three tolerance 
levels. This finding suggests that a firm’s efficiency status in a deterministic environment 
can be subject to change in the stochastic case.

Input-oriented right- and left-hand SE scores were computed using value-based tech-
nology (7) in a stochastic environment (TV (S)) , the input-oriented right- and left-hand 
SE scores are computed. Table 2 presents the results.

At each of these three tolerance levels considered, out of the four stochastically techni-
cally efficient firms (A, B, C, and D), B is CCR-efficient and hence exhibits CRS because 
its left-hand SE scores are all less than 1, and the right-hand SE scores are all greater 
than 1. D is CCR-efficient only at tolerance levels of 0.1 and 0.3 and hence exhibits CRS 
at those tolerance levels, but IRS at the tolerance level of 0.5 (as its right-hand SE score 
is less than 1). Of the remaining two stochastically technically efficient firms, A exhib-
its IRS (as its right-hand SE score is less than 1) and C exhibits DRS (as its left-hand 
SE score is greater than 1) at each of the three tolerance levels. Finally, regarding the 
returns-to-scale types of inefficient firms, since E’s projection onto the frontier is located 
on the interior point of the facet DB (see Fig. 2), its right- and left-hand SE values are 
all equal, but all less than one, implying IRS. As is evident from Table 2, the efficiency 
status of F is the mix, that is, it is efficient at a tolerance level of 0.1, but inefficient at 
other tolerance levels. However, at all these tolerance levels, DRS is exhibited because 
its left-hand SE values are all greater than one. The finding that D exhibits IRS at the 
tolerance level of 0.5, but CRS at the other tolerance levels, indicates that the returns-to-
scale characterizations of firms in a deterministic technology is subject to change in the 
stochastic case.

The illustrative empirical application
We now demonstrate an illustrative empirical application of our proposed stochastic 
efficiency program using a dataset used earlier by Sahoo and Tone (2009a, b) for ana-
lyzing capacity utilization and profit change behaviors of Indian banks for eight years 
(1998–2005).

8 Cooper et  al. (2000) have suggested, in general, considering the following tolerance level of the chance constraints: 
$$0<\gamma \le 0.5$$ for which the $$TE$$ scores lie between 0 and 1. However, for data with large amounts of uncer-
tainty where 0.5 < γ < 1 , the efficiency frontier moves closer to the given observations, and many observations will 
automatically come with unity or close to unit  TE scores. The results of the CC program may then be questioned. That 
is why most of the studies in the stochastic case have considered the values for γ between 0 and 0.5, i.e., 0 < γ ≤ 0.5.
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The data

The dataset consists of 71 banks (26 public banks, 27 private banks, and 18 foreign 
banks), each using three inputs, borrowed funds (x1) , fixed assets (x2) , and labor (x3) , to 
produce three outputs, investments 

(
y1
)
 , performing loan assets 

(
y2
)
 , and non-interest 

Table 1 Hypothetical data set

For (a, b) , a is the mean and b is the standard deviation

Firm Input: x(a, b) Output: y(a, b)

A (1.5, 0.5) (1, 0.51)

B (4, 0.4) (6, 0.6)

C (6, 0.6) (7, 0.7)

D (2, 0.2) (2.5, 2.5)

E (4, 0.4) (3.5, 0.5)

F (7, 0.7) (6.5, 0.1)

Fig. 2 DEA stochastic production frontiers under chance constraints at γ = 0.5, 0.3 and 0.1

Table 2 Stochastic TE and SE scores of six firms

RTS returns to scale

Firm γ = 0.1 γ = 0.3 γ = 0.5

TEo ε
−

1 ε
+

1
RTS TEo ε

−

1 ε
+

1
RTS TEo ε

−

1 ε
+

1
RTS

A 1 0 0.6400 IRS 1 2.220e−16 0.3900 IRS 1 0 0.2230 IRS

B 1 0.5630 3 CRS 1 0.6680 3 CRS 1 0.8570 3 CRS

C 1 2.3340 ∞ DRS 1 2.3340 ∞ DRS 1 2.3340 ∞ DRS

D 1 0.0720 5.2010 CRS 1 0.2440 1.5230 CRS 1 0.4170 0.7140 IRS

E 0.7450 0.4140 0.4140 IRS 0.713 0.5340 0.5340 IRS 0.642 0.7780 0.7780 IRS

F 1 3.3850 ∞ DRS 0.801 2.4270 2.4270 DRS 0.714 2.6000 2.6000 DRS
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income 
(
y3
)
 . All monetary values of the input and output quantities are deflated by the 

wholesale price index with a base of 1993–94 to obtain their present (implicit) quantities. 
All monetary values are measured for Indian rupees (Rs.) for crores (Rs. 1 crore = Rs. 10 
million). Concerning the prices of inputs, the unit prices of x1 , x2 , and x3 are measured 
as the average interest paid per rupee of x1(w1) , non-labor operational cost per rupee 
amount of x2 (w2) , and average staff cost (w3) , respectively. The input and output quan-
tities are all assumed to be random, with each following a normal distribution with a 
known mean (presented in Table 3) and known standard deviation (shown in Table 4).

In DEA, if the number of DMUs ( n ) is less than the combined number of inputs (m) 
and outputs (s), many DMUs are efficient. Therefore, n must exceed ( m + s ). The rule of 
thumb in the DEA literature suggests that n ≥ max { m × s, 3 × (m + s)}. In our dataset, n 
= 71, and m = s  = 3. Therefore, the thumb rule was satisfied at 71 ≥ max {9, 18}.

We used the GAMS software on a machine with the following specifications to com-
pute the efficiency and scale elasticity scores of banks: CPU, Intel Pentium 4 at 2 GHz 
and RAM, 1024 MB.

Results

Stochastic value‑based TE scores

Table 5 presents the value-based TE scores of 71 banks in the stochastic environment at 
the three different confidence levels considered. As observed, only 38 banks were effi-
cient at all three confidence levels. It is also interesting to observe that inefficient banks 
tend to experience a decline in their efficiency performance with an increase in γ .

Stochastic value‑based SE scores

The results for both the lower and upper bounds of the stochastic value-based SE scores 
for all 71 banks are presented in Tables 6 and 7 for β = 0.99 and β = 1.01 , respectively.

It is well known that scale elasticity is defined only for efficient units, and for ineffi-
cient units, this computation can be performed only at their input- or output-oriented 
projections. However, in our case, we considered input-oriented projections. To inter-
pret our results for β = 0.99 in Table 6, for example, for bank 20, which is efficient at all 
three tolerance levels, the lower-bound SE score is less than 1 and its upper-bound value 
is more than 1, that is, ε− < 1 < ε+ , implying that its returns to scale are constant [as 
per Theorem 1 (b)]. For efficient bank 54, the upper bound SE scores are all less than 1 
(i.e., ε+ < 1) at all three tolerance levels, implying that its returns to scale are increasing 
[as per Theorem 1 (c)]; for the remaining efficient banks such as 1, 2, and 3, since the 
lower bound of SE is greater than 1 at all three tolerance levels (i.e., ε+ > 1), it exhibits a 
decreasing return to scale [as per Theorem 1 (a)].

Note that for some stochastically inefficient banks, such as 4, 12, 14, and 23, both 
lower- and upper-bound SE scores are equal at all three tolerance levels, implying that 
their projections onto the boundary are all located on interior points of the facet. Of 
the 71 banks, we find 30 banks exhibiting DRS, 10 banks exhibiting CRS, and 11 banks 
exhibiting IRS, at all three tolerance levels. Two more interesting observations were 
made in this study. First, some banks exhibit returns to scales of different types at dif-
ferent tolerance levels. For example, for β = 0.99 in Table  6, inefficient bank 37 (at 
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Table 3 The means of the inputs and outputs along with unit input prices of 71 banks

Banks x1 x2 x3 w1 w2 w3 y1 y2 y3

1 68.1000 14.6454 231,072.8140 1.5596 0.9909 0.000177 768.8273 1736.3488 24.8453

2 0.4325 0.4983 20,422.9728 31.4076 1.2377 0.000144 29.9458 75.3437 1.3874

3 0.6667 0.5792 13,155.2839 21.4205 1.3339 0.000170 51.8814 113.9078 1.6282

4 1.2824 0.2103 28,744.5519 10.7181 1.9953 0.000191 20.9039 57.0878 0.9490

5 0.3710 0.5541 13,069.0440 180.5710 1.0925 0.000150 23.8559 73.6597 0.9581

6 0.9593 0.2079 6239.0567 16.4462 2.6319 0.000193 18.2914 45.7601 0.6654

7 0.4479 0.4409 11,555.5328 30.8446 1.2367 0.000156 32.1166 82.5182 1.1282

8 1.0401 0.2961 2915.5739 3.5463 1.5125 0.000378 28.8480 45.7574 0.9235

9 12.6481 4.1937 39,585.8189 4.6379 0.6836 0.000158 116.3621 388.2644 4.3501

10 0.8532 2.3304 21,087.5006 14.2102 0.4688 0.000154 52.0073 127.5979 1.4490

11 12.0941 4.7308 44,548.3420 1.9544 0.5471 0.000227 110.0780 347.2673 5.0368

12 1.5552 0.7480 14,290.2602 4.5448 0.9576 0.000213 51.6128 97.7401 1.2481

13 8.1571 4.0783 47,897.6398 3.1790 0.6338 0.000196 127.8455 353.1985 5.3079

14 1.9884 1.7729 13,814.3647 7.0141 0.5274 0.000235 38.4213 107.2447 1.1359

15 1.5104 1.8159 25,543.8390 22.5708 0.7228 0.000166 70.5957 177.8313 1.8718

16 2.1951 4.7242 46,825.7087 9.4810 0.4216 0.000152 117.4315 250.4290 2.8011

17 1.3604 4.9417 28,271.2984 13.5322 0.3458 0.000174 86.9031 216.1909 1.8353

18 3.3363 4.5442 58,524.2537 7.6916 0.5729 0.000167 150.5229 367.8565 4.6353

19 1.0626 1.1892 20,023.4103 8.4986 0.5132 0.000144 67.5708 111.9863 1.0442

20 1.9417 2.6937 27,801.8350 6.4161 0.3016 0.000153 64.9848 139.3250 1.7818

21 1.5121 1.8591 27,802.6741 9.8363 0.6378 0.000222 63.5813 170.5501 1.6023

22 1.2593 0.5976 12,837.2153 6.7137 1.3492 0.000189 58.6636 874.6757 1.0476

23 5.5382 0.8763 9963.8262 3.0145 0.9697 0.000122 41.1079 98.6003 1.5917

24 1.0343 0.7889 13,282.6539 22.1694 1.5211 0.000166 65.6004 149.2672 1.5780

25 0.7387 0.5508 10,322.7455 26.9226 1.0522 0.000208 33.4490 74.9515 0.9615

26 1.3739 1.0360 13,619.3051 4.8019 0.6399 0.000160 35.4865 79.1503 1.0087

27 0.5736 0.8526 1260.9627 9.7425 0.1872 0.000119 6.8275 22.2569 0.2634

28 1.8213 0.6552 631.8055 2.9297 0.6389 0.000122 13.3391 41.9503 0.6856

29 9.8062 3.0160 1338.4830 0.9666 0.3366 0.000192 65.5371 80.8818 1.1227

30 0.1499 0.5331 4283.9222 19.1395 0.3716 0.000088 10.3505 26.7194 0.3456

31 0.0271 0.0655 1301.1018 34.3294 0.7699 0.000025 3.9768 6.7571 0.1018

32 0.2747 0.1868 3151.8460 15.5240 0.5042 0.000103 6.2410 18.4547 0.2733

33 0.1712 0.1112 1667.3429 5.4753 0.4358 0.000082 3.8861 10.3796 0.1622

34 0.8751 0.6152 2687.5908 2.7939 1.0740 0.000377 6.9970 25.3106 0.8604

35 3.9433 2.2770 204.4933 2.4176 0.2471 0.019207 22.4117 67.1690 0.4804

36 4.8966 1.6228 729.0985 1.5649 0.1823 0.000586 36.2109 87.2141 0.2525

37 5.7535 1.9180 6033.0447 0.6133 0.1961 0.000031 9.5859 27.3903 0.7109

38 1.5520 0.7886 1130.7411 4.4120 0.1313 0.000041 7.9185 19.5764 0.1596

39 2.1426 0.8877 1098.0398 2.0347 0.4886 0.000787 18.7017 57.1618 0.3718

40 0.7647 0.4895 1271.5057 3.7382 0.1536 0.000430 17.5242 37.2371 0.1394

41 0.3138 0.1475 217.3686 2.1462 0.2528 0.000445 3.3779 8.9357 0.0053

42 20.3317 0.6996 3596.8108 9.5953 0.2743 0.000169 31.6193 58.6743 0.2887

43 4.5754 0.6681 2683.5745 0.5194 0.2737 0.000076 13.4838 30.2588 0.3493

44 0.1662 0.1690 1853.7080 6.9180 0.6453 0.000033 3.1125 11.8737 0.2173

45 0.0099 0.0581 955.6227 40.2915 1.0953 0.000019 0.2593 0.9470 0.0776

46 11.4310 3.4586 1621.1997 2.7468 0.0401 0.000135 38.4500 61.6207 0.0527

47 0.0786 0.1777 2143.8782 34.6337 0.9080 0.000077 4.2252 8.6918 0.3064

48 0.0442 0.0756 3847.0387 10.8397 1.8481 0.000014 1.3247 3.3803 0.5316

49 0.0163 0.2211 671.9332 43.9394 0.0937 0.000346 3.2050 9.0152 0.0131
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γ = 0.1and0.3 ) exhibits DRS. This means that its projections onto the efficient frontier 
are all located on points of the facet exhibiting DRS. However, the projection of this inef-
ficient bank at γ = 0.5 onto the efficient frontier exhibits IRS. Furthermore, bank 51 at 
γ = 0.1and0.3 is both VRS- and CRS-efficient and hence exhibits CRS. However, this 
bank was inefficient at γ = 0.5 . Hence, its projection onto the efficient frontier exhibits 
IRS. In addition, the SE results for β = 1.01 in Table 7, can be interpreted analogously.

Furthermore, for β = 0.99 (Table 6), the upper-bound SE scores of some banks, such 
as 1, 6, and 10, are unbounded. This implies that any proportional increase in output lies 
outside the technology set. However, in Tables 6 and 7, both lower- and upper-bounds 
of SE s of some banks, such as 45 in Table 6 and 48 in Table 7, are indicated by a dashed 
line, implying that model (12) is infeasible because changing β from 1 to 0.99 or 1.01, 
these units appear outside the feasible region. Therefore, program (12) becomes infea-
sible when there is no data available outside the feasible region to determine returns to 
scale (Grosskopf 1996).

Deterministic value‑based SE scores of the banks

In addition to program (17), we ran the valued-based LP (4) to compute the lower and 
upper bounds of the SE scores of 71 banks in a deterministic environment for β = 0.99 
and β = 1.01 , which are presented in Table 8. The results show that the 38 efficient banks 
that are found to be fully technically efficient in a stochastic environment are also effi-
cient, and the remaining 33 banks are inefficient. Regarding their returns-to-scale char-
acterizations, for the case of β = 1.01 , we find six efficient banks (i.e., 5, 20, 31, 35, 49, 

Table 3 (continued)

Banks x1 x2 x3 w1 w2 w3 y1 y2 y3

50 0.2351 0.1958 3712.0727 11.1481 0.6135 0.000108 8.4520 19.7506 0.3476

51 0.0566 0.0253 794.3014 72.6109 2.9982 0.000071 1.7383 3.4084 0.1218

52 4.7373 1.9963 6372.9742 2.1178 0.1161 0.000098 16.0506 53.3586 0.3851

53 1.1853 0.7289 6040.1171 3.1510 0.1951 0.000072 10.5492 26.1635 0.3317

54 0.3488 0.0159 22.3365 0.1160 2.3726 0.000324 0.2847 0.7337 0.0050

55 12.5233 0.4258 332.5308 0.2781 2.5053 0.000160 13.2140 47.9448 1.2220

56 14.1786 0.2770 355.0173 0.1967 1.3702 0.000469 9.8742 35.1222 0.6311

57 0.5282 0.1357 309.5109 19.0387 2.8038 0.000311 1.9769 8.6026 0.4407

58 3.8787 0.6974 491.2626 0.4946 0.3861 0.000414 5.7095 14.6569 0.2208

59 1.7684 0.0102 33.1541 0.2008 4.9490 0.000501 0.5713 2.2969 0.0612

60 20.0390 3.0197 1585.4716 0.4730 1.0225 0.000517 35.4619 109.9327 3.8043

61 0.7479 0.0228 52.5203 1.1674 4.9703 0.000608 3.4626 3.6002 0.0643

62 2.7446 1.2555 79.2919 0.2268 0.2450 0.000987 3.1243 11.3549 0.1406

63 3.5145 0.0451 9156.4851 0.3727 2.1963 0.000005 9.6810 23.8449 0.1251

64 1.3650 0.0426 146.7803 0.4465 2.0252 0.000128 0.9449 3.4518 0.0483

65 0.8318 0.0166 90.2168 2.5030 3.3179 0.000780 2.5044 9.5684 0.1925

66 1.7777 0.0166 2341.9032 0.3176 4.9815 0.000005 1.0159 4.6030 0.0354

67 0.3953 0.1172 15.4043 5.1415 0.1803 0.000502 0.8731 2.6146 0.0364

68 0.4333 0.0106 204.2668 0.3773 2.7202 0.000481 0.3886 2.2331 0.0355

69 54.8725 1.2932 34.1071 0.4196 0.0338 0.023052 41.8377 177.0707 1.9755

70 22.5396 3.0623 2491.6622 3.3634 0.5975 0.000593 32.1198 74.2094 2.8352

71 2.7269 0.3002 80.5671 0.2399 0.2701 0.000721 1.3913 5.1017 0.0910
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Table 4 The standard deviations of the inputs and outputs of 71 banks

Banks x1 x2 x3 y1 y2 y3

1 10.2761 2.8507 9523.0570 361.1912 329.3894 3.3711

2 0.3243 0.1226 19,612.3100 7.3137 12.8256 0.2357

3 0.4355 0.0485 1566.2550 21.2321 38.1618 0.3244

4 1.1460 0.0098 35,723.0900 5.8070 12.7340 0.1739

5 0.4745 0.2443 116.0695 3.2547 6.1352 0.1533

6 0.7842 0.0121 1622.1800 5.5051 4.5941 0.0487

7 0.3802 0.1267 1129.0920 6.7264 13.4169 0.0973

8 0.5811 0.0879 1600.4690 21.1830 17.6628 0.3710

9 14.0536 0.1327 12,671.1500 16.4858 78.8113 0.4629

10 0.5370 0.1030 1759.8810 5.3334 17.7115 0.1709

11 3.7572 0.3490 9580.5270 14.3820 25.5055 0.8603

12 0.5947 0.0968 2498.8860 15.9466 24.6052 0.5078

13 2.8386 0.7122 13,017.6300 15.3522 61.1519 1.0284

14 1.7091 0.3821 1057.5330 5.1866 23.3821 0.1904

15 1.2107 0.1315 3475.0790 14.8787 22.5425 0.2866

16 1.1157 0.8577 3000.5590 18.8697 47.0327 0.2965

17 0.6380 0.5676 2961.7660 18.6649 33.1439 0.1841

18 1.1564 0.1176 8797.8970 29.6685 75.6047 0.5686

19 0.3051 0.1172 3327.3110 12.4341 14.9897 0.2111

20 1.0151 0.2984 4245.7350 8.5857 16.3334 0.5304

21 1.0645 0.2115 5150.4420 5.7536 33.1686 0.2882

22 0.2139 0.2652 2347.0150 28.1306 2146.9900 0.2542

23 5.4376 0.1951 366.1181 9.4957 21.9662 0.4251

24 1.0271 0.1328 1188.0290 18.3657 43.2375 0.5402

25 0.6978 0.0566 2219.1920 6.3389 12.7496 0.1524

26 0.7827 0.2157 2501.7380 7.5635 16.6562 0.4310

27 0.4717 0.1385 54.5427 2.1337 11.9903 0.1194

28 1.1364 0.2091 334.8054 2.9632 10.5197 0.2537

29 10.8137 2.3058 631.6041 65.0802 60.9556 0.5113

30 0.0936 0.0963 138.6136 2.7358 1.8060 0.0188

31 0.0178 0.0144 90.2233 1.5032 1.3241 0.0154

32 0.2187 0.0783 440.8488 1.4625 3.4097 0.0815

33 0.0720 0.0074 867.5313 1.3878 2.1066 0.0335

34 0.4870 0.4063 3281.2440 1.2412 7.7730 0.3566

35 2.8867 0.4770 279.2979 12.8282 33.2987 0.2372

36 3.0643 0.7197 320.2342 24.0317 81.2471 0.0504

37 3.7371 0.8729 355.3727 4.8044 13.3527 0.1038

38 1.2015 0.2860 204.2568 2.7486 10.0768 0.0596

39 0.6179 0.2039 534.8040 3.5879 11.2343 0.2256

40 0.0859 0.0376 88.1207 8.6354 9.6225 0.0332

41 0.0752 0.0740 37.5784 0.9857 1.8663 0.0014

42 34.0616 0.3700 957.1578 15.0030 20.9467 0.0752

43 2.8870 0.2829 1306.3720 6.7667 18.7212 0.0708

44 0.0820 0.0833 366.0991 0.4548 3.8405 0.0361

45 0.0105 0.0114 601.1055 0.1042 0.2297 0.0284

46 12.6386 4.3393 708.3910 40.2227 53.5951 0.0399

47 0.0595 0.1118 203.7611 1.9295 1.9406 0.0151

48 0.0306 0.0212 695.5238 0.4971 1.3035 0.1993

49 0.0067 0.0241 111.2063 0.2959 2.0643 0.0024
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and 69) exhibiting CRS. For the five efficient banks (i.e., 44, 45, 54, 64, and 68), returns 
to scale increase because their upper bounds of SE scores are all less than unity. Finally, 
for some efficient banks, such as 1, 6, 9, 10, 11, 13, 19, 21, 22, 30, 34, 48, 52, and 61, both 
lower- and upper-bound SE scores are indicated by dashed lines. Hence, as discussed in 
Sect. 4.3, no data are available to determine the returns-to-scale type. This is because, 
as we consider β from 1 to 0.99 or 1.01, these banks appear outside the feasible region. 
Therefore, program (3) becomes infeasible when there is no data available outside the 
feasible region to determine their returns-to-scale possibilities. The remaining 13 effi-
cient banks operate under the DRS.

For β = 0.99 , some efficient banks (1, 6, 9, and 13) exhibit DRS and some efficient 
banks (10, 19, 21, 34, and 61) exhibit CRS. However, as pointed out earlier, the returns-
to-scale types of these banks for the case of β = 1.01 were not determined. Moreover, 
for bank 8, while returns to scale are constant for β = 0.99 , they decrease for β = 1.01.

A comparison between the deterministic and stochastic methods

Regarding the comparison between deterministic and stochastic TE estimates, a few 
observations are noteworthy. First, both deterministic and stochastic methods are in 
complete agreement in declaring the same 38 banks to be fully technically efficient. Sec-
ond, both methods yield the same value-based TE scores for banks γ = 0.5 . This find-
ing is consistent with our expectation (see Theorem 2), which leads us to conclude that 
deterministic technology is a special case of stochastic technology for γ = 0.5 in exhib-
iting the same TE scores. Third, the stochastic TE scores of inefficient states are higher 

Table 4 (continued)

Banks x1 x2 x3 y1 y2 y3

50 0.1560 0.0133 354.5148 3.2130 6.6751 0.1224

51 0.0920 0.0007 135.6133 0.8067 1.2338 0.0253

52 4.2837 0.2994 538.7854 1.2527 6.3336 0.1556

53 1.1213 0.1859 2816.5610 3.9267 6.4732 0.2708

54 0.1252 0.0089 5.3860 0.1415 0.2273 0.0025

55 5.3485 0.0688 283.1380 6.8033 28.1929 0.6568

56 2.6620 0.0941 250.3139 3.2598 19.4312 0.4657

57 0.9769 0.0383 15.3733 1.4458 4.3820 0.3090

58 2.2051 0.1250 225.0801 1.3696 4.4999 0.0511

59 1.5106 0.0024 1.7504 0.2358 1.2826 0.0409

60 14.5400 0.9226 223.5289 15.3532 30.8000 1.1175

61 0.6053 0.0176 4.7099 3.0749 1.0242 0.0104

62 0.8394 1.8307 6.6078 1.5231 6.2029 0.0916

63 2.2409 0.0118 1259.3690 12.4435 22.8410 0.0364

64 1.1995 0.0053 42.5258 0.1185 0.3645 0.0144

65 0.6396 0.0040 13.9585 0.6044 2.8504 0.0496

66 1.8802 0.0100 1231.6560 0.8970 3.5025 0.0127

67 0.3714 0.0188 16.0499 0.7412 2.1500 0.0122

68 0.2632 0.0020 476.7371 0.1782 1.3320 0.0350

69 62.4162 0.5402 18.7544 33.8122 243.9712 0.7001

70 20.7893 0.1909 2270.2630 12.4799 29.3829 1.8066

71 1.6991 0.0735 40.5675 0.6920 2.6638 0.0292
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than their deterministic counterparts. This finding is also expected, because the main 
purpose of our chance-constrained formulation is to allow the observed inputs and out-
puts of banks to cross the efficiency frontier, but not too often. For any given observed 
input–output vector, the efficiency frontier in the stochastic case is now located closer 
than before. Finally, the efficiency scores of banks increase with sharpening (decreasing) 
the tolerance level of chance constraints.

Regarding the comparison between deterministic and stochastic SE estimates, we find 
apparent differences in their returns-to-scale characterizations. First, while the stochas-
tic method finds efficient bank 13 exhibiting DRS at all three tolerance levels considered, 
the deterministic method is unable to find its returns-to-scale status for β = 1.01 but 

Table 5 Stochastic value-based TE scores of 71 banks

Banks γ = 0.1 γ = 0.3 γ = 0.5 Banks γ = 0.1 γ = 0.3 γ = 0.5

1 1.0000 1.0000 1.0000 37 0.1058 0.0969 0.0762

2 1.0000 1.0000 1.0000 38 0.0823 0.0823 0.0676

3 1.0000 1.0000 1.0000 39 1.0000 1.0000 1.0000

4 0.4174 0.4057 0.2934 40 1.0000 1.0000 0.9479

5 1.0000 1.0000 1.0000 41 0.7571 0.7507 0.7147

6 1.0000 1.0000 1.0000 42 1.0000 0.2072 0.0352

7 1.0000 1.0000 1.0000 43 0.1712 0.1641 0.1465

8 1.0000 1.0000 1.0000 44 1.0000 1.0000 1.0000

9 1.0000 1.0000 1.0000 45 1.0000 1.0000 1.0000

10 1.0000 1.0000 1.0000 46 0.4931 0.4785 0.4365

11 1.0000 1.0000 1.0000 47 1.0000 1.0000 1.0000

12 0.8750 0.7525 0.6702 48 1.0000 1.0000 1.0000

13 1.0000 1.0000 1.0000 49 1.0000 1.0000 1.0000

14 0.6154 0.5946 0.5046 50 0.5304 0.5207 0.5066

15 1.0000 1.0000 1.0000 51 1.0000 1.0000 0.4247

16 1.0000 1.0000 1.0000 52 1.0000 1.0000 1.0000

17 1.0000 1.0000 1.0000 53 0.2496 0.2264 0.1658

18 1.0000 1.0000 1.0000 54 1.0000 1.0000 1.0000

19 1.0000 1.0000 1.0000 55 0.9320 0.8328 0.7088

20 1.0000 1.0000 1.0000 56 0.6136 0.4690 0.3768

21 1.0000 1.0000 1.0000 57 1.0000 1.0000 0.2320

22 1.0000 1.0000 1.0000 58 0.2844 0.2649 0.2540

23 0.5210 0.3975 0.2896 59 0.7497 0.7286 0.6828

24 1.0000 1.0000 1.0000 60 1.0000 1.0000 1.0000

25 0.7744 0.7727 0.7172 61 1.0000 1.0000 1.0000

26 0.6145 0.5170 0.4984 62 0.3425 0.3330 0.3225

27 0.2606 0.2504 0.2134 63 0.5355 0.5130 0.4455

28 0.3330 0.3251 0.2913 64 1.0000 1.0000 1.0000

29 1.0000 1.0000 1.0000 65 1.0000 0.9673 0.8335

30 1.0000 1.0000 1.0000 66 0.7330 0.4449 0.2438

31 1.0000 1.0000 1.0000 67 0.3809 0.3809 0.2848

32 0.3760 0.3727 0.3686 68 1.0000 1.0000 1.0000

33 0.4065 0.4026 0.3966 69 1.0000 1.0000 1.0000

34 1.0000 1.0000 1.0000 70 1.0000 0.8081 0.3901

35 1.0000 1.0000 1.0000 71 0.2397 0.2393 0.2323

36 0.6975 0.6908 0.6679
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Table 6 The stochastic value-based scale elasticity scores of 71 banks (β = 0.99)

Banks γ = 0.1 γ = 0.3 γ = 0.5

ε− ε+ RTS ε− ε+ ε− ε+ RTS

1 1.0070 ∞ D 1.0109 ∞ D 1.0142 ∞ D

2 1.0484 11.4017 D 1.0533 9.5235 D 1.0576 6.6385 D

3 1.0106 6.2381 D 1.0110 6.1751 D 1.0125 5.5490 D

4 1.2171 1.2171 D 1.1296 1.1296 D 1.0012 1.0012 D

5 – – − 3.2891 17.3709 C − 0.6043 7.3817 C

6 1.5299 ∞ D 1.7047 ∞ D 2.0646 ∞ D

7 1.0098 3.1783 D 1.0210 2.3129 D 1.0253 1.8738 D

8 0.8946 386.0003 C 0.8946 184.0351 C 0.9196 139.9671 C

9 – – 1.1603 ∞ D 3.7360 ∞ D

10 − 0.3848 ∞ C − 0.1447 ∞ C 0.0521 ∞ C

11 – – – – - –

12 1.4826 1.4826 D 1.5579 1.5579 D 1.0385 1.0385 D

13 1.0730 ∞ D 1.0776 ∞ D 1.0812 ∞ D

14 1.1860 1.1860 D 1.2406 1.2406 D 1.3145 1.3145 D

15 1.1639 10.5830 D 1.1647 7.6843 D 1.2100 5.0648 D

16 1.1293 19.9930 D 1.1335 15.9026 D 1.1501 14.3304 D

17 1.0167 6.5567 D 1.0173 6.1923 D 1.0470 5.7073 D

18 1.0466 30.4380 D 1.0740 28.0507 D 1.1022 26.5802 D

19 0.7687 ∞ C 0.8313 ∞ C 0.9020 ∞ C

20 0.5361 6.9435 C 0.5556 5.6046 C 0.5858 5.1075 C

21 0.5521 ∞ C 0.6984 ∞ C 0.7706 ∞ C

22 – – – – –

23 2.5434 2.5434 D 1.8331 1.8331 D 1.4801 1.4801 D

24 1.0066 4.9098 D 1.0073 4.4078 D 1.0952 1.9956 D

25 1.2750 1.2750 D 1.2639 1.2639 D 1.0701 1.0701 D

26 1.4901 1.4901 D 1.3415 1.3415 D 1.0367 1.0367 D

27 1.0482 1.0482 D 1.0529 1.0529 D 1.1343 1.1343 D

28 0.9772 0.9772 I 0.9696 0.9696 I 0.9910 0.9910 I

29 1.0572 ∞ D 1.1094 4.7523 D 1.2502 2.1401 D

30 – – – – – –

31 − 0.6268 3.4159 C − 0.5915 3.4132 C − 0.5477 3.2967 C

32 1.1490 1.1490 D 1.1351 1.1351 D 1.1212 1.1212 D

33 1.2137 1.2137 D 1.1724 1.1724 D 1.0755 1.0755 D

34 − 2.6725 ∞ C 0.2401 ∞ C 0.4459 ∞ C

35 0.8935 13.1266 C 0.8939 9.0470 C 0.9215 6.2906 C

36 1.4157 1.4157 D 1.4922 1.4922 D 1.9398 1.9398 D

37 1.1977 1.1977 D 1.2772 1.2772 D 0.9729 0.9729 I

38 1.0843 1.0843 D 1.0848 1.0848 D 1.1231 1.1231 D

39 0.9801 1.5486 C 0.9871 1.5434 C 1.0063 1.5222 D

40 0.9624 1.4947 C 0.9928 1.2083 C 1.0434 1.0434 D

41 0.6076 0.6076 I 0.6242 0.6242 I 0.7192 0.7192 I

42 – – 1.0972 1.0972 D 1.0928 1.0928 D

43 1.0018 1.0018 D 0.9012 0.9012 I 0.9093 0.9093 I

44 − 2.2609 2.5154 C − 0.6889 0.9334 I 0.4000 0.6492 I

45 – – – – – –

46 1.2482 1.2482 D 1.3302 1.3302 D 1.5969 1.5969 D

47 0.8720 3.1493 C 1.1119 2.6207 D 1.5761 1.7330 D

48 – – – – – –
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finds the same DRS type for β = 0.99 . Second, although the returns-to-scale types of the 
remaining banks are the same in both deterministic and stochastic methods, the degree 
of returns to scale (i.e., lower and upper bounds of the SE) vary to some degree. For 
example, consider bank 65. For the case of β = 0.99, and γ = 0.1, the stochastic lower 
and upper bounds of the SE estimates suggest that a 1% increase in cost raises the out-
put by 4.78% and 8.81%, respectively. However, for β = 0.99 in the deterministic case, 
the lower and upper SE bounds suggest that a 1% increase in cost yields the same 7.03% 
increase in output. Third, for γ = 0.5, the value-based SE scores of banks were the same 
between the two methods. According to Theorem 2, this finding is not contrary to our 
expectations. Therefore, one can conclude that deterministic technology is again a spe-
cial case of stochastic technology for γ = 0.5 in exhibiting the same returns-to-scale 
characterization of banks.

TE vis‑à‑vis ownership

We examine banks’ TE performance across ownership types. The results are presented 
in Table 9. As shown in Table 9, public banks exhibit higher TE scores than private and 
foreign banks at all three tolerance levels. The finding of higher efficiency accrual of pub-
lic banks over private and foreign banks may be due to their long-held formal status, 
wherein these banks have constantly been facilitating their access to scarce resources 

Table 6 (continued)

Banks γ = 0.1 γ = 0.3 γ = 0.5

ε− ε+ RTS ε− ε+ ε− ε+ RTS

49 − 69.9568 1.5018 C − 61.9179 1.7270 C − 53.7488 1.8606 C

50 1.0538 1.0538 D 1.0576 1.0576 D 1.0668 1.0668 D

51 − 1.5390 3.1575 C 0.2397 2.0498 C 0.7446 0.7446 I

52 – – – – – –

53 1.1025 1.1025 D 1.0088 1.0088 D 1.0845 1.0845 D

54 − 56.2616 − 0.0074 I − 55.5663 − 0.0121 I − 54.7889 − 0.0168 I

55 1.4872 1.4872 D 1.4227 1.4227 D 1.4280 1.4280 D

56 1.8469 1.8469 D 1.5170 1.5170 D 1.4573 1.4573 D

57 – – 0.4696 10.5619 C 1.0211 1.0211 D

58 0.8103 0.8103 I 0.7229 0.7229 I 0.8094 0.8094 I

59 0.1205 0.1205 I 0.0320 0.0320 I − 0.2105 − 0.2105 I

60 1.0048 23.1924 D 1.0048 6.6976 D 1.0369 3.6683 D

61 – – – – ∞ ∞ C

62 0.8635 0.8635 I 0.8724 0.8724 I 0.7810 0.7810 I

63 0.9400 0.9400 I 0.9386 0.9386 I 0.9337 0.9337 I

64 – – – – – –

65 0.4776 0.8810 I 0.6441 0.6441 I 0.7026 0.7026 I

66 0.0877 0.0877 I 0.6432 0.6432 I 0.6943 0.6943 I

67 0.1652 0.1652 I 0.1652 0.1652 I 0.3640 0.3640 I

68 – – − 6.6082 0.3660 I − 2.7329 − 0.0182 I

69 0.9598 ∞ C 0.9606 48.2857 C 0.9765 19.3679 C

70 1.1957 ∞ D 1.2744 1.2744 D 1.2085 1.2085 D

71 0.5607 0.5607 I 0.5548 0.5548 I 0.4803 0.4803 I

RTS Returns to scale, I IRS, C CRS, D DRS
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Table 7 The stochastic value-based scale elasticity scores of 71 banks (β = 1.01)

Banks γ = 0.1 γ = 0.3 γ = 0.5

ε− ε+ RTS ε− ε+ RTS ε− ε+ RTS

1 – – – – – –

2 1.1224 10.4163 D 1.1061 8.8375 D 1.1014 6.3011 D

3 1.0137 5.9619 D 1.0140 5.9036 D 1.0152 5.3158 D

4 1.2119 1.2119 D 1.1267 1.1267 D 1.0012 1.0012 D

5 – – − 2.6940 15.5703 C − 0.4779 7.0734 C

6 – – – – – –

7 1.0131 3.1929 D 1.0226 2.3752 D 1.0263 1.8924 D

8 3.0215 89.0920 D 2.0734 78.8639 D 1.4649 73.7518 D

9 – – – – – –

10 – – – – – –

11 – – – – – –

12 1.4685 1.4685 D 1.5409 1.5409 D 1.0377 1.0377 D

13 – – – – – –

14 1.1816 1.1816 D 1.2347 1.2347 D 1.3063 1.3063 D

15 1.2217 9.8184 D 1.2044 7.2693 D 1.2541 4.9562 D

16 1.3305 18.0472 D 1.2855 14.8425 D 1.2920 13.5378 D

17 1.0198 6.2966 D 1.0275 5.9595 D 1.0647 5.5147 D

18 1.1402 27.5945 D 1.1539 25.6261 D 1.1870 24.3983 D

19 – – – – – –

20 0.5807 6.6688 C 0.5916 5.4475 C 0.6181 4.9857 C

21 – – – – – –

22 – – – – – –

23 2.4679 2.4679 D 1.8033 1.8033 D 1.4662 1.4662 D

24 1.0101 4.7680 D 1.0104 4.3468 D 1.1098 1.9997 D

25 1.2681 1.2681 D 1.2574 1.2574 D 1.0687 1.0687 D

26 1.4758 1.4758 D 1.3324 1.3324 D 1.0360 1.0360 D

27 1.0472 1.0472 D 1.0518 1.0518 D 1.1313 1.1313 D

28 0.9776 0.9776 I 0.9702 0.9702 I 0.9912 0.9912 I

29 – – 1.1196 4.5847 D 1.2460 2.1130 D

30 – – – – – –

31 − 0.5584 3.4046 C − 0.5238 3.4018 C − 0.4832 3.2879 C

32 1.1456 1.1456 D 1.1321 1.1321 D 1.1185 1.1185 D

33 1.2086 1.2086 D 1.1684 1.1684 D 1.0739 1.0739 D

34 – – – – – –

35 0.9119 11.8882 C 0.9066 8.4868 C 0.9281 6.0777 C

36 1.4041 1.4041 D 1.4778 1.4778 D 1.9043 1.9043 D

37 1.1930 1.1930 D 1.2703 1.2703 D 0.9735 0.9735 I

38 1.0825 1.0825 D 1.0829 1.0829 D 1.1204 1.1204 D

39 0.9822 1.5426 C 0.9892 1.5375 C 1.0078 1.5155 D

40 0.9646 1.4918 C 0.9937 1.2074 C 1.0426 1.0426 D

41 0.6124 0.6124 I 0.6289 0.6289 I 0.7232 0.7232 I

42 – – 1.0951 1.0951 D 1.0908 1.0908 D

43 1.0017 1.0017 D 0.9029 0.9029 I 0.9110 0.9110 I

44 − 2.2179 2.5914 C − 0.6758 0.9568 I 0.4139 0.6563 I

45 ∞ 0.8628 I ∞ 0.8371 I ∞ 0.7066 I

46 1.2421 1.2421 D 1.3216 1.3216 D 1.5783 1.5783 D

47 0.8841 3.1421 C 1.1379 2.6032 D 1.5605 1.7129 D

48 – – – – – –
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such as credit, foreign exchange, licenses, and skilled labor, which are necessary for effi-
cient production.

Returns to scale across ownership

Finally, we examined the distribution of returns-to-scale types across ownership 
types. For β = 0.99, out of 44 public and private banks, 28 (68%) operate under DRS 
at a confidence level γ of 0.1. As shown in Table 10, while public sector banks mostly 
exhibit DRS, foreign banks exhibit IRS. Returns-to-scale types of private banks are a 
mix that supports all types of returns-to-scale, that is, IRS, CRS, and DRS. This may 
be because private banks are of two types: old and new, with the former type follow-
ing the tradition of public sector banks and the latter type following that of foreign 
banks.

In the next section, we discuss the results of our illustrative empirical application of 
Indian banks from 1998 to 2005.

Discussions
As observed from our empirical results, different values of β and γ lead to varying 
results.

Table 7 (continued)

Banks γ = 0.1 γ = 0.3 γ = 0.5

ε− ε+ RTS ε− ε+ RTS ε− ε+ RTS

49 − 219.7403 5.0918 C − 154.0041 4.5834 C − 110.4810 4.0562 C

50 1.0527 1.0527 D 1.0564 1.0564 D 1.0654 1.0654 D

51 − 1.4407 3.2094 C 0.2627 2.0679 C 0.7483 0.7483 I

52 – – – – – –

53 1.1003 1.1003 D 1.0086 1.0086 D 1.0827 1.0827 D

54 − 102.4507 0.1322 I − 99.5819 0.1174 I − 96.4785 0.1028 I

55 1.4729 1.4729 D 1.4109 1.4109 D 1.4160 1.4160 D

56 1.8164 1.8164 D 1.5016 1.5016 D 1.4442 1.4442 D

57 – – 0.5426 9.9700 C 1.0206 1.0206 D

58 0.8134 0.8134 I 0.7683 0.7683 I 0.8125 0.8125 I

59 0.1226 0.1226 I 0.0327 0.0327 I − 0.2156 − 0.2156 I

60 1.0303 19.9213 D 1.0118 6.4833 D 1.0390 3.6271 D

61 – – – – – –

62 0.8658 0.8658 I 0.8746 0.8746 I 0.7844 0.7844 I

63 0.9411 0.9411 I 0.9398 0.9398 I 0.9350 0.9350 I

64 – – ∞ ∞ C ∞ 0.4563 I

65 0.4872 0.8892 I 0.6486 0.6486 I 0.7068 0.7068 I

66 0.2510 0.2510 I 0.6478 0.6478 I 0.6986 0.6986 I

67 0.1679 0.1679 I 0.1679 0.1679 I 0.3687 0.3687 I

68 – – − 7.0120 0.4185 I − 2.7988 0.0006 I

69 – – 0.9809 33.3982 C 0.9842 16.6515 C

70 – – 1.2675 1.2675 D 1.2036 1.2036 D

71 0.5657 0.5657 I 0.5598 0.5598 I 0.4852 0.4852 I

RTS Returns to scale, I IRS, C CRS, D DRS
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for returns-to-scale bank types. In such cases, the relevant question arises as to how 
bank management makes an appropriate judgment for its scale decisions. As noted 
earlier, the possible values of β are user-defined values that reflect the proportional 
output change, and the value-based TE function α(β) for any bank o is defined for all 
β ∈ [0, β̂] , where β̂  is the largest proportion of its output vector yo found on TV  . How-
ever, the scale elasticity of any radial technically efficient bank 

(
xo, yo

)
 is well defined 

at β = α(β) = 1 as we determine its returns-to-scale status locally at the neighbor-
hood of point 

(
xo, yo

)
 , where a derivative is to be evaluated. Since scale elasticity is a 

one-sided concept, one can therefore determine a bank’s (local) returns-to-scale type 
at its right or left by measuring the response to outputs by considering only a one 
percent increase or decrease in inputs, that is, β = 1.01 (right) and β = 0.99 (left) at a 
specific confidence level.9

Regarding the values of tolerance level γ , a pre-determined parameter ( 0 < γ ≤ 0.5 ) 
makes the confidence level of each firm large or small, that is, the confidence level that 
forms an ellipse around the mean value of the inputs and outputs of each firm, increase 
or decrease. Consequently, a bank may experience a change in the returns-to-scale sta-
tus for a change in γ . Therefore, the relevant question for any bank facing uncertainty 
is at what level of γ should it consider making an appropriate judgment about its scale 
decision. Because our proposed stochastic approach generates only expected SE scores 
rather than distributions of random SE scores, we are at odds to answer this question. 
Our focus in this study is, however, on ex-post-facto analysis of already affected deci-
sions, which can have certain uses in the control aspects of bank management where 

Table 9 A comparison of stochastic TE scores of banks across ownership types

γ = 0.1 γ = 0.3 γ = 0.5

Public 0.9161 0.9015 0.8836

Private 0.7209 0.6877 0.6466

Foreign 0.7673 0.7212 0.6115

Table 10 A comparison of stochastic returns-to-scale types of banks across ownership types

γ = 0.1 γ = 0.3 γ = 0.5

Ownership IRS CRS DRS IRS CRS DRS IRS CRS DRS

For β = 0.99

Public 0 5 17 0 6 18 0 6 18

Private 2 9 11 4 7 12 6 4 13

Foreign 9 1 4 10 2 4 10 2 5

For β = 1.01

Public 0 1 15 0 2 15 0 2 15

Private 3 8 10 5 6 12 7 3 13

Foreign 9 0 3 10 3 4 11 1 5

9 However, following Banker et al. (2004), one can consider evaluating the returns-to-scale type of bank $$\left({x}_{o},\
mathrm{ }{x}_{o}\right)$$ globally with respect to the most productive scale size by jointly maximizing the proportional 
increase in outputs and minimizing the proportional decrease in inputs.
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evaluations of returns-to-scale performance are required. We need to address the ex-
ante (planning) problem of how to use this knowledge to arrive at the possible value of γ , 
which can be used while affecting future-oriented decisions regarding whether to scale 
up or scale down operations.

Regarding the results concerning bank efficiency performance across ownership types, 
we find that public banks exhibit higher efficiency than private and foreign banks. This 
finding fails to provide empirical support for the property rights hypothesis that private 
enterprises should perform better than public enterprises, which precisely holds in a 
developed country where there is a strong link between the market for takeover and the 
efficiency of private enterprises. In India, public banks are known for their better organi-
zational structure and greater penetration into the customer base. During the post-
reform period of our study (1998–2005), government policies favored public banks in 
managing their expansionary activities well because of their age-old learning experience. 
In the absence of an active market for corporate control, substantial government owner-
ship, and a relatively low level of technological advancement, conventional wisdom that 
private banks should perform better needs to be challenged.

The returns-to-scale results during our study period reveal that, while large public 
and old private banks mostly exhibit either DRS10 or CRS, small foreign and new private 
banks experience returns-to-scale possibilities of all types. Therefore, the finding of large 
public and old private banks exhibiting DRS does not bode well with the perception that 
regulators consider very large-size banks “too-big-to-fall,” which would encourage large 
or excessive risk-taking to drive bank growth. On the contrary, the finding of new small- 
and medium-sized private and foreign banks exhibiting IRS suggests that these banks 
have enough opportunity to increase output by either increasing the scale or merging 
with other banks to improve their performance.

Concluding remarks
Using the CC programming method, value-based measures of efficiency and scale econ-
omies’ behavior of firms are investigated from the viewpoint of the economic theory of 
production in the possible presence of stochastic variability in the underlying input and 
output data. There is considerable variation in the results concerning both the efficiency 
and returns-to-scale characterizations of banks between the deterministic and stochas-
tic models. These differences are precisely due to the existence of confidence regions for 
various tolerance levels of the chance constraints. However, deterministic technology 
is a special case of stochastic technology at a tolerance level of 0.5, exhibiting both the 
efficiency and returns-to-scale characterizations of firms. Regarding the key empirical 
findings of our illustrative application to the Indian banking industry during the post-
reform period (1998–2005), we have a few key findings. First, as expected, the stochastic 
model generates higher efficiency scores for inefficient banks as compared to the deter-
ministic model. Second, public banks are more efficient than private and foreign banks, 

10 This finding is at odds with Das and Das (2007) that there is no evidence of diseconomies of scale for larger banks. We 
believe that this contrasting finding is due the use of econometric method, which, we suspect, can confound the effects 
of misspecification of functional form with scale economies. Therefore, for a more stable picture of scale economies 
in the Indian banking industry, we recommend future researchers to consider an examination of returns to scale from 
either revenue or profit perspective, which we have indicated as one of the potential future research projects.
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which challenges the property rights hypothesis. However, this finding is not unusual 
because the Indian banking industry is characterized by the absence of an active mar-
ket for corporate control and substantial government ownership. Third, large public and 
old private banks mostly exhibit either decreasing or constant returns to scale, whereas 
small foreign and new private banks experience either increasing or decreasing returns 
to scale. Finally, based on bank-specific scale properties, the management can decide 
on the expansion or contraction of their operations in the subsequent operation period, 
which provides a vision of how to change outputs for changing inputs to preserve effi-
ciency status in the subsequent period of activities.

Limitations and future recommendations

The proposed stochastic model requires information on the joint probability distribu-
tions of random inputs and outputs, which are generally inferred from their respec-
tive frequency distributions. Because this information is often not available in practice, 
we are at a loss to estimate them empirically. Given the nature of the input and out-
put data that we deal with in this study, they are all subject to uncertainties; therefore, 
the requirement of availability of data on their joint probability distributions should not 
constrain the use of our empirically appealing stochastic model.

However, our stochastic model cannot be used freely. First, the inputs and outputs are 
assumed to be well approximated by a normal distribution, although they are all subject 
to empirical testing. Second, the use of a single-factor assumption for linear transfor-
mation requires further assumptions in the resulting LP problem that there are perfect 
correlations between any two inputs/outputs, or between input and output. We strongly 
believe that in any real-life decision-making situation characterized by the presence of 
uncertainty, the benefit of using the stochastic model outweighs its cost. For example, 
if the underlying objective is to analyze the efficiency, returns to scale, and returns to 
growth behavior of technology-intensive firms in the new economy, one must resort to 
the use of a stochastic model because these firms are all characterized by the presence of 
uncertainty concerning inventory holdings, excess capacity, and organizational slack as 
contingencies against uncertain future developments.

Finally, we point to some avenues for future potential research subjects.

• From our proposed stochastic model, the possible presence of input and output slack 
for individual banks can be explored. Unlike in the case of a deterministic model, 
the slacks here can presumably be interpreted as inventory (i.e., excess reserves), 
desired excess capacity, and organizational slack, which firms must hold as contin-
gencies against uncertain future developments. This analysis will aid management in 
deciding the accumulation of optimal slack to sustain market competition and price 
uncertainty.

• One could also extend our stochastic model to network production technologies to 
analyze the efficiency and returns-to-scale characterizations of firms.

• Both the chance-constrained program and stochastic frontier analysis can be com-
pared to analyze and contrast the efficiency and returns-to-scale classification of 
firms.
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• Because the linear transformation method used in our proposed stochastic model 
requires the assumption of perfect correlations between inputs/outputs, the 
desired future research involves the development of an alternative linear transfor-
mation method, which could assume such assumptions.

• Our proposed stochastic approach yields the expected efficiencies rather than the 
distribution of random efficiencies. Therefore, one can use the probabilistic approach 
by Kao and Liu (2009, 2019) to generate distributions of efficiency and scale elasticity 
scores for each firm, which could be more informative for better decision-making.

• Our focus in this study is on the ex-post-facto analysis of already affected deci-
sions, which can be used in the control aspects of management. However, future 
research requires an ex-ante (planning) analysis of how to use the returns to scale 
results based on various possible pre-defined tolerance levels to arrive at the pre-
cise tolerance level using which future-oriented decisions regarding whether to 
scale up or scale down operations can be affected.

• Our empirical application of 71 banks over eight years (1998–2005) is primarily 
for illustrative purposes. However, an extension of the data set to the year 2021 
is required to conduct a detailed empirical investigation concerning whether the 
effects of global extreme events such as COVID-19 and internal events such as 
the adoption of the Insolvency and Bankruptcy Code (IBC) Bill influence banks’ 
efficiency and scale performance differentials. Further, since our findings are not 
clear as to whether scale economies still provide an impetus for banks to become 
larger, we expect future researchers to examine returns to scale from either rev-
enue or profit perspectives, which can provide a more complete picture of scale 
economies in the Indian banking industry.

• Although the application of our proposed chance-constraint efficiency model is in 
banking to analyze efficiency and scale properties, it can potentially be applied to 
a wide selection of areas studied earlier, such as deriving innovative carbon-reduc-
ing emission strategies to increase the performance of solar energy investment 
projects in the transportation sector (Kou et al. 2022), evaluating the credit risks 
of small and medium-sized enterprises (SMEs) using payment and transactional 
data (Kou et al. 2021), evaluating credit ratings of online peer-to-peer (P2P) loans 
to control default risk and improve profit for lenders and platforms (Wang et al. 
2021), evaluating the performance of various clustering algorithms that are used 
to assess financial risk (Kou et al. 2014), and detecting clusters in financial data to 
infer users’ behaviors and identify potential risks (Li et al. 2021).

• Although our current empirical application to Indian banking is illustrative, our pro-
posed chance-constraint efficiency model can potentially be applied to analyze the 
efficiency and scale properties of real-life firms with stochastic underlying produc-
tion processes. Examples of these firms can be found in industries such as agricul-
ture, where unpredictability in weather makes the input–output relationship stochas-
tic; manufacturing industry, where firms face considerable variation in the quality 
of their inputs and outputs produced; product development industry, where firms 
face uncertainty regarding their new designs; and high-technology industries, where 
firms face hyper (dynamic)completion in the new (Internet) economy.
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