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Abstract 

We present a novel tool for generating speculative and hedging foreign exchange 
(FX) trading policies. Our solution provides a schedule that determines trades in each 
rebalancing period based on future currency prices, net foreign account positions, 
and incoming (outgoing) flows from business operations. To obtain such policies, we 
construct a multistage stochastic programming (MSP) model and solve it using the 
stochastic dual dynamic programming (SDDP) numerical method, which specializes 
in solving high-dimensional MSP models. We construct our methodology within an 
open-source SDDP package, avoiding implementing the method from scratch. To 
measure the performance of our policies, we model FX prices as a mean-reverting 
stochastic process with random events that incorporate stochastic trends. We calibrate 
this price model on seven currency pairs, demonstrating that our trading policies not 
only outperform the benchmarks for each currency, but may also be close to ex-post 
optimal solutions. We also show how the tool can be used to generate more or less 
conservative strategies by adjusting the risk tolerance, and how it can be used in a vari‑
ety of contexts and time scales, ranging from intraday speculative trading to monthly 
hedging for business operations. Finally, we examine the impact of increasing trade 
policy uncertainty (TPU) levels on our findings. Our findings show that the volatility of 
currencies from emerging economies rises in comparison to currencies from devel‑
oped markets. We discover that an increase in the TPU level has no effect on the aver‑
age profit obtained by our method. However, the risk exposure of the policies increases 
(decreases) for the group of currencies from emerging (developed) markets.

Keywords:  FX trading, FX risk, SDDP, Multistage stochastic programming, Julia, Trade 
policy uncertainty

Objectives and contributions
Foreign exchange (FX) management may be regarded as one of the most pressing con-
cerns of companies whose earnings (operations) are subject to FX uncertainty. FX 
fluctuations can result in hard-to-recover losses and dramatic changes in net income, 
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particularly in a competitive low-margin market. To hedge against FX risk, companies 
could either offset gains (losses) on foreign assets with a foreign liability (and vice versa) 
or use derivative contracts.1

Several speculators profit from FX movements. Meanwhile, financial institutions are 
in between, controlling the market risk in international portfolios while also employ-
ing FX-based investment strategies. Even commercial banks must deal with FX risk. 
Consider a bank outside the United States that provides credit (e.g., a credit card) for 
international purchases in US dollars (USD). When retail clients pay such credit, they 
typically do so in local currency (e.g., a checking account). Thus, the FX desk of such a 
bank is constantly purchasing USD for their clients when making these credit payments.

This work aims to build a decision support system that can assist companies in trad-
ing in the FX market for speculative or non-speculative purposes. We want to generate 
policies that deliver the amounts and times to trade over time to maximize the compro-
mise between expected profit and the risk of obtaining such profit. A multistage sto-
chastic programming (MSP) model is used to generate policies. The advantage of using 
MSP is that decisions made at each point in time consider all possible future FX prices 
and decisions from that point to the horizon. Instead of using the myopic single-period 
approach, we use this model because it enables a trading schedule to be planned consid-
ering the proximity to the horizon.

MSP is a popular approach for solving asset allocation problems in discrete settings, 
especially for long-term horizon planning. Applications to pension funds (e.g., Duarte 
et al. 2017; De Oliveira et al. 2017) and asset-liability management in insurance compa-
nies (e.g., Carino et al. 1994; Consigli et al. 2018). More recently, Mulvey et al. (2019) and 
Kim et al. (2020) used MSP to build goal-driven portfolios. MSP is even being used as 
a pricing option. For example, Antonelli et al. (2013) developed a linear stochastic pro-
gramming model to price American options in incomplete markets. Haarbrücker and 
Kuhn (2009) used MSP to price agreements to trade electric energy at a specific time in 
the future, known as swing options. Finally, Kwon and Li (2016) used stochastic semidef-
inite programming in regime-switching models to derive European-style option prices.

The complexity of using MSP to solve our problem is that the number of possible out-
comes grows exponentially with the number of stages considered. Because MSP typi-
cally involves multidimensional state-spaces, computing the Bellman function in each 
state becomes intractable. To address the dimensionality issue, we employ stochastic 
dual dynamic programming (SDDP), a numerical method that approximates the Bell-
man function with linear cuts rather than computing its exact value in each state. The 
SDDP has been used successfully to solve large MSP models in various fields, for exam-
ple, in energy planning (Pereira and Pinto 1991; Guigues 2014; Soares et al. 2017), supply 
chain management (Fhoula et al. 2013), and mining (Reus et al. 2019).

To the best of our knowledge, this is the first paper that uses the MSP approach to 
model and solve speculative FX trading. Most trading strategies are based on technical 
analysis, and their profitability has been studied (e.g., Abbey and Doukas 2012; Coakley 
et al. 2016; Zarrabi et al. 2017; Deng et al. 2020). Furthermore, trades are triggered by 
indicators that rely explicitly on historical patterns in those approaches. On the other 

1  See the use and effect of FX derivatives in Allayannis et al. (2012), Carroll et al. (2017), Coutinho et al. (2012)
and references therein.
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hand, our approach is forward-looking because trading decisions are based on current 
and future FX rate outcomes. Our model also handles FX trades made to hedge against 
business activities that were not previously considered in FX trading strategies. One 
intriguing aspect of our methodology is that we do not need to change the model struc-
ture or the resolution method when solving problems with different time frequency and 
horizon settings. As demonstrated in “Results with intraday trading” and “Results with 
daily trading” section, the system can operate from an intraday, purely speculative trad-
ing context to monthly hedging by import/export businesses.

We intend to manage FX exposure by determining the appropriate amount of FX to buy 
(borrow) at any given time based on future outflows (inflows) of foreign denominated cur-
rency. In this sense, our model is similar to inventory management in supply chain prob-
lems (for a more in-depth account of this topic, see the survey by Andersson et al. (2010)). 
This provides an alternative to hedging currency risk with derivative contracts, which has 
been extensively researched.2 The advantage of hedging with prior spot FX trades is that no 
money is required upfront. The disadvantage is that derivative contracts come with premium 
charges, which can be prohibitively expensive for small and medium businesses or businesses 
with low margins. Furthermore, some countries lack FX derivative markets. Nonetheless, as 
we will see in  “Methodology” section, both approaches can produce comparable hedging 
effectiveness.3 Yu et al. (2020) provided a multiperiod setting for FX, determining the opti-
mal number of options or futures for future FX cash flows in a firm. Their solution is based 
on dynamic programming as well. Their own algorithm, however, is not as well documented 
as the SDDP, and their experiments only show the case of a single cash flow. Furthermore, 
the model and its solution are not intended to include speculative FX trading.

A second contribution is that our paper expands on the SDDP method’s initial applica-
tion in economic and financial fields. So far, the SDDP has only been used in portfolio 
management applications. Kozmík and Morton (2015), and later Dupačová and Kozmík 
(2017), were among the first to use the SDDP and to include an algorithm that reduces 
the number of scenarios required for asset returns. Guigues (2017) proposed a cut selec-
tion strategy to boost the efficiency of the dynamic dual programming algorithm when 
applied to a portfolio problem. Valladão et  al. (2019) proposed a model that can han-
dle multiple asset selections and trading costs. Risk constraints and Markovian time-
dependent returns based on a factor model and regimes are also included. Meanwhile, 
Guigues et al. (2020) extended the regularization method that enables the SDDP to solve 
non-linear problems. The algorithm can find asset allocations under market impact costs 
and risk aversion measures. Finally, Guigues (2021) proposed a method for solving the 
SDDP with an arbitrary number of stages. The paper demonstrates the economic benefit 
of using the method in cases where the trading timeframe is unknown in advance.

Hence, we would like to show that the tool can be applied in another context, that 
is, FX trading. To do so, we solve our novel MSP model using an open-source pack-
age called “sddp.jl,” which Dowson and Kapelevich (2017) implemented in Julia. There is 
no longer any need to create the algorithm from scratch with this package. As a result, 
we encourage finance practitioners and traders to use this tool in their work. We also 

2  See Álvarez-Díez et al. (2016) and Reus (2019) for small and medium businesses (SMB). See Maurer and Valiani (2007) 
and Cho et al. (2020) and references therein for the hedging of international portfolios.
3  We also explain how we could add hedging instruments such as forward contracts to our model.
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note that the sddp.jl package was successfully used by Reus and Prado (2021) to solve an 
index-based asset allocation problem.

Third, we can obtain solutions that implicitly account for risk aversion during the solu-
tion phase. Most FX strategies reduce risk by incorporating explicit constraints (e.g., 
bounding positions and turnovers). The disadvantage of doing so is that good solutions 
may be excluded when prior constraints are imposed. Previous research (e.g., Álvarez-
Díez et al. 2016) has used risk measures to find hedging positions in one- and two-stage 
settings. However, as Homem-de-Mello and Pagnoncelli (2016) discussed, using risk 
measures in a multistage setting is more difficult to implement. Fortunately, the sddp.jl 
package allows us to change the MSP’s objective function and thus reward conservative 
solutions based on the user’s risk tolerance, without the need for prior boundaries.

Fourth, to the best of our knowledge, this is the first paper to use the SDDP to imple-
ment a mean-reverting process in a financial application. The algorithm was ini-
tially designed to work with stage-independent random variables. Following that, new 
research demonstrated how to incorporate Markov processes (Philpott and De Matos 
2012) and autoregressive processes (Shapiro et al. 2013; Guigues 2014). The sddp.jl pack-
age can handle both types of processes, and the present study shows how to implement 
the Vasicek (1977) model.

Finally, we contribute to the existing literature on economic factors (information) 
that explain and/or influence currency movement. In this regard, Aloosh and Bekaert 
(2021) concluded that clustering dollar and European currencies is reasonable. They 
discover that trading volume and knowing whether a currency is classified as a com-
modity currency can explain FX dynamics better than carry. Other research focuses on 
macroeconomic factors. In a recent article, Pham (2019) demonstrated that a decrease 
in Vietnam’s money aggregate, as measured by the interest rate, results in a deprecia-
tion (appreciation) followed by an appreciation (depreciation) in the country’s real effec-
tive exchange rate. These findings contradict the overshooting hypothesis proposed 
by Dornbusch (1976) and empirically supported by Sims (1992) and Eichenbaum and 
Evans (1995). This paper aims to investigate the impact of an increase in the trade policy 
uncertainty (TPU) index, as developed by Caldara et al. (2020), on the performance of 
the SDDP solutions. The TPU measures the frequency of occurrences of trade policy 
and uncertainty terms in major newspapers. Huynh et al. (2020) show that the TPU has 
a strong relationship with FX volatility, even when the Economic Policy Uncertainty 
(EPU) index is included.4 Our results show that an increase in the TPU level produces an 
increase (decrease) in the volatility of the currencies of emerging (developed) markets. 
This results in an increase (decrease) in the risk of the SDDP-generated policies in com-
parison to the risk obtained in periods with lower TPU levels.

The SDDP’s application in our work aligns with the growing demand for quantitative 
methods in finance. As Hu et  al. (2015) and Kou et  al. (2019) explained, the financial 
market is a highly interconnected and complex network. As a result, gaining a better 
understanding of it necessitates the use of advanced quantitative and machine learning 

4  The TPU index used in Huynh et al. (2020) comes from Baker et al. (2019). The EPU index was designed by Baker et al. 
(2016) and measures the frequency of own-country newspaper articles mentioning terms related to economic policy 
uncertainty. The literature review in Al-Thaqeb and Algharabali (2019) mentions the research relating the EPU index to 
exchange rates.
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methods to assess systemic risk and improve financial stability. The TPU index, for 
example, is built using text mining methods, which are commonly used to gauge market 
sentiment.5 Incorporating risk aversion endogenously in our methodology necessitates 
handling and adapting risk measures, which is another key element used by statistical 
methods. Brownlees and Engle (2017), for example, introduced SRISK, which measures 
a firm’s capital shortfall in the event of a severe market decline. Agliardi (2018) explored 
the ambiguity of the value-at-risk when estimating capital requirements. Another known 
application is the use of machine learning techniques to classify the credit risk in retail 
banking. For example, Zhang et al. (2015) used a support vector machine to assess the 
default risk of SMEs when supply chain finance is included. Meanwhile, Li et al. (2021) 
applied the k-Means algorithm to financial data using a revised support vector data 
description model. Dastile et al. (2020) published a recent review on credit scoring using 
advanced statistical methods.

The remainder of this paper is structured as follows. “SDDP method” section briefly 
explains the SDDP method. “Methodology” section presents the MSP and FX price mod-
els. Then, “Results with intraday trading” section demonstrates the model’s performance 
and policies derived from our model within an intraday trading setting, using seven cur-
rency pairs. “Results with daily trading” section   shows the model’s performance in a 
daily trading setting using the same currency pairs and demonstrates the effect of the 
TPU level on the performance of our solutions. Finally, “Conclusion and future develop-
ment” secrion concludes the paper and discusses possible future extensions that could 
be used to improve the methodology.

SDDP method
We explain the SDDP at the practitioner level in this section, summarizing the infor-
mation provided by Reus and Prado (2021). The SDDP is a numerical method for cal-
culating MSP. To facilitate resolution, MSP are typically structured as time-dependent 
subproblems. Let xt represent the decisions at each time period t, and ξt represent the 
exogeneous stochastic process. Each subproblem can be written like Philpott and De 
Matos (2012).

For t = 1:

For t = 2, . . . ,T :

Matrix Bt and vector bt depend on ξt , while At and ct do not. Note that xt are 
obtained without knowing the values of ξl∀l > t . At period T  , we obtain a determinis-
tic value for the border condition E[QT+1(xT , ξT+1)].

(1)
z = min

x1≥l1
c1x1 + E[Q2(x1, ξ2)]

subject to : A1x1 = b1 − B1x0

(2)
Q1(xt−1, ξt) = min

xt≥lt
ctxt + E[Qt+1(xt , ξt+1)]

subject to : Atxt = bt − Btxt−1

5  See Kou et al. (2022) for details about the resilience of financial networks and Tsai and Wang (2017) to know more 
about text mining methods in finance.
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The difficulty of solving an MSP lies in the size of the state space, that is, the pos-
sible values of ξt . To find the best value, Qt must be evaluated in every possible state, 
which can be time consuming in multistage problems. As a result, numerical tech-
niques such as the SDDP must be used to find near-optimal solutions.

As illustrated in Fig. 1, the main idea of the SDDP is to build an outer approxima-
tion of E[Qt+1(xt , ξt+1)] with linear cuts. Within the SDDP algorithm, problems (1)–
(2) are approximated with the following linear programming (LP) models:

For t = 1:

For t = 2, . . . ,T :

The term E[Qt+1(xt , ξt+1)] is replaced by variable θt+1 , which is bounded by the cuts 
defined by constraints (3c)–(4c). Note that the dual variables of original constraints 
are denoted by πt and depend on ξt.

To understand the algorithm in more details (including estimations of terms gk ,st+1 
and Gk ,s

t+1 ), a pseudo-code is presented below. At each iteration k , we start with the 
forward pass. In this step, N  scenarios are sampled, and problems (3)–(4) are solved 
sequentially at each period t . Solution xk ,st−1 and function value Qt xk ,st−1, ξt  are saved 

for each scenario s , which is used to solve the problem in the next period. The term zk 

(3a)z = min
θ2,x1≥l1

c1x1 + θ2

(3b)subject to : A1x1 = b1 − B1x0[π1]

(3c)θ2 ≥ gk ,s2 + Gk ,s
2 x1, k = 1, . . . ,K , s = 1, . . . ,N

(4a)z = min
θt+1,xt≥lt

ctxt + θt+1

(4b)subject to : Atxt = bt − Btxt−1[πt ]

(4c)θt+1 ≥ gk ,st+1 + Gk ,s
t+1xt , k = 1, . . . ,K , s = 1, . . . ,N

Fig. 1  Linear approximations (dashed lines) of the exact value of function Q
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obtained can be used as a lower bound, whereas the sample average of the costs can 
be used as an upper bound. The stopping criterion is met if the lower bound is within 
the α-confidence interval of the upper bound.

The new cuts are generated with the backward pass step. By moving backward in time, 
problem (4) is solved at period t by using the stored decisions xk ,st−1 in the forward pass step. 
Both the dual variables πt and stored terms Qt

(

xk ,st−1, ξt

)

 , are used to estimate gk ,st  and Gk ,s
t  . 

Note that the cuts generated at period t are used for period t − 1.

Bandarra and Guigues (2021) recently developed and tested a cut selection method for 
multicut decomposition algorithms on a portfolio problem. The results show that their 
method outperforms other cut selection methods (e.g., De Matos et al. 2015), particularly 
when implementing the SDDP.

The SDDP was originally designed for convex functions Q , which does not apply to eco-
nomic problems like our trading model. In most economic problems, the objective func-
tion is determined by revenues (costs), which are calculated by multiplying a state variable 
(price/cost) by an endogenous variable (quantity). Downward et al. (2020) address this issue 
by incorporating an idea developed by Baucke et  al. (2017) to bound non-convex value 
functions into the SDDP.jl.

Another enhancement to the method was the incorporation of risk measures into the 
objective function, as seen in Philpott et al. (2013) and Shapiro et al. (2013). In this regard, 
the SDDP.jl allows for the addition of risk aversion by replacing the risk neutral expected 
value at each stage in (2) with

where β ∈ [0, 1], which is a convex combination of the expected value and the risk meas-
ure. The Conditional Value-at-Risk (CVaR) is an example of a risk measure. CVaR was 
first proposed by Rockafellar et al. (2000) and has since been extended to a multistage 
context in several publications, including Reus et al. (2019).

(5)ρ(X) = βE[X]+ (1− β)RM[X],
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Methodology
Currency trading problem (CTP)

Consider set t ∈ {1 . . .T } to be the times at which currency can be purchased or sold 
during a period with horizon T  . Assume there are scheduled exogenous flows ft , which 
are denominated in foreign currency. If ft is negative (positive) then we have an expense 
(income). At each time, we must decide:

•	 x+t
(

x−t
)

 : The amount of foreign currency to be bought (sold) at time t.

	 To make the above decisions, we need to know the value of the following state vari-
ables:

•	 St : FX price at the end of time t , that is, the value in the domestic currency of one 
unit of foreign currency.

•	 Pt : Net position of foreign currency at the end of time t . If the amount is positive 
(negative), we have a long (short) position.

The uncertainty of prices can be included in the exogenous process ξt , which is the FX 
price increase (decrease) (%) at time t.6 We include the bid/ask spread with a parameter c 
and define S to be the price at which we buy and S(1− c) to be the price at which we sell. 
At horizon T  , we value positions at closing price ST . Initial positions and prices at the 
beginning of the day ( S0,P0 ) are known. The CTP can be written as follows:

For t = 1, . . . ,T − 1:

For t = T :

The objective function (6a) maximizes the P&L in the local currency. The function 
adds the market value of any open positions in the final period.7 Constraints (6b) are 
similar to the supply chain management ending inventory equation: the position at the 
end of a period is the value of the position at the end of the previous period plus new 
purchases (sales) plus exogenous flows. The difference between physical inventory and 

(6a)Qt(St−1,Pt−1, ξt) = max (1− c)Stx
−
t − Stx

+
t + E[Qt+1(St ,Pt , ξt+1)]

(6b)
subject to :
Pt = Pt−1 + x+t − x−t + ft∀t ≥ 1

(6c)St = ξt(St−1)∀t ≥ 1

(6d)x+t , x
−
t ≥ 0∀t ≥ 1

(7a)
QT (ST−1,PT−1, ξT ) = max (1− c)STx

−
T − STx

+
T + PTST (1− c)

subject to : (6b), (6c), (6d)

6  We should remark that ξt is classified as exogenous because its values are not optimized in the CTP. The SDDP gener-
ates values for ξt according to a stochastic process that is defined outside the CTP.
7  Q1(S0, P0, ξ1) is a scalar that can be named as z . To follow the notation from problems (1) and (2), we could also write 
the objective function (6a) as: Qt(St .−1, Pt−1, ξt) = min−(1− c)Stx

−
t + Stx

+
t + E

[

Qt+1(St , Pt , ξt+1)
]

.
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accounting inventory is that account Pt can be negative. This is true, for example, of 
incoming flows in exports businesses, which can be hedged with short positions. Equa-
tions (6c) update the exchange rate according to its stochastic processes, with ξt a func-
tion of St−1 . Finally, the constraints in (6d) describe the nature of the variables. Note that 
function (6a) does not include the income or expenses generate by the flows, which 
equals 

∑

t=1

St ft . This term is the total P&L obtained using the “no-hedge” policy, that is, 

the solution obtained by setting x±t = 0∀t , which is feasible in the CTP.
The model described above is the generic version of a CTP model. Evidently, each 

practitioner can add customized requirements. For example, a common constraint 
might be to limit the amount to be held in account Pt , which can be added by imposing 
constraints of the type lpt ≤ Pt ≤ upt . Another option is to set a limit on the number of 
new positions taken. As we will see in the following section, depending on the dynamics 
of the FX prices in Eq. (6c), new stochastic and state variables may be required.

We are said to be in a purely speculative setting when there are no flows coming from 
business operations to be hedged, that is, when ft = 0∀t . In the case where ft ≥ 0∀t and 
no speculation is allowed, then we omit variable x+t  . This could be the case with export-
ing businesses that only want to hedge their future incomes. Analogously, for importing 
businesses looking to hedge their future expenses ft ≤ 0∀t , we omit variable x−t  if the 
CTP is used only for non-speculative purposes.

The CTP also admits a complete hedge (i.e. risk-free solution, RF hereafter) if we 

choose x+1 =
T
∑

t:ft<0

ft , x
−
1 =

T
∑

t:ft>0

ft and x±t = 0∀t > 1 . Without a derivative market, this 

is a natural way to completely hedge against currency volatility. The inclusion of deriva-
tive contracts is beyond the scope of this work, but forward contracts can be easily 
incorporated into the CTP. The price Ks

t  of a forward contract purchased at time t and 
maturing at time s can be divided into the spot price St and forward points fpst . Assume 
that all contracts mature at the end of the horizon T .8 Thus, the profit in (6a) can be 
replaced by (1− c)KT

t x−t − KT
t x+t  , which can be decomposed into the original profit and 

the premium for using forward contracts:

Furthermore, if we consider fpTt  to be similar in time (as is the case for short-horizon 
settings), then the second component of Eq. (8) is nearly constant when added across the 
entire time span, and thus it will not change the optimal hedging policy. To put it another 
way, using forward contracts does not always provide better hedging solutions. It aids pol-
icy implementation though.

FX price model

Empirical evidence suggests that finding a model that can fully characterize FX price 
dynamics is difficult, if not impossible. However, there are some facts or patterns to con-
sider when selecting a suitable model. Several studies have found mean-reversion in real 

(8)(1− c)KT
t x−t − KT

t x+t =
[

(1− c)Stx
−
t − Stx

+
t

]

+
[

(1− c)fpTt x
−
t − fpTt x

+
t

]

8  If not, we decompose x+t  into x+t ,s , with xt =
∑

s≥t

xt ,s.
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exchange rates (e.g., Jorion and Sweeney 1996; Lothian 1997; Caporale and Gil-Alana 
2004). Strategies based on a moving average and the Relative Strength index, as discussed 
in Manahov et al. (2014) and Svoboda et al. (2020), are common in FX trading and implic-
itly assume mean-reversion behavior in order to work. The Geometric Brownian Motion 
(GBM) and extensions are another process that is commonly used when pricing currency 
options. Prices can be modeled as a random walk for short-term horizons. Hong et  al. 
(2007) and Colombo and Pelagatti (2020) explained the difficulty of finding FX models that 
improve such a process.

The SDDP requires that a discrete lattice represent the chosen price model. Figure  2 
depicts the advantage of this structure over a scenario tree structure. The number of states 
that must be handled is reduced while maintaining the quality of the process representation.

Given all of the preceding considerations, we present a model that follows a Vasicek 
mean-reverting process and can transform into a GBM in the presence of an external ran-
dom shock. Vasicek dynamics can be expressed as

with dWt a Brownian process. S∞ is the long-run mean-level and κ calibrates the rever-
sion speed toward S∞ . To build the lattice, first notice that the solution to the Vasicek 
model in equation (9) can be written as:

From Eq.  (10), we see that St is a Gaussian process with the following mean and 
variance:

(9)dSt = κ(S∞ − St)dt + σvdWt

(10)St+�t = Ste
−κ�t + S∞

(

1− e−κ�t
)

+ σve
−κ�t

t+�t
∫
t

e−κ(t−u)dWu

(11)
µS,t = E(St+�t) = Ste

−κ�t + S∞
(

1− e−κ�t
)

σ 2
S = V (St+�t) =

σ 2
v

2κ

(

1− e−2κ�t
)

Fig. 2  Scenario structure for price movements when T = 5 . (Left): General scenario tree. The number of 

states (nodes) is equal to 2
5−1
2−1

= 31 . (Right): Lattice. The number of states (nodes) is equal to 
5
∑

k=1

k = 15
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With formulas in (11), we can then construct a binomial lattice with the following 
structure:

Besides the mean-reverting structure, we add another dynamic that follows a positive 
or negative trend to account for specific market events that affect FX prices. To accom-
plish this, we can use the binomial lattice defined by Jarrow and Rudd (1983),

which approximates the GBM. The sign of µ̂ determines the direction of the trend. To 
combine both dynamics, we add a new i.i.d. random process δt that can take three pos-
sible values:
δt ∈ {0,−1, 1} . If δt = 0 , then the price follows the dynamics in (12). If δt = −1(1) , 

then the price changes its dynamics to (13) with a negative (positive) drift. The probabili-
ties of the values are denoted by π0 , πd and πu respectively. Since the shock that changes 
the dynamics is not considered as common, then π0 ≫ πd and π0 ≫ πu . We also assume 
that there will be no more than one shock during the time period. That is, the GBM pro-
cess changes only once and remains unchanged until the horizon. To incorporate the lat-
ter assumption, we add a state variable Et ∈ {0,−1, 1} into the CTP. The day begins with 
price dynamics that are mean-reverting ( E0 = 0) . Unless a shock occurs, the value of Et 
equals 0. In that case, Et changes to − 1 or 1, and then remains constant until the end of 
the day. We add the two constraints listed below to the CTP. The first is the evolution of 
Et:

The second is the price St+�t , which depends on two states variables ( Et and St ), and 
ξt as

Results with intraday trading
In this section, we present the CTP results in various contexts. Our research aims to 
demonstrate and validate the benefits of our decision support tool by referencing market 
data. We do not concentrate on the calibration of price dynamics or the profit value itself 
because each practitioner will have a unique data set when using the model.

We use Julia’s sddp.jl package to implement the CTP in all settings (for more infor-
mation, see Dowson and Kapelevich (2017)). As stated in the first section, the package 

(12)St+�t =
{

µS,t + σS if ξt = 1,P(ξt = 1) = 1
2

µS,t − σS if ξt = 0,P(ξt = 0) = 1
2

(13)St+�t =
{

Ste
µ̂�t+σ̂

√
�t , P(ξt = 1) = 1

2

Ste
µ̂�t−σ̂

√
�t , P(ξt = 0) = 1

2

(14)Et =
{

Et−1, if Et−1 = ±1
δt if Et−1 = 0

(15)

St+�t =











































Ste
−κ�t + S∞

�

1− e
−κ�t

�

+ σv√
2κ

√
1− e−2κ�t , if Et = 0, ξt = 1,P(ξt = 1|Et = 0 ) = 1

2

Ste
−κ�t + S∞

�

1− e
−κ�t

�

− σv√
2κ

√
1− e−2κ�t , if Et = 0, ξt = 0,P(ξt = 0|Et = 0 ) = 1

2

Ste
µ̂�t+σ̂

√
�t , if Et = 1, ξt = 1,P(ξt = 1|Et = 1 ) = 1

2

Ste
µ̂�t−σ̂

√
�t , if Et = 1, ξt = 0,P(ξt = 0|Et = 1 ) = 1

2

Ste
−µ̂�t+σ̂

√
�t , if Et = −1, ξt = 1,P(ξt = 1|Et = −1 ) = 1

2

Ste
−µ̂�t−σ̂

√
�t , if Et = −1, ξt = 0,P(ξt = 0|Et = −1 ) = 1

2
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enables us to solve the model without having to deal with the SDDP algorithm imple-
mentation. This means that the algorithm presented in “SDDP method” section does not 
need to be coded for the CTP. The sddp.jl uses the structure defined in models (1)–(2), 
which is the same structure used by the CTP. As a result, the model and input are added 
to the package in accordance with the formulations in (6)–(7). The model’s solution 
includes a sampling procedure that can be used to define an allocation policy later on. 
Following some calibration, we discovered that sampling 10,000 scenarios was sufficient 
to represent future FX prices in all settings. Gurobi was the LP solver used in the SDDP 
procedure, and the experiments were carried out on a MacBook Pro with a Quad-Core 
Intel Core i5 processor and 16 GB RAM. The CPU time required to reach each solution 
displayed was less than 20 min.

We calibrate the price models for seven pairs using 15-min intraday prices. The first 
three currency pairs are from emerging economies (the Chilean peso (USDCLP), the 
Brazilian real (USDBRL), and the Turkish lira (USDTRY), whereas the remaining four 
are from developed economies (the Australian dollar (AUDUSD), the British pound 
(GBPUSD), Euros (EURUSD), and Japanese yen (USDJPY)). We only include trades 
made between 9 a.m. and 2 p.m., which is typically the busiest time in the market, par-
ticularly for currencies from developing economies. The estimates for each parameter 
are shown in Table 1. The values of κ and σv for the mean-reverting dynamics in (12) 
represent the mean results obtained from statistical calibrations on each day within a 
historical sample. Note that S∞ is not calibrated because we set S∞ = S0 . To compare 
currency pairs, we track the long-term volatility σ/

√
2κ  , with σ := σv/S0 . Figure 7 shows 

the calibration results in greater detail.

Setting 1: Non‑speculative trading

We start by considering a company that needs to fulfill a demand D (in foreign currency) 
by the end of the day, i.e. fT = −D and ft = 0∀t < T  . This setting is inspired by the 
credit payments made by an FX desk, which were discussed at the beginning of this arti-
cle, but it also applies to any importing business that needs to cover a daily expense. 
Note that no speculation is allowed. Thus, variables x−.

t  can be removed from the CTP 
(which also causes the solutions to be insensitive to the bid/ask spread). If we want to 

Table 1  Estimates of parameters κ and σv defining the mean-reverting process in (12) are obtained 
from a sample containing 15-min intraday prices from 9 a.m. to 2 p.m. within the period January 
2020 to December 2021

Estimates of parameters µ̂ and σ̂ defining the GBM process of Eq. (13) are obtained from the sample of daily currency 
returns within the period January 2000 to December 2021. We determine the mean and volatility of returns above the 90th 
and below the 10th percentile of the sample, to capture the degree of the trends (drifts). S0 is the spot price to be used at 
the beginning of every simulation. Estimates are shown on a daily scale. 1 pip = 10.−4

Currency S0 κ σ := σv/S0 σ/
√
2κ µ̂(pips) σ̂(pips)

USDCLP 800 0.09 0.13% 0.31% 10 12

USDBRL 5.5 0.07 0.21% 0.56% 17 25

USDTRY​ 10 0.11 0.08% 0.17% 23 75

AUDUSD 0.7 0.06 0.14% 0.40% 13 24

GBPUSD 1 0.07 0.11% 0.29% 9 14

EURUSD 1.5 0.07 0.07% 0.19% 8 6

USDJPY 105 0.09 0.05% 0.12% 10 12
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repeat the same policy every day, we should end up in the same position as we started 
the day, that is PT = P0 = 0 . Since there is no selling under this setting, we have the 
option to adapt the objective function to minimize costs, i.e.

We build two policies, which differ in terms of risk aversion: risk neutral (RN) and risk 
averse (RA). Such policies can be defined by setting a specific value for β in Eq. (5) (e.g. 
β = 1 for RN). As an example, consider the RF policy, which purchases everything at the 
start of the day at a cost of S0 . Another reference is the “no-hedge” policy (NH hereafter). 
In this case, the total cost of NH equal STD . Besides RF and NH, we compare both poli-
cies to two benchmark policies. The first (B1) is the ex-post optimal policy, which buys 
at the day’s lowest price. The second (B2) buys the same amount, D/T  , every 15 min, 
thus buying at the average price of the day. The performance of every policy is measured 
using different statistics, applied based on the total cost (in domestic currency) per unit 

of foreign currency. Since PT = 0, 
T
∑

t=1

x+t = D . Thus, the total cost divided by D is a 

weighted-average price at which every solution buys in each period, i.e. 
T
∑

t=1

Stx
+
t /D =

T
∑

t=1

Stx
+
t /

T
∑

t=1

x+t  . For B1, B2, RF and NH, the total costs divided by D equal 

min
t

St ,
T
∑

t=1

St/T , S0 and ST respectively. Since S∞ = S0 in Eq.  (12), E0(St) = S0∀t if no 

shock occurs. Hence, the shock bias toward changing to a GBM with positive or negative 
trend determines whether E0(St) is greater or less than 0. That is, if
πu ≥ (≤)πd , E0(St) ≥ (≤) S0 . This implies that benchmark B2 is dominated by the RF 

policy when πu ≥ πd.
The performance of the CTP solutions and the benchmarks are shown in Table  2, 

with shock probabilities of (πu,πd) = (1.25%, 3.75%) . The performance for the case 
(πu,πd) = (3.75%, 1.25%) is shown in Table 8. Some of the findings are as follows:

1.	 In terms of average costs, there is a small gap between the RF and the ex-post 
optimal policy (B1). For example, the average cost reduction is 0.8% for USD-
CLP, 1.3% for USDBRL, 1.8% for USDTRY, 1.0% for AUDUSD, 0.7% for GBPUSD, 
and 0.6% for EURUSD and USDJPY. The gap is even smaller for the case where 
(πu,πd) = (3.75%, 1.25%).

2.	 CTP solutions can reduce average costs to below S0 , making them competitive with 
RF. When daily volumes are high (as in the case of a bank’s FX desks), the difference 
between RN and RF produces significant long-term savings, particularly for curren-
cies from emerging economies. Consider the results with a daily volume of one mil-
lion dollars. For USDTRY, the savings obtained with RN (relative to RF) are 1 × (1 − 9
.8758/10) × 250 days = 3.11 million USD a year.

3.	 At a higher expense, we can reduce the risk of RN using RA’s policies in each cur-
rency (see VaR99% and CVaR99% measures). The option of using RA is especially 

Qt(St−1,Pt−1, ξt) = min Stx
+
t + E[Qt+1(St ,Pt , ξt+1)]

QT (ST−1,PT−1, ξT ) = min STx
+
T
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desired when πu > πd (see Table  8). The degree of risk reduction can be handled 
with the chosen value for β . Note that we could reach RF if we set β = 0.

4.	 Compared to B2, RN and RA both reduce the average costs as well as the risk of buy-
ing at high prices too. For example, the CVaR99% reduction made by RA, relative to 
B2, is 1 − 804.7/810.5 = 0.7% for USDCLP, 1.4% for USDBRL, 1.7% for USDTRY, 0.9% 
for AUDUSD, 0.5% for GBPUSD and EURUSD, and 0.9% for the USDJPY.

5.	 NH allows us to quantify the consequences of not hedging at all. When we compare 
CTP solutions to NH, the risk reduction and average savings are significant.

Table 2  Performance of CTP solutions RN and RA versus benchmark policies (B1, B2 and NH), when 
(πu ,πd) = (1.25%, 3.75%)

The subscript in RN and RA is the β used in Eq. (5), which defines the degree of risk aversion. The statistics are obtained 
from the total cost in domestic currency divided by total demand D = 1. The numbers in parenthesis are the rate of increase 
(reduction) (%) relative to S0

Currency Policy Mean Median Volatility VaR99% CVaR99%

USDCLP S0 = 800.0 RN1 795.3 (− 0.6) 797.1 6.4 805.0 806.1 (0.8)

RA0.7 797.9 (− 0.3) 798.9 4.4 803.2 804.7 (0.6)

B1 793.9 (− 0.8) 796.0 5.5 800.0 800.0 (0.0)

B2 798.9 (− 0.1) 799.2 3.8 809.0 810.5 (1.3)

NH 796.5 (− 0.4) 797.3 8.7 818.8 821.3 (2.7)

USDBRL S0 = 5.5 RN1 5.4463 (− 1.0) 5.4687 0.078 5.5687 5.5857 (1.6)

RA0.7 5.4807 (− 0.4) 5.4890 0.0484 5.5312 5.5514 (0.9)

B1 5.4287 (− 1.3) 5.4544 0.0671 5.5000 5.5000 (0.0)

B2 5.4872 (− 0.2) 5.4908 0.0451 5.6101 5.6294 (2.4)

NH 5.4616 (− 0.7) 5.4717 0.1037 5.7359 5.7692 (4.9)

USDTRY S0 = 10.0 RN1 9.8758 (− 1.2) 9.9863 0.2386 10.2803 10.4226 (4.2)

RA0.7 9.9519 (− 0.5) 9.9920 0.1589 10.1324 10.2663 (2.7)

B1 9.8154 (− 1.8) 9.9458 0.2319 10.0000 10.0000 (0.0)

B2 9.9696 (− 0.3) 9.9941 0.1285 10.3530 10.4423 (4.4)

NH 9.9107 (− 0.9) 9.9813 0.3069 10.7926 10.9571 (9.6)

AUDUSD S0 = 0.7 RN1 0.6949 (− 0.7) 0.6974 0.0083 0.7113 0.7183 (2.6)

RA0.7 0.6974 (− 0.4) 0.6989 0.0058 0.7048 0.7075 (1.1)

B1 0.6929 (− 1.0) 0.6958 0.007 0.7000 0.7000 (0.0)

B2 0.6987 (− 0.2) 0.6992 0.0045 0.7114 0.7136 (1.9)

NH 0.6962 (− 0.5) 0.6974 0.0105 0.7243 0.7291 (4.2)

GBPUSD S0 = 1.0 RN1 0.9948 (− 0.5) 0.9974 0.0076 1.0061 1.0083 (0.8)

RA0.7 0.9972 (− 0.3) 0.9989 0.0059 1.0049 1.0074 (0.7)

B1 0.9931 (− 0.7) 0.9956 0.0066 1.0000 1.0000 (0.0)

B2 0.9988 (− 0.1) 0.9991 0.0044 1.0107 1.0126 (1.3)

NH 0.996 (− 0.4) 0.9971 0.0101 1.0227 1.0259 (2.6)

EURUSD S0 = 1.5 RN1 1.4930 (− 0.5) 1.4970 0.0092 1.5058 1.5071 (0.5)

RA0.7 1.4945 (− 0.4) 1.4981 0.0085 1.5049 1.5065 (0.4)

B1 1.4917 (− 0.6) 1.4957 0.0081 1.5000 1.5000 (0.0)

B2 1.4983 (− 0.1) 1.4989 0.0052 1.5123 1.5138 (0.9)

NH 1.4946 (− 0.4) 1.4964 0.0125 1.5256 1.5279 (1.9)

USDJPY S0 = 105.0 RN1 104.4 (− 0.6) 104.9 0.8 105.3 105.4 (0.4)

RA0.7 104.5 (− 0.5) 104.9 0.8 105.2 105.3 (0.3)

B1 104.3 (− 0.6) 104.8 0.8 105.0 105.0 (0.0)

B2 104.9 (− 0.1) 104.9 0.5 106.2 106.3 (1.3)

NH 104.5 (− 0.4) 104.8 1.1 107.4 107.7 (2.6)
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6.	 Volatility as a risk indicator may be deceptive. In many situations, B1 can have one 
of the highest volatilities, and we know it never buys above S0 . In such a strategy, the 
volatility is produced by scenarios that allow one to buy at a very low price (e.g., dur-
ing a downward trend), which is the inverse of what we consider risk.

In our model, currencies are characterized by the values of the parameters 
(

κ , σ , µ̂, σ̂
)

 
seen in Table 1. Thus, the similarity (difference) in performance between the exchanges 
is also determined by the similarity (difference) in these parameters. This explains why 
the results for EURUSD, GBPUSD, and USDJPY are so similar. According to the sensi-
tivity analysis based on USDCLP in Table 9, an increase (decrease) in σ/

√
2κ  produces 

an increase (decrease) in the risk of every policy, except for B1. The same table shows 
that increasing the GBM drift µ̂ , decreases average costs of every policy. It also raises 
the risk in benchmark B2 and NH solutions, but not always in CTP solutions. Table 10 
demonstrates that the risk of each policy (except B1) is sensitive to changes in the GBM 
volatility σ̂.

The sensitivity analysis discussed above helps to explain why CTP solutions generally 
offer greater potential in terms of savings from emerging economies, but with greater 
risk exposure. In those currencies, we have higher long-term volatility in the mean-
reverting process and/or shocks of bigger magnitudes (i.e., higher values of µ̂ and σ̂ ). 
We can also include the AUDUSD in this group because it is a commodity currency that 
performs similarly to the other commodity currencies (CLP and BRL).

Fig. 3  RN solutions for seven representative scenarios. The first plot shows the value of state variable Et , 
which tracks whether there is a change in the FX price dynamics: 0 if prices follow the mean-reverting 
process of Eq. (12) and 1 (− 1) if prices follow the GBM of Eq. (13) with an upward (downward) trend. The 
second plot shows the evolution of the FX prices and the third plot shows the fraction purchased (amount 
purchased from total demand of D = 1)
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Figure 3 depicts the RN’s decisions in seven representative scenarios chosen at random 
for illustration purposes.9 One interesting finding across all 10,000 scenarios is that pur-
chases are made sporadically throughout the day, as opposed to benchmark B2. The tim-
ing of these purchases is what distinguishes the scenarios. Clearly, a shift in FX dynamics 
(from mean-reverting to GBM) influences future decisions. In the first two scenarios 
(black), the price always follows a mean-reverting process. In these scenarios, the RN 
does not begin buying until 10:15, and then only if prices fall below a certain level. If this 
does not happen, the first purchase can be postponed (until 12:30 in scenario 2). Prices 
in scenarios 3 and 4 (green) change to follow a GBM with a downward trend at some 
point during the day. The RN policy, as expected, waits until the last period to purchase 
what is still required to meet demand (e.g., scenario 3). In Scenario 4, the shock occurs 
late in the day. Thus, purchases are made in accordance with the policy implemented in 
scenarios 1 and 2. The price process changes to a GBM with an upward trend in scenar-
ios 5 and 6 (blue). The RN begins buying immediately after the shock (9:30 in scenario 
5). In scenario 6, the shock occurs later. As a result, purchases are made in accordance 
with the policy implemented in scenarios 1 and 2. Finally, scenario 7 demonstrates how 
the RN policy results in an expensive solution. In this instance, the price dynamic shifts 
at 10:30. Prices are expected to fall in the coming months. As a result, the RN waits until 
late in the day to purchase. However, the price always rises and never falls. The RA pol-
icy buys earlier than the RN policy in every scenario, even though the best time to buy 
is late in the day on average (e.g., the case where prices follow a GBM with a negative 
trend). These choices avoid situations like the one in Scenario 7.10

We should point out that we test the CTP solutions when FX prices follow a pure 
random walk, which is possible with our model defined in “FX price model” section by 
setting πu = 1(or πd = 1) and µ̂ = 0 . In other words, we remove mean-reversion and 
possible trends from the price process. As expected, the tests done using this process 
show us that the average cost savings for every policy (except B1) equal S0 , because the 
unconditional expectation E(St) = S0 in a random walk. Since the RF policy cost is S0 
surely, then it outperforms all other policies except B1. B1 saved 0.4% for USDCLP, 
0.8% for USDBRL, 2.3% for USDTRY, 0.8% for AUDUSD, 0.4% for GBPUSD, 0.2% for 
EURUSD, and 0.4% for USDJPY. The latter gaps are generally smaller than the reduction 
seen in Setting 1 results, indicating that there is little room for improvement in the RF 
policy results.

Setting 2: Speculative trading

With the same price dynamics, we now do purely speculative trading within boundaries, 
i.e. −L ≤ Pt ≤ L . Pure trading profits (P&L) in domestic currency are divided by volume 
L to determine performance. We define benchmark S1 as the strategy that buys L at the 
day’s lowest price and sells L at the day’s highest price. S1 is not always ex-post optimal 
because there may be multiple opportunities to buy low and sell high throughout the 
day. However, it remains highly competitive and would be ideal to implement if we pos-
sessed such predictive abilities.

9  To see more scenarios and details about the solution for the USDCLP and other currencies, see Fig. 9 in the appendix.
10  The RA policy is not shown in the Figure.
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Table  3 displays the performance of the CTP solutions. There are some interesting 
findings that may differ from those seen in the previous non-speculative setting.

1.	 CTP performance is the same for trends of the same magnitude. This is not hard 
to explain: if we have an optimal strategy with πu − πd = a , then the optimal pol-
icy with πd − πu = a is to do the opposite trade. Thus, the performance of Table 3, 
which is obtained with

	 (πu,πd) = (1.25%, 3.75%) is identical to the case (πu,πd) = (3.75%, 1.25%).
2.	 In terms of risk, RF is not the best policy. Despite the fact that the VaR and CVaR of 

this policy are both zero, S1 manages to generate positive profits even in the worst-
case scenarios (a bad scenario for this policy would be a flat FX rate). As a result, its 
VaR and CVaR are negative.

3.	 As expected, the average profit of the RN policy is lower than the profit of S1 (the 
gap is 1 − 7.1/9.6 = 26% for USDCLP, 27% for USDBRL, 40% for USDTRY, 30% for 
AUDUSD, 29% for the GBPUSD, 21% for the EURUSD, and 20% for the USDJPY), 
and in the worst-case scenario, it results in losses. However, the RN policy still gen-
erates significant daily average profits for each currency pair. For USDCLP, for exam-
ple, we can make an average profit of 0.9 cent for every USD invested. When the 
exposure is 1 million USD, this equates to 0.9% × 1 = 9,000 USD per day. Looking at 

Table 3  Performance results of CTP solutions (RN and RA) versus S1, when (πu ,πd) = (1.25%, 3.75%)

The performance is measured based on speculative total profits (in domestic currency) divided by the bound L = 1. The 
numbers in parenthesis are the P&L divided by S0 , that is, the P&L in terms of the foreign currency (US dollar cents for 
USDCLP, USDBRL, USDTRY, USDJPY, pennies for GBPUSD, euro cents for EURUSD, Australian dollar cents for AUDUSD). The 
bid/ask equals 5 pips for every currency

Currency Policy Mean Median VaR1% CVaR1%

USDCLP S0 = 800.0 RN1 7.1 (0.9) 6.2 3.6 4.8 (0.6)

RA0.5 6.2 (0.8) 4.7 0.7 1.2 (0.1)

S1 9.6 (1.2) 7.8 − 3.3 − 3.0 (− 0.4)

USDBRL S0 = 5.5 RN1 0.0816 (1.5) 0.0677 0.0489 0.0604 (1.1)

RA0.5 0.0723 (1.3) 0.0497 0.0128 0.0204 (0.4)

S1 0.1115 (2.0) 0.0883 − 0.0361 − 0.0331 (− 0.6)

USDTRY S0 = 10.0 RN1 0.1730 (1.7) 0.045 0.2612 0.3581 (3.6)

RA0.5 0.0148 (0.1) 0.0004 0.1259 0.2657 (2.7)

S1 0.2877 (2.9) 0.2398 − 0.0253 − 0.0231 (− 0.2)

AUDUSD S0 = 0.7 RN1 0.0076 (1.1) 0.0055 0.0046 0.0057 (0.8)

RA0.5 0.0068 (1.0) 0.0039 0.0022 0.0036 (0.5)

S1 0.0109 (1.6) 0.0082 − 0.0032 − 0.0029 (− 0.4)

GBPUSD S0 = 1.0 RN1 0.0077 (0.8) 0.0062 0.0044 0.0054 (0.5)

RA0.5 0.0069 (0.7) 0.0045 0.0015 0.0024 (0.2)

S1 0.0108 (1.1) 0.0085 − 0.0035 − 0.0032 (− 0.3)

EURUSD S0 = 1.5 RN1 0.0098 (0.7) 0.0083 0.0036 0.0045 (0.3)

RA0.5 0.0092 (0.6) 0.0076 0.0015 0.0023 (0.2)

S1 0.0124 (0.8) 0.0101 − 0.0032 − 0.0029 (− 0.2)

USDJPY S0 = 105.0 RN1 0.8 (0.8) 0.6 0.2 0.2 (0.2)

RA0.5 0.8 (0.8) 0.6 0.1 0.1 (0.1)

S1 1.0 (0.9) 0.8 − 0.2 − 0.1 (− 0.1)
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the CVaR1% , we would have a daily average loss of 0.6% × 1 = 6,000 USD in the worst 
outcomes.

4.	 We can effectively reduce extreme losses with RA policies, at the expense of reducing 
average profits.

The difference in performance between currency pairs is due to FX process calibra-
tion. We can make more money in emerging-market currencies, but at a higher risk 
(plus the AUDUSD). The currencies with the highest values of σ/

√
2κ  come from this 

group, and according to the sensitivity analysis in Table 11, an increase in σ/
√
2κ  pro-

duces better trading opportunities (to buy at lower prices and sell at higher prices), but 
with higher risk. Currencies with the highest drift and volatility in the shocks include 
the BRL, TRY, and AUD. Table 11 shows that increasing these parameters results in the 
greatest increase in average profits when using the CTP.

Figure 4 depicts the RN solution’s decisions in seven scenarios (different to those cho-
sen for Fig. 3).11 The price always follows a mean-reverting process in the first two sce-
narios (black). RN trades when the price reaches certain thresholds, which change over 
time. It buys when the price crosses a lower threshold (generally below S0 ) and sells when 
the price crosses an upper threshold (generally above S0 ). In scenarios 3 and 4 (green), 
the price process changes to a GBM with a positive drift. In both scenarios, there is a 
short net position before the change. When the shock occurs, the RN goes long aggres-
sively, to the maximum allowed, and holds this to the horizon, assuming that the price 
will rise in the future. The price changes in scenarios 5 and 6 (blue) changes to follow a 
GBM with a negative drift. In scenarios three and four, the policy sells immediately after 
the shock and maintains a short position until the horizon because the price is expected 

Fig. 4  RN solution for 7 representative scenarios. The position is bounded by L = 1, i.e., −1 ≤ Pt ≤ 1

11  To see more scenarios and details about the solution for the USDCLP and other currencies, see Fig. 10 in the appen-
dix.
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to fall. Finally, in Scenario 7, the RN policy performs poorly. The price is expected to 
move in the opposite direction of a predetermined trend. When a shock occurs, RN 
maintains a short position. The price is expected to fall as a result of the shock, so RN 
waits to buy at a lower price. The latter never occurs because the price rises later.

We should point out that we also tested the CTP performance when FX prices fol-
lowed a pure random walk. The CTP solutions were unable to generate profits, whereas 
the S1 solution generated lower profits than shown in Table 3 for the same level of risk.

Results with daily trading
Now we are in a situation where trading can be done once a day for an entire month. 
Similarly to previous experiments, the number of trading periods (20) determines the 
size of the CTP. As a result, the solutions are obtained in the same time order. This con-
figuration is based on businesses with activities that are subject to FX uncertainty but 
lack the turnover and regularity of daily requirements seen on a bank’s FX desk. As a 
result, they are not required to trade on an intraday basis.

We divided the data into two parts based on the 75th percentile of the monthly TPU 
from January 2000 to December 2021.12 We calibrate the price process using daily data, 
using a procedure similar to that used for intraday trading. The values of κ and σ for the 
mean-reverting dynamics in (12) represent the mean results obtained from statistical 
calibrations each month from January 2000 to December 2021. S∞ is equal to the spot 
price seen at the beginning of each month. For more details on the results of the calibra-
tion, see Fig. 8.

Table 4 shows the estimates of each parameter, for the two sets of data. It is interesting 
to note that when the TPU rises above its historical 75th percentile, currency volatility in 
non-developed economies rises significantly, in contrast to G-10 currencies.

To illustrate the benefits of our tool, consider the following income structure at day t:

Table 4  Estimates of parameters κ and σv defining the mean-reverting process in (12) are obtained 
from daily prices within the period January-2000 to December-2021

Normal (high) TPU corresponds to the months below (above) the 75th percentile within the sample, which is at 
approximately level 47. Estimates of parameters µ̂ and σ̂ defining the GBM process of Eq. (13) are obtained from the sample 
of monthly currency returns within the period January 2000 to December 2021. We determine the mean and volatility of 
returns above the 90th and below the 10th percentile of the sample to capture the degree of the trends (drifts). S0 is the 
spot price to be used at the beginning of every simulation. Estimates are shown on a daily scale. 1 pip = 10.−4

Normal TPU High TPU

Currency S0 κ σ(%) σ/
√
2κ(%) κ σ(%) σ/

√
2κ(%) µ̂(pips) σ̂(pips)

USDCLP 800 0.07 0.42 1.12 0.06 0.58 1.67 45 58

USDBRL 5.5 0.09 0.41 0.97 0.07 0.72 1.92 75 44

USDTRY​ 10 0.08 0.19 0.48 0.09 0.54 1.27 95 46

AUDUSD 0.7 0.09 0.80 1.89 0.07 0.57 1.52 45 50

GBPUSD 1 0.08 0.83 2.08 0.08 0.71 1.78 30 32

EURUSD 1.5 0.1 0.47 1.05 0.1 0.32 0.72 40 26

USDJPY 105 0.09 0.58 1.37 0.1 0.47 1.05 34 9

12  The TPU index can be found in https://​www.​matte​oiaco​viello.​com/​tpu.​htm#​home

https://www.matteoiacoviello.com/tpu.htm#home
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f5 = 0.1D, f10 = 0.2D, f15 = 0.6D, f20 = 0.1D and ft = 0 for every t . This pattern 
could be a simplified version of the weekly sales seen in businesses during December, 
with a peak demand around Christmas time. We allow speculation, but within limits: 
−D ≤ Pt ≤ D.

We modify the benchmark S1 from Setting 2 in previous section.  S1 now buys at the 
lowest possible price and sells at the highest possible price every week. To compare the 
P&L of S1 with that of the CTP solution, we subtract the revenues generated by incom-
ing flows from the latter, which is the P&L computed for the NH policy. Under this con-
figuration, NH’s P&L equals D[0.1S5 + 0.2S10 + 0.6S15 + 0.1S20] . We set equal shock 
probabilities, πu = πd = 2.5% , and no bid/ask spread because they are irrelevant at this 
trading frequency.

Besides the P&L, another metric to compare the performance of the CTP with the 
benchmarks B1, B2, RF and NH, could be the weighted-average price at which each pol-

icy sells. For the CTP solution, that is 
T
∑

t=1

St
x−t

∑T
t=1 x

−
t

 . We modify benchmarks B1 and B2 

used in Setting 1 from previous section. B1 hedges at the best (highest) monthly price, so 
the weighted-average selling price is max

t
St . B2 sells positions in proportion to incoming 

flows. Let xB2,t denote the amount sold under policy B2 at date t . Then

Applying the trades in (16), the weighted-average selling price of B2 is

For RF and NH, the weighted-average selling price is S0 and 
[0.1S5 + 0.2S10 + 0.6S15 + 0.1S20] respectively.

Results under normal TPU

The performance of the CTP solutions and the benchmarks is shown in Tables 5, 6. From 
the first table, we can see that:

1.	 CTP solutions, like intraday trading in setting 2, can generate profits from specu-
lation. Furthermore, when comparing average profits for currencies from emerging 
economies, RN solutions outperform S1 (CLP, BRL, TRY). Again, in worst-case sce-
narios, RA policies could be used to reduce losses.

2.	 The highest ratios between average profit and the CVaR measure are obtained by the 
USDTRY (0.7087/0.0852 = 8.3), followed by the USDBRL (3.6).

3.	 Adjusting for time differences, the profit-risk compromise is lower than the same 
compromise obtained in intraday trading. In the USDCLP case, for example, with a 1 
million USD exposure, we can achieve a monthly average profit of 3.7% × 1 = 37,000 
USD and a monthly average loss of 2.1% × 1 = 21, 000 USD in the worst-case sce-

(16)xB2,t =



















f5
5 + f10

10 + f15
15 + f20

20 = 5.1D
60 , if t : 1..5

f10
10 + f15

15 + f20
20 = 3.9D

60 , if t : 6..10
f15
15 + f20

20 = 2.7D
60 , if t : 11..15

f20
20 = 0.3D

60 , if t : 16..20

(17)
T
∑

t=1

St
xB2,t

D
= 1

60

[

5.1

5
∑

t=1

St + 3.9

10
∑

t=6

St + 2.7

15
∑

t=11

St + 0.3

20
∑

t=16

St

]
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narios. We obtained an average daily profit of 9,000 USD for the same volume in the 
intraday setting, which equals 180,000 USD per month. We get a monthly exposure 
by extrapolating the average loss of 6,000 USD obtained with intraday trading for 
the worst-case scenarios of roughly 

√
20 × 6,000 = 26,800 USD. Evidently, the ratio 

180,000/26,800 is much higher than the 37,200/21,000 obtained when trading once a 
day. Something similar occurs with the other currency pairs.

The parameters defining the FX processes in Table 4 could explain the latter results. 
First, from Table  11, we know that an increase (decrease) in µ̂ produces an increase 
(decrease) in the average profits. The currencies with the highest values correspond to 
the emerging economies. There is also a difference in the values of µ̂ obtained from the 
intraday process. For example, µ̂ equals 10 pips in the USDCLP based on intraday prices, 
which equals 20 × 10 = 200 pips when extrapolated to a daily price process. This is sig-
nificantly greater than the 45-pip drift seen in Table 4. Note that the latter occurs with 
every currency. Second, if we extrapolate the long-term volatility σ/

√
2κ  of the intra-

day process to a daily scale, we get higher (lower) values in the currencies coming from 
emerging (developed) economies. For example, extrapolating the long-term volatility 
of USDTRY 

√
20× σ/

√
2κ =

√
20× 0.17% = 0.76% , which is bigger than the long-

term volatility of 0.48% in Table 4. As we know from Table 11, the risk of each policy is 
directly related to σ/

√
2κ .

Table 5  P&L of CTP solutions (RN and RA) versus benchmark policy S1

The numbers in parenthesis are the P&L divided by S0 , that is, the P&L in terms of the foreign currency (US dollar cents for 
USDCLP, USDBRL, USDTRY, USDJPY, pennies for GBPUSD, euro cents for EURUSD, Australian dollar cents for AUDUSD). We set 
πu = πd = 2.5% and D = L = 1

Currency Policy Mean Median VaR1% CVaR1%

USDCLP S0 = 800.0 RN1 30.0 (3.7) 27.1 13.5 16.4 (2.1)

RA0.75 27.6 (3.5) 22.3 11.6 15.4 (1.9)

S1 25.6 (3.2) 24.4 − 11.5 − 11.1 (− 1.4)

USDBRL S0 = 5.5 RN1 0.3298 (6.0) 0.2746 0.0739 0.0920 (1.7)

RA0.75 0.3143 (5.7) 0.2541 0.0686 0.0907 (1.6)

S1 0.1992 (3.6) 0.1695 − 0.0808 − 0.0774 (− 1.4)

USDTRY S0 = 10.0 RN1 0.7087 (7.1) 0.5760 0.0690 0.0852 (0.9)

RA0.75 0.6949 (6.9) 0.5614 0.0659 0.0875 (0.9)

S1 0.2718 (2.7) 0.1498 − 0.0674 − 0.0648 (− 0.6)

AUDUSD S0 = 0.7 RN1 0.0254 (3.6) 0.0253 0.0196 0.0246 (3.5)

RA0.75 0.0219 (3.1) 0.0201 0.0175 0.0226 (3.2)

S1 0.0372 (5.3) 0.0363 − 0.0184 − 0.0177 (− 2.5)

GBPUSD S0 = 1.0 RN1 0.0320 (3.2) 0.0337 0.0350 0.0440 (4.4)

RA0.75 0.0279 (2.8) 0.0276 0.0279 0.0368 (3.7)

S1 0.0536 (5.4) 0.0521 − 0.0242 − 0.0220 (− 2.2)

EURUSD S0 = 1.5 RN1 0.0544 (3.6) 0.0517 0.0221 0.0287 (1.9)

RA0.75 0.0500 (3.3) 0.0429 0.0198 0.0270 (1.8)

S1 0.0505 (3.4) 0.0495 − 0.0251 − 0.0240 (− 1.6)

USDJPY S0 = 105.0 RN1 4.3 (4.1) 4.3 2.1 2.6 (2.5)

RA0.75 3.9 (3.7) 3.5 1.9 2.4 (2.3)

S1 4.3 (4.1) 4.3 − 2.2 − 2.1 (− 2.0)
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The first thing to notice about the performance in Table 6 is that the average selling price 
for all policies except B1 is slightly above S0 . For example, the RN is at most 0.6% above S0 
(in the case of USDTRY). The average savings in the intraday setting 4.1 are higher because 
the time span (one day) is 20 times shorter (1 month). One of the main reasons for this is 
that the CTP maximizes trading revenues rather than the weighted-average price. This is 
also why RA policies can have a worse AP1% on this table too. Good trading rules involve 
selling above the buying prices, which does not necessarily lead to selling above S0 . Still, the 
CTP solutions outperform B2 and the NH strategy in terms of average selling price. CTP 
solutions manage to perform better in the worst scenarios ( AP1%) too.

Table 6  Weighted-average selling price of CTP solutions (RN and RA) versus benchmark policies B1, 
B2 and NH

P1% is the first percentile of that measure and AP1% is the average below that first percentile. The numbers in parenthesis are 
the rates of increase (reduction) (%) relative to S0 . We set πu = πd = 2.5% and D = L = 1

Currency Policy Mean Median P1% AP1%

USDCLP S0 = 800.0 RN1 802.1 (0.3) 801.3 777.8 775.3 (− 3.1)

RA0.75 801.4 (0.2) 800.2 776.4 774.1 (− 3.2)

B1 818.5 (2.3) 809.5 800.0 800.0 (0.0)

B2 800.1 (0.0) 800.0 774.0 771.1 (− 3.6)

NH 800.4(0.0) 800.0 747.2 743.4 (− 7.1)

USDBRL S0 = 5.5 RN1 5.5250 (0.5) 5.5085 5.2644 5.242 (− 4.7)

RA0.75 5.5000 (0.4) 5.5000 5.3000 5.2000 (− 4.8)

B1 5.6889 (3.4) 5.5648 5.5000 5.5000 (0.0)

B2 5.5014 (0.0) 5.5003 5.2240 5.1987 (− 5.5)

NH 5.5067 (0.1) 5.5001 4.9322 4.9003 (− 10.9)

USDTRY S0 = 10.0 RN1 10.0560 (0.6) 10.0073 9.4751 9.4368 (− 5.6)

RA0.75 10.0000 (0.4) 10.0000 9.5000 9.4000 (− 5.7)

B1 10.3918 (3.9) 10.0577 10.0000 10.0000 (0.0)

B2 10.0042 (0.0) 10.0000 9.3934 9.3464 (− 6.5)

NH 10.0190 (0.2) 9.9999 8.7526 8.6890 (− 13.1)

AUDUSD S0 = 0.7 RN1 0.7020 (0.3) 0.7021 0.6762 0.6724 (− 3.9)

RA0.75 0.7000 (0.2) 0.7000 0.7000 0.7000 (− 3.8)

B1 0.7179 (2.6) 0.7147 0.7000 0.7000 (0.0)

B2 0.7001 (0.0) 0.7001 0.6761 0.6727 (− 3.9)

NH 0.7003 (0.0) 0.7002 0.6555 0.6505 (− 7.1)

GBPUSD S0 = 1.0 RN1 1.0018 (0.2) 1.0018 0.9682 0.9634 (− 3.7)

RA0.75 1.0000 (0.1) 1.0000 1.0000 1.0000 (− 3.6)

B1 1.0242 (2.4) 1.0211 1.0000 1.0000 (0.0)

B2 1.0000 (0.0) 1.0001 0.9673 0.9643 (− 3.6)

NH 1.0003 (0.0) 1.0001 0.9439 0.9392 (− 6.1)

EURUSD S0 = 1.5 RN1 1.5044 (0.3) 1.5027 1.4611 1.4574 (− 2.8)

RA0.75 1.5000 (0.2) 1.5000 1.5000 1.5000 (− 2.9)

B1 1.5324 (2.2) 1.5189 1.5000 1.5000 (0.0)

B2 1.5001 (0.0) 1.5000 1.4554 1.4507 (− 3.3)

NH 1.5005 (0.0) 1.5002 1.4115 1.4053 (− 6.3)

USDJPY S0 = 105.0 RN1 105.3 (0.3) 105.2 101.9 101.7 (− 3.1)

RA0.75 105.2 (0.2) 105.1 101.9 101.7 (− 3.1)

B1 107.6 (2.5) 106.6 105.0 105.0 (0.0)

B2 105.0 (0.0) 105.0 101.5 101.4 (− 3.5)

NH 105.0 (0.0) 105.0 98.4 98.2 (− 6.5)
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Results under high TPU

Table 7 displays the performance of the CTP solutions and benchmarks. The average 
profits of the CTP solution are comparable to the average profits of a normal TPU 
level. As a result, we continue to earn more in emerging-market currencies. How-
ever, these profits are now lower than S1’s profits (except for EURUSD and USDJPY). 
In comparison to the results obtained with a normal TPU level, the risk of RN poli-
cies increases (decreases) in currencies from emerging (developed) economies. This 
is to be expected, given that we know from Table 4 that moving to a high-TPU period 
increases (decreases) long-term volatility. We have not shown the weighted-average 
selling price because it is very similar to the results obtained with standard TPU. This 
is to be expected, as it is not a measure directly optimized by the CTP.

The effect of TPU level in our results is consistent with the majority of Kido’s (2016) 
findings. This paper demonstrates that the returns of high-yielding currencies, such 
as the BRL, have a negative correlation with the US EPU index, whereas the Japanese 
yen has a positive correlation over time. In other words, when EPU falls (rises), high-
yield currencies appreciate (depreciate), whereas JPY falls (rises). Our previous find-
ings show that when TPU levels are high, high-yield currencies such as the CLP, BRL, 
and TRY experience increased volatility, which coincides with their depreciation, as 
illustrated in Fig. 5. The figure also depicts the Yen’s appreciation during periods of 
high TPU. Thus, TPU, in addition to other indicators proposed in previous research, 
such as the VIX proposed by Brunnermeier et al. (2008) or the EPU proposed by Kido 
(2016), could be a plausible indicator for detecting carry trade crushes.

Table 7  P&L of CTP solutions (RN and RA) versus benchmark policy S1

The numbers in parenthesis are the P&L divided by S0 , that is, the P&L in terms of the foreign currency (US dollar cents for 
USDCLP, USDBRL, USDTRY, USDJPY, pennies for GBPUSD, euro cents for EURUSD, Australian dollar cents for AUDUSD). We set 
πu = πd = 2.5% and D = L = 1

Currency Policy Mean Median VaR1% CVaR1%

USDCLP S0 = 800.0 RN1 30.9 (3.9) 30.5 20.8 25.2 (3.1)

RA0.75 27.8 (3.5) 23.6 17.2 23.1 (2.9)

S1 33.4 (4.2) 32.9 − 15.7 − 15.1 (− 1.9)

USDBRL S0 = 5.5 RN1 0.3455 (6.3) 0.3147 0.1586 0.1931 (3.5)

RA0.75 0.3178 (5.8) 0.2621 0.1364 0.1820 (3.3)

S1 0.3003 (5.5) 0.2882 − 0.1375 − 0.1321 (− 2.4)

USDTRY S0 = 10.0 RN1 0.7607 (7.6) 0.6393 0.1762 0.2186 (2.2)

RA0.75 0.7232 (7.2) 0.5920 0.1691 0.2224 (2.2)

S1 0.4675 (4.7) 0.4051 − 0.1919 − 0.1838 (− 1.8)

AUDUSD S0 = 0.7 RN1 0.0221 (3.2) 0.0208 0.0167 0.0207 (3.0)

RA0.75 0.0194 (2.8) 0.0165 0.0150 0.0191 (2.7)

S1 0.0283 (4.0) 0.0277 − 0.0137 − 0.0132 (− 1.9)

GBPUSD S0 = 1.0 RN1 0.0312 (3.1) 0.0325 0.0276 0.0344 (3.4)

RA0.75 0.0269 (2.7) 0.0258 0.0235 0.0309 (3.1)

S1 0.0465 (4.7) 0.0453 − 0.0217 − 0.0196 (− 2.0)

EURUSD S0 = 1.5 RN1 0.0508 (3.4) 0.0440 0.0145 0.0188 (1.3)

RA0.75 0.0479 (3.2) 0.0397 0.0126 0.0169 (1.1)

S1 0.0374 (2.5) 0.0347 − 0.0173 − 0.0164 (− 1.1)

USDJPY S0 = 105.0 RN1 4.2 (4.0) 3.9 1.6 2.1 (2.0)

RA0.75 3.9 (3.7) 3.4 1.3 1.8 (1.7)

S1 3.6 (3.4) 3.5 − 1.8 − 1.7 (− 1.6)
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Figure 6 depicts the RN’s decisions in five representative scenarios. In the first 2 scenarios 
(black), the price follows the mean-reverting process in the entire month. RN generally buys 
when the price is below or equal to S0 , and sell if the price is slightly above S0 . The margin 
may be low, but profits may be high if those opportunities continue to occur throughout the 
month, as in scenario 1. The price process changes to the GBM with a positive drift in sce-
nario 3 (green). As expected, the policy buys as much as it can following the change and 
maintains a long position until the horizon. Because the limit for holding more long posi-
tions has been reached, the income from operations is sold at the same time it is received. 

Fig. 5  Historical exchange rates under normal and high levels of TPU. The shaded areas correspond to 
periods of high TPU. The threshold is defined by the 75th percentile of the sample, which is at level 47, 
approximately

Fig. 6  RN solution for 5 representative scenarios in a daily trading setting, with the following income 
structure: f1 = 0.1D, f10 = 0.2D, f15 = 0.6D, f20 = 0.1D and ft = 0 otherwise. Speculation is allowed with 
positions bounded by L = 1, i.e.−1 ≤ Pt ≤ 1 . The total income equals D = 1
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In scenario 4, the price process shifts to a GBM with negative drift. Similar to scenario 3, the 
policy now sells as much as possible while remaining short until the horizon. Because the 
price is expected to fall, this is the best decision in a risk-free scenario. The received income 
is also sold at the time of receipt. The reason for doing so, however, is different. We must sell 
as soon as possible in this case because the price is expected to fall. Scenario 5 depicts the 
RN producing one of its worst outcomes, which could occur when the price follows a mean-
reverting process for the majority of the month. The RN holds a short position in this case 
and waits for the price to revert (decrease) as expected. The price starts increasing instead. 
In this scenario, the income received is also sold at the same it is received, because the price 
is above S0 , which compensates the loss. Finally the policy buys when the prices changes to a 
GBM with positive trend at t = 17 , and holds a long net position from that day. However, the 
price does not rise as anticipated (actually it suffers a slight decrease).

Conclusion and future development
This work provides a financial engineering tool for FX trading that differs significantly from 
the methodologies used in current FX strategies. Our methodology is based on techniques 
from the field of operations research, such as MSP and SDDP, which we use to create a dis-
ciplined and forward-thinking trading schedule. As demonstrated by the results, the CTP 
model provides competitive FX trading solutions in comparison to various benchmarks, in 
both non-speculative and speculative environments, and across various time frequencies 
and currencies. However, the results obtained with random walk prices show that CTP 
solutions are competitive when there is mean-reversion and/or a trend in the shocks.

In terms of incorporating specific trading rules and requirements, the tool is adaptable. It 
also enables the user to modify the FX price dynamics, risk tolerance, and time frequency, 
among other things, by simply changing the values of certain parameters. Furthermore, 
because currencies are defined by specific coordinates, we can develop trading policies and 
compute their performance for various combinations of these parameters in advance. As a 
result, we do not have to create the policy every time we calibrate a new FX process. As a 
result, all that remains is to assign the calibration results to the closest prebuilt combination.

Clearly, there are numerous ways to expand on this research. Allowing multiple cur-
rencies in the CTP model, that is, having incoming (outgoing) flows in different foreign 
currencies, could be one of them. Fortunately, the CTP structure would not change 
because we would simply add the same variables and requirements for each currency. 
The main challenge would be developing a multidimensional version of the lattice to 
describe the multivariate distribution of FX prices, which would increase the state space 
and make the problem unsolvable in terms of CPU time. Reus and Prado (2021) used the 
sddp.jl to implement a multi-asset GBM process to solve an MSP problem.

Another extension would be to improve the pricing model by including a time-varying 
process for volatility, particularly in intraday environments. For example, we have Hansen 
et  al.’s (2012) GARCH model with realized measures. The difficulty would arise when 
attempting to implement the model in the structure required by the SDDP method. Flo-
rescu and Viens (2008) may be a good reference point when including stochastic volatility 
in binomial trees. A third enhancement would be to allow stochastic flows in the CTP, 
which may be more suitable for certain applications. The sddp.jl allows for the inclusion of 
uncertainty in constraints in most settings. The difficulty arises when comparing the P&L 
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across scenarios. Finally, it would be extremely useful if a practitioner could implement an 
automatic procedure that could take the SDDP solution and generate a ready-to-use pol-
icy, delivering a list of simplified instructions on how to trade in representative scenarios.

Appendix
See Figs. 7, 8, 9, 10 and Table 8.

Jan-20 Apr-20 Jul-20 Oct-20 Jan-21 Apr-21 Jul-21 Oct-21
0

0.2

0.4

0.6

0.8
USD-CLP
USD-BRL
USD-TRY

Jan-20 Apr-20 Jul-20 Oct-20 Jan-21 Apr-21 Jul-21 Oct-21
0

0.2

0.4

0.6

0.8
AUD-USD
GBP-USD
EUR-USD
USD-JPY

Jan-20 Apr-20 Jul-20 Oct-20 Jan-21 Apr-21 Jul-21 Oct-21
0

0.1

0.2

0.3

0.4

0.5
USD-CLP
USD-BRL
USD-TRY

Jan-20 Apr-20 Jul-20 Oct-20 Jan-21 Apr-21 Jul-21 Oct-21
0

0.1

0.2

0.3

0.4

0.5
AUD-USD
GBP-USD
EUR-USD
USD-JPY

Fig. 7  κ and σ (%) estimations for the intraday price dynamics following the Vasicek model of Eq. (12). These 
values are obtained by calibrating the model with daily data and their average are the values shown in 
Table 1
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Fig. 8  κ and σ (%) estimations for the daily price dynamics following the Vasicek model of Eq. (12). These 
values are obtained by calibrating the model with daily data and their average are the values shown in 
Table 4
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Fig. 9  Sample of the RN solution described in "Setting 1: Non-speculative trading" section. FX price follows 
the dynamics in (15). Scenarios in grey follow the Vasicek model during the entire day. Scenarios in green 
and red have a shock during the day, which changes the dynamics to a GBM model with negative(green) or 
positive(red) drift
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Fig. 9  continued
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Fig. 10  Sample of the RN solution described in "Setting 2: Speculative trading" section. FX price follows the 
dynamics in (15). The figure shows the results from 4 exchanges: USDCLP, USDTRY, GBPUSD and USDJPY. 
Scenarios in grey follow the Vasicek model during the entire day. Scenarios in green and red have a shock 
during the day, which changes the dynamics to a GBM model with negative(green) or positive(red) drift
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Fig. 10  continued
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Table 8  Performance of CTP solutions RN and RA versus benchmark policies B1, B2 and NH. The 
subscript in RN and RA is the β used in Eq. (5), which defines the degree of risk aversion

The statistics are obtained from the total cost in domestic currency divided by total demand D = 1. The table shows the 
results when (πu ,πd) = (3.75%, 1.25%) . The numbers in parenthesis are the rate of increase (reduction) (%) relative to S0

Currency Policy Mean Median Volatility VaR99% CVaR99%

USDCLP S0 = 800.0 RN1 798.3 (− 0.2) 798.7 4.6 806.3 810.7 (1.3)

RA0.8 799.3 (− 0.1) 799 2.6 804.2 805.3 (0.7)

B1 796.6 (− 0.4) 797.7 3.9 800 800.0 (0.0)

B2 801.2 (0.1) 800.8 3.8 810.9 812.0 (1.5)

NH 802.8 (0.4) 801.8 8.9 821.9 824.0 (3.0)

USDBRL S0 = 5.5 RN1 5.4798 (− 0.4) 5.4879 0.0537 5.5647 5.5792 (1.4)

RA0.8 5.4989 (− 0.0) 5.4985 0.0049 5.5108 5.5163 (0.3)

B1 5.4602 (− 0.7) 5.4742 0.0477 5.5000 5.5000 (0.0)

B2 5.5137 (0.2) 5.5088 0.0458 5.6345 5.6511 (2.7)

NH 5.5353 (0.6) 5.5214 0.1065 5.7787 5.808 (5.6)

USDTRY S0 = 10.0 RN1 9.9595 (− 0.4) 9.9948 0.1660 10.2397 10.4491 (4.5)

RA0.7 9.9920 (− 0.1) 9.9940 0.0919 10.1888 10.3897 (3.9)

B1 9.9007 (− 1.0) 9.9690 0.1595 10.0000 10.0000 (0.0)

B2 10.0349 (0.3) 10.0058 0.1326 10.4577 10.5451 (5.5)

NH 10.0923 (0.9) 10.0086 0.3211 11.0052 11.1607 (11.6)

AUDUSD S0 = 0.7 RN1 0.6986 (− 0.2) 0.6990 0.0061 0.7139 0.7198 (2.8)

RA0.8 0.6994 (− 0.1) 0.6994 0.0038 0.7092 0.7160 (2.3)

B1 0.6961 (− 0.6) 0.6974 0.0049 0.7000 0.7000 (0.0)

B2 0.7013 (0.2) 0.7008 0.0046 0.7140 0.7160 (2.3)

NH 0.7033 (0.5) 0.7018 0.0107 0.7294 0.7327 (4.7)

GBPUSD S0 = 1.0 RN1 0.9983 (− 0.2) 0.9989 0.0055 1.0079 1.0111 (1.1)

RA0.7 0.9998 (− 0.0) 0.9996 0.0014 1.0035 1.0060 (0.6)

B1 0.9961 (− 0.4) 0.9974 0.0047 1.0000 1.0000 (0.0)

B2 1.0013 (0.1) 1.0008 0.0044 1.0131 1.0147 (1.5)

NH 1.0031 (0.3) 1.0018 0.0103 1.0268 1.0297 (3.0)

EURUSD S0 = 1.5 RN1 1.4975 (− 0.2) 1.4990 0.0064 1.5054 1.5063 (0.4)

RA0.7 1.4997 (− 0.0) 1.4996 0.0016 1.5021 1.5031 (0.2)

B1 1.4959 (− 0.3) 1.4979 0.0057 1.5000 1.5000 (0.0)

B2 1.5017 (0.1) 1.5010 0.0053 1.5143 1.5153 (1.0)

NH 1.5040 (0.3) 1.5019 0.0126 1.5283 1.5308 (2.1)

USDJPY S0 = 105.0 RN1 104.8 (− 0.2) 105.0 0.6 105.3 105.3 (0.3)

RA0.8 104.8 (− 0.1) 104.9 0.5 105.3 105.3 (0.3)

B1 104.7 (− 0.3) 104.9 0.5 105.0 105.0 (0.0)

B2 105.2 (0.1) 105.1 0.5 106.4 106.5 (1.4)

NH 105.4 (0.4) 105.1 1.1 107.8 108.1 (2.9)
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Sensitivity analysis on setting 1: non‑speculative trading

See Tables 9, 10.

Table 9  (Up): Sensitivity analysis of the long-term volatility σ/
√
2κ  in the mean reverting intraday 

price process for USDCLP

(Down): Sensitivity analysis of µ̂ in the GBM intraday price process for the USDCLP. The rest of the parameters are kept 
unchanged and we set (πu ,πd) = (1.25%, 3.75%) . The numbers in parenthesis are the rates of increase (reduction) (%) 

relative to S0 = 800 . Recall that the base case has the following values: 
(

σ/
√
2κ , µ̂, σ̂

)

 = (0.31%, 10 pips, 12 pips)

Case Policy Mean Median VaR99% CVaR99%

σ/
√
2κ = 0.1% RN1 795.4 (− 0.6) 798.9 801.8 804.9 (0.6)

RA0.7 795.8 (− 0.5) 799.2 801.7 802.5 (0.3)

B1 794.9 (− 0.6) 798.5 800.0 800.0 (0.0)

B2 798.9 (− 0.1) 799.6 808.8 810.0 (1.3)

NH 796.5 (− 0.4) 798.6 818.5 820.8 (2.6)

Base Case σ/
√
2κ = 0.31% RN1 795.3 (− 0.6) 797.1 805.0 806.1 (0.8)

RA0.7 797.9 (− 0.3) 798.9 803.2 804.7 (0.6)

B1 793.9 (− 0.8) 796.0 800.0 800.0 (0.0)

B2 798.9 (− 0.1) 799.2 809.0 810.5 (1.3)

NH 796.5 (− 0.4) 797.3 818.8 821.3 (2.7)

σ/
√
2κ = 0.5% RN1 795.1 (− 0.6) 795.9 807.9 809.2 (1.1)

RA0.7 798.4 (− 0.2) 798.4 803.7 806.0 (0.7)

B1 793.0 (− 0.9) 794.3 800.0 800.0 (0.0)

B2 798.9 (− 0.1) 799.0 809.8 811.2 (1.4)

NH 796.5 (− 0.4) 796.8 819.6 822.0 (2.8)

σ/
√
2κ = 1.0% RN1 794.6 (− 0.7) 793.4 815.8 819.1 (2.4)

RA0.7 797.9 (− 0.3) 796.9 809.3 815.3 (1.9)

B1 790.5 (− 1.2) 791.1 800.0 800.0 (0.0)

B2 798.9 (− 0.1) 798.9 813.2 814.9 (1.9)

NH 796.5 (− 0.4) 796.0 823.0 825.6 (3.2)

µ̂ = 0 pips RN1 799.6 (0.0) 799.0 806.4 807.8 (1.0)

RA0.7 800.0 (0.0) 800.0 800.2 800.3 (0.0)

B1 797.1 (− 0.4) 797.2 800.0 800.0 (0.0)

B2 800.0 (0.0) 800.0 804.8 805.6 (0.7)

NH 799.6 (0.0) 799.6 808.4 809.8 (1.2)

Base case µ̂ = 10 pips RN1 795.3 (− 0.6) 797.1 805.0 806.1 (0.8)

RA0.7 797.9 (− 0.3) 798.9 803.2 804.7 (0.6)

B1 793.9 (− 0.8) 796.0 800.0 800.0 (0.0)

B2 798.9 (− 0.1) 799.2 809.0 810.5 (1.3)

NH 796.5 (− 0.4) 797.3 818.8 821.3 (2.7)

µ̂ = 20 pips RN1 790.7 (− 1.2) 796.5 804.9 805.8 (0.7)

RA0.7 791.9 (− 1.0) 797.7 804.7 805.8 (0.7)

B1 789.4 (− 1.3) 795.4 800.0 800.0 (0.0)

B2 797.8 (− 0.3) 798.9 816.1 817.8 (2.2)

NH 793.5 (− 0.8) 796.5 833.9 836.8 (4.6)

µ̂ = 30 pips RN1 786.2 (− 1.7) 796.2 804.8 805.8 (0.7)

RA0.7 786.8 (− 1.6) 797.1 805.1 805.9 (0.7)

B1 784.9 (− 1.9) 795.0 800.0 800.0 (0.0)

B2 796.7 (− 0.4) 798.7 823.5 825.5 (3.2)

NH 790.6 (− 1.2) 796.2 850.0 853.0 (6.6)
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Table 10  Sensitivity analysis of σ̂ in the GBM intraday price process for the USDCLP. The rest of the 
parameters are kept unchanged and we set (πu ,πd) = (1.25%, 3.75%)

The numbers in parenthesis are the rates of increase (reduction) (%) relative to S0 = 800 . Recall that the base case has the 

following values: 
(

σ/
√
2κ , µ̂, σ̂

)

 = (0.31%, 10 pips, 12 pips)

Case Policy Mean Median VaR99% CVaR99%

σ̂ = 0 pips RN1 795.2 (− 0.6) 796.9 805.0 805.8 (0.7)

RA0.7 796.8 (− 0.4) 798.1 804.0 805.2 (0.7)

B1 794.0 (− 0.8) 795.9 800.0 800.0 (0.0)

B2 798.9 (− 0.1) 799.1 808.7 808.8 (1.1)

NH 796.5 (− 0.4) 797.1 816.8 816.9 (2.1)

Base case σ̂ = 12 pips RN1 795.3 (− 0.6) 797.1 805.0 806.1 (0.8)

RA0.7 797.9 (− 0.3) 798.9 803.2 804.7 (0.6)

B1 793.9 (− 0.8) 796.0 800.0 800.0 (0.0)

B2 798.9 (− 0.1) 799.2 809.0 810.5 (1.3)

NH 796.5 (− 0.4) 797.3 818.8 821.3 (2.7)

σ̂ = 25 pips RN1 795.3 (− 0.6) 797.6 806.0 807.7 (1.0)

RA0.7 799.7 (0.0) 799.9 800.7 801.2 (0.1)

B1 793.2 (− 0.9) 795.9 800.0 800.0 (0.0)

B2 798.9 (− 0.1) 799.4 811.0 813.4 (1.7)

NH 796.5 (− 0.4) 797.9 824.0 828.3 (3.5)

σ̂ = 50 pips RN1 795.5 (− 0.6) 798.4 818.9 824.0 (3.0)

RA0.7 799.9 (− 0.0) 799.8 802.6 804.7 (0.6)

B1 790.9 (− 1.1) 795.4 800.0 800.0 (0.0)

B2 798.9 (− 0.1) 799.5 815.9 819.9 (2.5)

NH 796.6 (− 0.4) 798.5 835.5 842.8 (5.3)
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Sensitivity analysis on setting 2: speculative trading

See Table 11.

Table 11  (Up): Sensitivity analysis in the intraday mean-reverting price process for USDCLP. When 
one parameter changes, the rest are kept unchanged and we set (πu ,πd) = (1.25%, 3.75%)

The numbers in parenthesis are the profits divided by S0 = 800 . Recall that the base case has the following values: 
(

σ/
√
2κ , µ̂, σ̂

)

 = (0.31%, 10 pips, 12 pips)

Case Policy Mean Median VaR1% CVaR1%

σ/
√
2κ = 0.1% RN1 7.0 (0.9) 5.6 1.0 1.3 (0.2)

RA0.5 6.7 (0.8) 5.4 0.3 0.4 (0.1)

S1 7.8 (1.0) 6.2 − 1.1 − 1.0 (− 0.1)

Base case σ/
√
2κ = 0.31% RN1 7.1 (0.9) 6.2 3.6 4.8 (0.6)

RA0.5 6.2 (0.8) 4.7 0.7 1.2 (0.1)

S1 9.6 (1.2) 7.8 − 3.3 − 3.0 (− 0.4)

σ/
√
2κ = 0.5% RN1 7.9 (1.0) 7.8 6.1 7.5 (0.9)

RA0.5 6.3 (0.8) 4.9 0.8 1.6 (0.2)

S1 11.5 (1.4) 10.4 − 4.9 − 4.6 (− 0.6)

σ/
√
2κ = 1.0% RN1 10.3 (1.3) 10.9 12.3 14.9 (1.9)

RA0.5 6.7 (0.8) 5.3 1.1 4.1 (0.5)

S1 17.1 (2.1) 16.7 − 8.3 − 7.3 (− 0.9)

µ̂ = 0 pips RN1 0.5 (0.1) 0.4 6.4 7.8 (1.0)

RA0.5 0.1 (0.0) 0.0 2.9 4.9 (0.6)

S1 5.9 (0.7) 5.7 − 2.9 − 2.7 (− 0.3)

Base case µ̂ = 10 pips RN1 7.1 (0.9) 6.2 3.6 4.8 (0.6)

RA0.5 6.2 (0.8) 4.7 0.7 1.2 (0.1)

S1 9.6 (1.2) 7.8 − 3.3 − 3.0 (− 0.4)

µ̂ = 20 pips RN1 13.3 (1.7) 11.8 3.5 4.4 (0.6)

RA0.5 12.5 (1.6) 10.7 1.0 1.8 (0.2)

S1 15.6 (1.9) 13.0 − 3.4 − 3.1 (− 0.4)

µ̂ = 30 pips RN1 19.5 (2.4) 17.5 3.6 4.6 (0.6)

RA0.5 18.6 (2.3) 16.4 1.4 2.6 (0.3)

S1 21.7 (2.7) 18.8 − 3.4 − 3.1 (− 0.4)

σ̂ = 0 pips RN1 7.3 (0.9) 7.0 3.4 4.4 (0.5)

RA0.5 6.3 (0.8) 5.8 0.8 1.5 (0.2)

S1 9.4 (1.2) 8.2 − 3.3 − 3.1 (− 0.4)

Base case σ̂ = 12 pips RN1 8.4 (1.0) 7.6 2.2 2.9 (0.4)

RA0.5 6.7 (0.9) 5.8 0.2 0.4 (0.0)

S1 9.7 (1.2) 7.7 − 3.1 − 2.9 (− 0.4)

σ̂ = 25 pips RN1 7.0 (0.9) 4.8 5.3 7.5 (0.9)

RA0.5 0.5 (0.1) 0.0 1.7 4.4 (0.5)

S1 10.9 (1.4) 8.3 − 3.4 − 3.1 (− 0.4)

σ̂ = 50 pips RN1 6.8 (0.9) 3.2 20.3 25.1 (3.1)

RA0.5 0.4 (0.0) 0.0 8.5 15.9 (2.0)

S1 15.5 (1.9) 12.8 − 3.4 − 3.1 (− 0.4)
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