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Introduction
Climate change is a pressing global concern. China is the world’s leading emitter of CO2 
(Zhu et al. 2018), with the power sector accounting for 42.5% of total energy emissions 
in 2020 (IEA 2021). In particular, the thermal power sector is a major source of emis-
sions (Sun and Dong 2022; Pan and Dong 2022a). As a result, it will be critical in achiev-
ing China’s carbon peak and carbon neutrality targets. The “World Energy Outlook 
2017: China Special Report” by the International Energy Agency estimated that Chi-
na’s share of coal-fired power generation will fall below 40% by 2040, whereas gas-fired 
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power generation will remain within 10% (IEA 2017). Meanwhile, in 2021, the Global 
Energy Internet Development Cooperation Organization (GEIDCO) hosted a “China 
Carbon Neutrality Workshop” and published a research report titled “Energy and power 
development plan for 2030 and outlook for 2060” (“Outlook” hereinafter). According to 
the report, China’s electricity consumption will grow at a 4.2% annual rate from 2020 to 
2025, a 3% annual growth rate from 2025 to 2030, and a declining average annual growth 
rate of 2% from 2030 to 2050 (GEIDCO 2021).

Switching from coal to natural gas is currently a key strategy for reducing emissions in 
end-use power generations (Li et al. 2021; Pan and Dong 2022b). As natural gas burns 
more cleanly than coal, converting coal to natural gas improves environmental quality 
on global and local scales by lowering greenhouse gas emissions and airborne pollut-
ant emissions (Rivera and Loveridge 2022). In the UK, the share of coal power fell by 
75–90% in just 4 years (2012–2016) as a result of energy switching and the retirement 
of coal-fired power plants; this drove the UK’s power sector to achieve its largest annual 
CO2 emissions reduction of 25 million tons in 2016 (Wilson and Staffell 2018). Natu-
ral-gas power generation in China has grown rapidly since the 13th Five-Year Plan, with 
installed capacity increasing from approximately 66.37 million kW in 2015 to more than 
100 million kW in January 2021,1 making it one of the most effective technologies for 
peak shaving in the power supply system (Yu et al. 2022). As a clean, low-carbon alterna-
tive, natural gas is a transitional resource in the decoalization process because of its flex-
ible and efficient output characteristics when used to generate electricity (Yu et al. 2021).

Carbon markets, as a cost-effective means of addressing climate change, have the 
potential to reduce emissions at the lowest possible cost (Zhu et  al. 2018). Character-
ized by a “fixed total amount and variable price,” the carbon market is conducive to 
achieving China’s carbon peak and neutrality targets (Shen 2021; Zhang and Dong 
2023). China launched its first carbon-trading market in Shenzhen in 2013, which was 
initially proposed in 2011, followed by trading pilots in Shanghai, Beijing, Guangdong, 
Tianjin, Hubei, Chongqing, and Fujian. All of these pilots are managed by local envi-
ronmental protection departments, with the goal of reducing carbon emissions in the 
pilot provinces and cities (Zhang et  al. 2020). Subsequently, a national carbon market 
was launched in 2017 and officially opened for trading on July 16, 2021, with a batch of 
2225 thermal power companies (Guo and Feng 2021). With the continuous advancement 
of the carbon emissions reduction processes, China’s carbon allowance (CA) trading 
market has matured, progressing from scattered pilots to nationwide implementation. 
Carbon trading has thus emerged as an important mechanism for reducing the emis-
sion-abatement costs of enterprises and, ultimately, mitigating climate change in China 
(Weng and Xu 2018; Jin et al. 2019; Dong et al. 2022a).

Therefore, against the backdrop of the Chinese carbon market’s launch, with ther-
mal power companies as the primary participants, this study focuses on the following: 
how the carbon reductions achieved by energy conversion from coal to natural gas and 
carbon trading volume can be rationalized to minimize total emission-reduction costs; 
how the share of energy generation for thermal power companies can be determined in 

1  The data are sourced from China Electricity Council.
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accordance with the carbon-peak target; and what factors affect the CA price trends in 
carbon trading. To answer these questions, this study combines stochastic analysis in 
fractal markets and optimal control theory to investigate the optimal emission reduc-
tion of thermal power companies and the equilibrium price in the carbon market. Our 
findings could serve as a reference for setting reasonable prices in the carbon market, 
as well as a theoretical foundation for carbon-reduction decisions in the thermal power 
industry.

The remainder of this study is organized as follows. The following section presents and 
summarizes the literature review on related topics. Then, the optimization model is built 
in the section “Model construction.” Subsequently, the solution to the optimal model 
is presented. The “Parameter estimation for the stochastic model” then estimates the 
parameters of the stochastic model proposed in the previous section. Then, the numeri-
cal simulation and results are described. Finally, the last section concludes, provides 
some policy suggestions, and discusses some limitations and future research ideas.

Literature review
Thermal power companies can freely switch generation fuel inputs between coal and 
natural gas to produce the same amount of electricity based on relative energy prices 
(Lu et  al. 2021). This type of hybrid energy generation can effectively reduce carbon 
emissions while also being more cost-effective than a single-energy abatement strategy. 
Because it represents the carbon price’s threshold value, the switching price from coal to 
natural gas can be considered a shadow price (Chevallier and Goutte 2017). Power plants 
profit from switching from coal to gas above that price, and profit from switching from 
coal to gas below that price. The switching price is more sensitive to changes in natural 
gas prices than to changes in coal prices (Kanen 2006). Factors, usually influenced by 
supply and demand in the energy market, such as coal and natural gas prices and car-
bon prices, affect the energy conversion and energy-switching prices. The energy market 
is primarily influenced by micro and macroeconomic factors such as politics, weather, 
and economic growth. Therefore, energy-switching price fluctuates stochastically, and 
many researchers have used stochastic fluctuation models to depict the dynamics of this 
price. In terms of stochastic process form, the standard Brownian motion process cap-
tures the aforementioned uncertainty factors more simply than other stochastic models. 
The models expanded on the Brownian motion process include the Lévy-driven jump 
(Chevallier and Goutte 2017), regime-switching, Lévy-driven Ornstein–Uhlenbeck, and 
inhomogeneous Brownian motion processes (Arrigoni 2019; Lu et al. 2021). Given the 
data analysis of historical energy-switching prices, this study used fractional Brownian 
motion to model the prices’ “leptokurtosis and fat-tail” characteristics.

Among various energy-saving and emission-reduction initiatives, the establishment of 
China’s carbon-trading market is a significant step toward green, low-carbon develop-
ment (Brutschin and Fleig 2016; Tan and Wang 2017a; Dong et al. 2022b). Carbon credit 
pricing is an important regulatory initiative in the fight against climate change (Steine-
bach et al. 2020; Zhang et al. 2021a). Energy prices, weather conditions, and macro-risk 
factors all have a significant impact on the CA price (Tang et al. 2020; Batten et al. 2021). 
Carbon trading prices can thus fluctuate stochastically. Duan et  al. (2021) found that 
energy prices influenced the carbon-trading price in phase III of the European Union 
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(EU) Emission Trading Scheme (ETS). The relative costs of coal and natural gas increase 
the volatility of carbon-trading prices because energy producers can switch between 
energy resources (Benz and Trück 2009); natural gas reduces carbon emissions, with 
the demand for permitted emissions decreasing by more than 50%. Moreover, extreme 
weather events, such as cold winters, can increase energy demand for heating, result-
ing in an increase in CA demand among energy producers and an increase in carbon 
prices (Batten et al. 2021). Carbon prices, as measured by EU CA futures prices, have 
only a tenuous relationship with macroeconomic risk factors. The primary factor influ-
encing changes in carbon futures prices is electricity producers’ fuel-switching behav-
ior (Chevallier 2009; Tan and Wang 2017b). Therefore, this study investigates the factors 
influencing carbon trading equilibrium prices under energy-switching behavior in terms 
of minimizing total emission-reduction costs in the thermal power industry. Its goal is 
to establish the equilibrium guidance prices for carbon-emission allowance. Figure  1 
depicts the emission-reduction channel’s power system, the carbon emissions trading 
system, and the linkages between them.

The power industry aims to achieve established emission-reduction targets at the low-
est possible cost while ensuring power supply for the entire society and stable economic 
growth (Kumar et al. 2020; Cao et al. 2021; Dong et al. 2021a). Many studies have looked 
into optimal emission-reduction strategies for power systems at the national (Prebeg 
et  al. 2016; Ioannou et al. 2019; Yu and Fang 2021; Dong et  al. 2021b), regional levels 
(Cheng et al. 2015; Koltsaklis et al. 2014; Nie et al. 2018), and power-sector levels (Chen 
et al. 2020; Wang and Qie 2020; Liu and Dong 2021). Kang et al. (2020) built a nonlinear 
technology optimization model to explore the economically optimal carbon capture and 
storage deployment strategy for China’s power sector to achieve 2 °C emission-reduction 
targets while also satisfying investment demand; the findings provided valuable informa-
tion for future subsidy settings and carbon-trading markets. Meanwhile, to meet energy 
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Fig. 1  Carbon-reduction technology for thermal power enterprises and carbon trading system
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demand while mitigating the environmental effects of the power generation system, 
Ioannou et  al. (2019) built a multistage stochastic optimization model consistent with 
sustainable development goals by incorporating renewable energy, CO2 emission-reduc-
tion targets, and fuel diversity into a series of constraints.

Other studies have investigated CA prices from the standpoint of enterprises’ mar-
ginal abatement costs. For instance, using the Hamilton–Jacobi–Bellman (HJB) equation 
to study enterprises’ optimal emission-reduction strategies, Xu and Guo (2017) discov-
ered that the CA price and marginal abatement cost are the same, both equal to the dis-
counted value of the excess emission penalty. Accordingly, they obtained the optimal 
strategy and optimal cost at each decision time point. Given that enterprises’ decision-
making processes are discrete and CAs cannot be traded at intertemporal periods, Xu 
and Zhang (2020) developed a discrete emission-reduction decision model for thermal 
power enterprises and employed dynamic optimization approaches to derive the optimal 
abatement cost. The marginal abatement cost was used as the guidance price for enter-
prises to participate in CA trading. Meanwhile, Kollenberg and Taschini (2016) obtained 
the optimal emission reduction and trading strategies in the market’s equilibrium state 
by solving the dynamic cost minimization problem for enterprises. They provided an 
analytical foundation for regulators to select appropriate ETS policies.

The following deficiencies exist in existing research on emission-reduction strategies 
and CA pricing for power-generation enterprises. Most studies use the objective func-
tion of minimizing power-generation costs and employ stochastic optimization or objec-
tive programming models to determine the optimal emission reduction while ignoring 
the link between the carbon-trading market and emission-reduction strategies. When 
building models, due to the influence of fuel price fluctuations and macroeconomic fac-
tors, few studies have accounted for stochastic volatility in the energy-switching price, 
the CA price, and CO2 emissions. As a result, there are discrepancies between research 
findings and reality. Moreover, few studies have combined the stochastic volatility model 
in the financial market with optimal control theory to investigate trends in optimal car-
bon reduction and the equilibrium price of CAs.

To fill the above-mentioned gaps, this study aims to improve the optimal control model of 
enterprise costs and introduced stochastic analysis to solve the cost-minimization problem 
in the thermal power industry. The following are our primary contributions. First, to ensure 
that the model depicting the energy-switching price is consistent with reality, we used the 
fractional Brownian motion model to describe its dynamics and concluded that CA prices 
satisfy the mixed fractional Brownian motion process based on the equilibrium theory of 
CA trading. Second, unlike previous studies that assigned values to some parameters, this 
study used historical data from two carbon-trading pilots (Guangdong and Tianjin) as sam-
ples to estimate two parameters in the model: the Hurst exponent and the volatility coeffi-
cient. By comparing the estimated trajectory to the actual one, we were able to confirm the 
accuracy of the estimated results and the applicability of the model. Third, we obtained the 
HJB partial differential equation satisfied by the optimal total compliance cost by combin-
ing the dynamic optimization principle with the fractional Itô’s formula, and we derived the 
expressions for optimal emission reduction and equilibrium CA prices. This builds on the 
work of Xu and Zhang (2020). Furthermore, we simulated the trajectories of optimal emis-
sion reduction and equilibrium CA prices over time under different scenarios by varying 
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the peak years. Then, we examined how the main parameters affected optimal emission 
reduction and equilibrium carbon-emission trading prices.

Model construction
Let 

(

�,F , {Ft}t≥0,P
)

 be the probability space satisfying the general condition filtering, 
where {Ft}t≥0 is the right continuous adaptation process. Consider N enterprises par-
ticipating in the carbon-trading market. Denote I as the set of all of the enterprises; then, 
I = {1, 2, 3, · · · ,N } . At any time point t in a compliance period [0, T ] , enterprises must 
consider using carbon-abatement technologies or carbon-market trading (buying or sell-
ing) to determine the carbon emissions they want to offset. Thus, enterprises face the inter-
temporal optimization problem of determining the optimal production and trading strategy 
to achieve the cost-cutting goal. The enterprise i is assumed to receive a certain amount of 
CAs ei0 for free at the initial moment of t = 0 , then

where xi0 is the initial amount of emission reductions required, yi0 denotes the CO2 emis-
sions of the enterprise i in the basic as usual (BAU) scenario (i.e., the social development 
status before China’s 11th Five-Year Plan when there was no emission-reduction con-
trol policy and trading market) at t = 0 , and ei0 denotes the initial CA, which may vary 
depending on the size of an enterprise. During the compliance period, enterprises must 
offset their carbon emissions by using clean-energy reduction technologies or purchas-
ing CAs. In the BAU scenario, carbon emissions are assumed to satisfy the following 
process:

where µ
(

t, yt
)

 and σ
(

t, yt
)

 denote the drift and fluctuation terms, respectively, and Wt 
denotes the Ft-adapted standard Brownian motion (Liang and Huang, 2021). Denote xit 
as the required carbon-emission reduction of enterprise i observed at the time t within 
[0,T ]:

where αi
t and β i

t represent the carbon trading volume and the emission abatement 
amount of the enterprise i at the time t , respectively; αi

t > 0 denotes that power plant i 
buys the CAs; otherwise, the allowances are sold. xiT is the amount of emission reduction 
required at the end of the compliance period to meet the requirements. The enterprise 
intends to complete the compliance emission-reduction target during the compliance 
period. Thus, the enterprise is compliant at the end of the compliance period; namely, 
Et

(

xiT
)

= 0.
Apply Itô’s formula to the Eq. (3):

(1)xi0 = yi0 − ei0,

(2)dyt = µ
(

t, yt
)

dt + σ
(

t, yt
)

dWt ,

(3)xit = −

∫ t

0

(

αi
s +β i

s

)

dt +

∫ t

0
ysds + E

(

∫ T

t
ysds|Ft

)

,

(4)dxit = −
(

αi
t + β i

t

)

dt + G(t)dWt ,
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where G(t) is the fluctuation term determined by µ
(

t, yt
)

 and σ
(

t, yt
)

 . We assume that 
G(t) is a t-continuous and bounded function. Changes in demand and allocation prior to 
emission reductions have different effects on enterprises, whereas all enterprises are sub-
ject to systematic shocks. Therefore, for each enterprise i ∈ I , the demand for carbon-
emission reduction is assumed to be driven by the same Brownian motion, Wt , whereas 
the differences in enterprise size and technology, are determined by the distribution of 
G(t) . Referring to Liang and Huang (2020), let G(t) = σ i , where σ i is a constant, denot-
ing the volatility coefficient of emission reduction demand for any enterprise i.

Optimization problem

Let A(t) be the total cost of CA trading for enterprise i. Then, it includes nonnegligible 
transaction costs ν ·

(

αi
t

)2 and CA trading costs αi
t · Ct , where ν is the friction factor of 

CA trading, and Ct is the trading price.

In the absence of carbon-abatement costs, the marginal cost of electricity can be con-
sidered the ratio of the energy2 fuel cost to the efficiency of electricity generation:

where MC is marginal cost, FC is fuel cost, and η is the enterprise’s generation efficiency. 
Considering model complexity, this study excludes costs associated with operations and 
maintenance, regulatory changes, and manpower (Chevallier et al. 2019). Thus, the fuel 
cost is also the cost per unit of electricity generated. When we factor in carbon costs like 
carbon tax and CA trading price, the marginal cost of electricity becomes:

where e is the carbon emission factor (i.e., carbon emissions per unit of electricity pro-
duced), and Mt is the energy-switching price. Energy fuel cost can be expressed as the 
product of thermal efficiency and energy price, as follows:

The switching point can be defined as the emission cost when the marginal costs of 
burning coal and gas are equal (i.e., MCc = MCg ). Combining the above equations, we 
determine that Mt depends on each fuel’s cost, efficiency, and emissions factor.

(5)A(t) = ν ·
(

αi
t

)2
+ Ct · αi

t .

(6)MC =
FC

η
,

(7)MC =
FC

η
+
e

η
· Mt ,

(8)FC = h · Pt .

(9)Mt =
hg · P

g
t · ηc − hc · Pc

t · ηg

ηg · ec − ηc · eg
.

2  In this study, energy refers to coal and natural gas.
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Coal-fired power is more profitable than gas-fired power if the energy-switching price 
Mt is higher than the CA price; thus, there is no need to replace coal generation with 
natural gas at this time.

Let B(t) be the total cost of carbon reduction for enterprise i, which consists of two 
components: the energy-switching cost, β i

t · Mt , and the depreciated cost of clean-
energy equipment, 12δ ·

(

β i
t

)2 , used by the enterprises for production:

where δ is the depreciation factor of the abatement equipment. The optimization prob-
lem for the compliance cost faced by the enterprise i is as follows:

where r is the risk-free interest rate. CA trading volume αi
t and emission-reduction strat-

egy β i
t , are decision variables. The amount of carbon-emission reduction xit required by 

the enterprise, CA price Ct , and energy-switching price Mt are all state variables.

Dynamic models for energy‑switching and carbon‑allowance prices

Market equilibrium consists of abatement and trading strategies for each enterprise, as 
well as the market clearing price process Ct. Deviations from equilibrium individuals do 
not result in additional cost savings for any enterprise in equilibrium (Kollenberg and 
Taschini 2016). The market is assumed to be complete and arbitrage-free. As a result, we 
can assume that there exists a risk-neutral probability measure Q that is equivalent to 
the real-world measure P, and that all market participants are risk-neutral. In the risk-
neutral world, the expected return on a risky asset is equal to the risk-free rate.

Since energy prices are affected by factors such as seasonality and the supply–demand 
relationship, energy-switching prices associated with energy prices will vary randomly. It 
is, therefore, assumed that under risk-neutral probability measure Q, Mt satisfies the fol-
lowing stochastic differential equation model:

where BQ
H (t) is the Ft-adapted fractional Brownian motion process, r is the risk-free rate, 

and σ is the volatility of the energy-switching price. When H = 0.5 , the fractional 
Brownian motion is the standard Brownian motion; when 0 < H < 0.5 , the fractional 
Brownian motion is anti-persistent; when 0.5 < H < 1 , the fractional Brownian motion 
is long-run dependent. Carbon emissions in the BAU scenario are independent of the 
carbon abatement strategy; thus, corr

(

dWt , dB
Q
H (t)

)

=0.

Under the condition that the carbon-trading market is cleared, 
∫

i∈I αi
tdI(i) = 0 (i.e., 

αI
t = 0 ). Assume that the state process i of the enterprise is Z

(

xit ,Ct ,Mt

)

 ; then, accord-
ing to the derivation process of the abatement and trading strategy for the enterprise in 
Appendix A, the state variables Ct can be represented as follows.

(10)B(t) = β i
t · Mt +

1

2
δ ·

(

β i
t

)2
,

(11)







ω
�

t, xit ,Ct ,Mt; αi
t ,β

i
t

�

= min
αi
t ,β

i
t

Et

�

� T
t e−rs

�

ν ·
�

αi
s

�2
+ Cs · αi

s + 1
2δ ·

�

β i
s

�2
+ Ms · β i

s

�

ds
�

s.t.Et
�

xiT
�

= 0.

(12)
dMt

Mt
= rdt + σdB

Q
H (t),
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where gt = rert

erT−ert
 , and σ I is the distribution of the expected total carbon-emission 

reductions required in the set of enterprises I. The important information implied by 
Eq. (13) is that the CA price is driven by the mixed fractional Brownian motion process, 
which combines mutually independent fractional and standard Brownian motion.

Solution for the optimal model
For ease of expression, denote xit ,Ct ,Mt ,α

i
t ,β

i
t briefly as x, c,m,α,β . Using the fractional 

Itô’s theorem (Alòs and León 2021) for Eq. (11) and combining Eqs. (4), (12), and (13) 
with the dynamic optimization principle, the HJB equation for the optimal value func-
tion ω

(

t, xit ,Ct ,Mt; αi
t ,β

i
t

)

 , of the enterprise i is obtained:

Notice that, to minimize the expression in the curly bracket above, for all α and β , it 
needs to satisfy that

resulting in the following lemma.

Lemma 1  The HJB Eq. (14) can be rewritten in the following form:

Since for any t, Et
(

xiT
)

= 0 , the terminal condition needs to be added in the process of 
solving the HJB equation:

The solution of the HJB equation can be obtained by differentiation, which leads to the 
following theorem.

Theorem 1  The solution of the HJB equation with the terminal condition (17) is.

(13)dCt = rCtdt + σMtdB
Q
H (t) + δgtσ

IdWt ,

(14)

Dtω + rcDcω + rmDmω +
1

2

(

σ i
)2

D2
xω +

(

Ht2H−1σ 2m2 +
1

2
δ2g2t

(

σ I
)2

)

D2
cω

+Ht2H−1σ 2m2D2
mω +

1

2
δgtσ

iσ IDxDcω + Ht2H−1σ 2m2DcDmω

+ inf
α,β

{

−(α + β)Dxω + e−rt

(

cα + να2 + mβ +
1

2
δβ2

)}

= 0,

(15)α=
1

2ν

(

ertDxω − c
)

, β=
1

δ

(

ertDxω − m
)

(16)

ert
(

Dtω + rcDcω + rmDmω +
1

2

(

σ i
)2

D2
xω +

(

Ht2H−1σ 2m2 +
1

2
δ2g2t

(

σ I
)2

)

D2
cω

+Ht2H−1σ 2m2D2
mω +

1

2
δgtσ

iσ IDxDcω + Ht2H−1σ 2m2DcDmω

)

−
1

4ν

(

ertDxω − c
)2

−
1

2δ

(

ertDxω − m
)2

= 0,

(17)lim
t→T

ω

(

t, xt ,Ct ,Mt; αi
t ,β

i
t

)

=

{

0 : xit = 0

∞ : xit �= 0.
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where �(t) =
∫

e2rt+σ 2t2H dt.

See Appendix B for the proof.

Based on Eq. (15) regarding the relationship between αi
t , β i

t and the minimized cost, the 
optimal trading and abatement volumes of enterprise i are obtained.

Integrating the above equations with respect to i, we obtain the optimal trading and 
abatement volumes for the carbon market from Eq. (A.2).

Thus, Ct = Mt + δβI
t  , implying that the optimal trading and abatement volumes are 

independent of the Hurst exponent when the carbon market reaches equilibrium and that 
the equilibrium price of CAs equals the marginal abatement cost.

From Eq. (12), the energy-switching price at any point in time t can be obtained.

where M0 is the energy-switching price at the initial compliance period, such that the 
equilibrium price of CAs is

The desired equilibrium price of CAs agreed upon by all of the enterprises is E(Ct) denoted 
by Cd

t :

(18)

ω(t, x, c,m) =
rνδ

(δ + 2ν)
(

erT − ert
)x2 +

e−2rt
(

erT − ert
)(

2cm − c2
)

2r(δ + 2ν)

+

(

m −
c − m

δ + 2ν

)

x +
1

2δ(δ + 2ν)
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+
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(
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)2
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(
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)2

− rδ2σ iσ I
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(

erT − ers
) ds,
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(δ + 2ν)
(

erT − 1
)

(
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)

+
rertδ

δ + 2ν

∫ t

0

σ i
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dWs +

Mt − Ct

δ + 2ν
,

(20)β i
t =
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(δ + 2ν)
(

erT − 1
)

(

yi0 − ei0

)

+
2rertν

δ + 2ν

∫ t

0

σ i

erT − ers
dWs +

Ct − Mt

δ + 2ν
.

(21)αI
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rert
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(
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)

+ rert
∫ t

0

σ I

erT − ers
dWs.
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(

rt −
1

2
σ 2t2H + σB

Q
H (t)

)

,

(23)

Ct = M0 exp

(

rt −
1

2
σ 2t2H + σB

Q
H (t)

)

+
rδert
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(
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)

+rδert
∫ t

0

σ I
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dWs.

(24)Cd
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rt +
rδert
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(
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)

.
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Parameter estimation for the stochastic model
China’s national carbon market was officially launched for the trading on July 2021. As 
a result, there is a scarcity of data on carbon quota trading. Thus, we took the trading 
pilots Guangdong and Tianjin as samples, and used the energy price data from the pilots 
to estimate parameters in the model (12).

Logarithmic change in energy‑switching and carbon‑allowance prices

According to the Intergovernmental Panel on Climate Change, the CO2 emissions from 
burnt coal to produce 1 megawatt hour (MWh) of electricity are 0.897 tons and the CO2 
emissions from burnt natural gas to produce 1 MWh of electricity are 0.388 tons; i.e., 
ec = 0.897tCO2/MWh, eg = 0.388tCO2/MWh. The efficiency values for coal and natural gas 
are taken as hc = 0.378t/MWh and hg = 101.158m3/MWh (Xu and Zhang 2020), respec-
tively. In addition, referring to Lu et al. (2021), let ηc = 0.326 and ηg = 0.311. Data for coal 
and natural gas prices were obtained from the WIND database3; we selected the mar-
ket price of power coal (Q5000) in Guangzhou port and the closing price of power coal 
(Q4500) in Tianjin port, as well as the arrival price of liquefied  natural gas (LNG) in 
Guangzhou and Tianjin.

Equation (9) is used to estimate energy-switching prices for thermal power companies 
using daily historical data for coal and natural gas prices (January 1, 2019–March 31, 
2021). Figure 2 depicts the results. As shown in the figure, energy-switching prices were 
negative around July 2020, implying that natural gas generation is more advantageous 
than coal combustion, with energy-switching occurring at a zero-carbon cost. The find-
ings show that for a given coal price, a sufficiently low natural gas price can influence 
enterprise switching behavior (Chevallier et al. 2019).

Figure  3 depicts the empirical distribution of the logarithmic return, 
log (Mt) − log (Mt−1) for energy-switching prices, including a fit to the Gaussian dis-
tribution of the data. Log returns for both trading pilots have negative skewness and a 
large positive kurtosis when combined with Table 1. This suggests that the log returns 

Fig. 2  Energy-switching prices (January 1, 2019–March 31, 2021)

3  http://​www.​wind.​com.​cn/.

http://www.wind.com.cn/
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Fig. 3  Empirical distribution of energy-switching prices. Note: The solid line indicates the kernel estimate, 
and the dashed line indicates the Gaussian fit

Table 1  Overall estimates of logreturns for energy-switching prices

Pilots Median Kurtosis Skewness Min Max

Guangdong 0 66.5196  − 2.5328  − 1.4306 1.1611

Tianjin 0 267.6933  − 13.2927  − 2.1390 0.6464
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Fig. 4  Empirical distribution of daily trading prices of carbon allowances. Note: The solid line indicates the 
kernel estimate, and the dashed line indicates the Gaussian fit
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are skewed, excessively kurtic, and thick-tailed. Therefore, we depicted the dynamics 
of energy-switching prices in the fractal market using the fractional Brownian motion 
model (12), which is characterized by “sharp peaks and thick tails.”

Figure  4 shows the empirical distribution in the logarithm changes, 
log (Ct) − log (Ct−1) , in CA prices during the historical period4 (January 1, 2019–March 
31, 2021) for the pilots (Guangdong and Tianjin). Table 2 shows the overall statistics of 
the log returns to trading prices. Guangdong and Tianjin show negative skewness, and 
the log returns on trading prices in both pilots are greater than 0. We conclude that the 
log curves have skewness, excessive kurtosis, and thick tails, which are consistent with 
the characteristics of fluctuating aggregation and spikes in financial time series (Zhou 
and Li 2019). As a result of the preceding process, we can deduce a mixed fractional 
Brownian motion model, combining mutually independent fractional Brownian motion 
and standard Brownian motion, to depict the logarithmic variation of carbon quota 
trading prices.

RV method5 for parameter estimation
The following are the two main steps in the development of parameter estimation. First, 
R/S analysis (Liu and Huang 2021) was used to estimate the Hurst exponent values. The 
volatility coefficients were then estimated using the quadratic variance method.

Step 1 R/S method.
Let Xt = log(Mt /M0) be the logarithmic price and Yl = X(l+1)Δt–XlΔt,l = 1,2,…,N–1. Par-

tition a set of time series data {Yl} into K equal-length subintervals of length n. For the 
kth (k = 1, 2,…,K) subinterval, define the extreme difference:

where Y i,k is the arithmetic mean for the data of the kth interval. Define the variance of 
the kth (k = 1, 2,…,K) interval data as

The estimated quantity Q(HM)

k = Rk

/

Sk is the R/S statistic of the Hurst–Mandelbrot’s 
rescaled extreme deviation. Averaging all K such R/S statistics, we obtain

(25)Rk = max
1≤j≤n

j
∑

i=1

(

Yi,k − Y i,k

)

− min
1≤j≤n

j
∑

i=1

(

Yi,k − Y i,k

)

,

(26)S2k =
1

n

n
∑

i=1

(

Yi,k − Y i,k

)2
,

Table 2  Overall estimates of the logarithmic returns to carbon-trading prices

Pilots Median Kurtosis Skewness Min Max

Guangdong 0.000259 116.4615  − 0.2060  − 0.2532 0.2447

Tianjin 0 11.9994  − 0.1017  − 0.0458 0.0480

4  Data were collected from http://​www.​tanji​aoyi.​com/.
5  We took the initials for the methods of the estimated Hurst exponent and volatility.

http://www.tanjiaoyi.com/
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Since the length n of the subinterval varies, different segmentation cases correspond 
to different subinterval lengths, and the mean of the corresponding R/S statistic also var-
ies. Long-term empirical practice has shown that

where C is a constant. Taking the logarithm of both sides of the above equation, we 
obtain

An estimate of the Hurst exponent can be obtained using the least-squares method.
Step 2 Quadratic variance estimation for the volatility coefficient.
Based on the estimated value of the Hurst exponent, an estimate of σ 2 is obtained by 

the quadratic variance estimation method, as follows:

For fractional Brownian motion process,

Therefore, when N → ∞,�t → 0 , we have

We can see from Eq.  (32) that the quadratic variance estimate σ̂ 2 is an asymptotic 
unbiased estimate of σ 2.

Parameter estimation results

Based on the historical data for energy-switching prices of the two carbon-trading pilots, 
two sets of 510 data each were finally filtered, thus, N = 510. Let the length n of subin-
tervals be the values {5, 6, 10,…,102}; then, the number of corresponding subintervals K 
is {102, 85, 51,…,5}. The estimates of the parameters H and σ can be obtained using Eqs. 

(27)Qn =
1

K

K
∑

k=1

Q
(HM)

k ,

(28)Qn = CnH ,

(29)log (Qn) = H log (n) + log (C).

(30)
σ̂ 2=

N−1
∑

l=0

(

X(l+1)�t − Xl�t

)2

N (�t)2H
.

(31)
(

X(l+1)�t − Xl�t

)2
= σ 2(BH ((l + 1)�t) − BH (l�t)) + o

(

(�t)2H
)

.

(32)E
�

σ̂ 2
�

= E











n−1
�

i=0

�

X(i+1)�t − Xi�t

�2

n(�t)2H











→ σ 2.

Table 3  Estimated parameter values

Pilots H σ

Guangdong 0.5857 0.1700

Tianjin 0.6456 0.1517
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(25–32); the results are shown in Table 3. Both carbon-trading pilots have Hurst expo-
nents greater than 0.5, indicating that energy-switching prices are long-term dependent.

Based on Eq. (22) for the energy-switching price at any point in time t, the estimated 
values in Table 3 are regarded as simulation parameters of H and σ. The risk-free interest 
rate r is calculated as the average of 0.0252 national bond yields over the previous year 
(October 28, 2020–October 27, 2021). The path in energy-switching prices is fitted using 
the Monte Carlo method, and compared with the actual trajectory (Fig.  5). The frac-
tional Brownian motion trajectory simulated using the estimated parameter values has a 
similar trend to the actual path, as shown in Fig. 5. The fitted trajectory is more undulat-
ing and fluctuates more frequently than the original trajectory. The bias between the two 
paths is due to the annual average of national bond yields over the past year being the 
risk-free rate.

Numerical simulation and analysis of results
In China, the thermal power sector is a major source of carbon emissions. In the short 
term, the majority of enterprises participating in CA trading will be in the thermal power 
sector. Using that sector as an example, we ran scenario simulations using the stochastic 
optimal trading and abatement models developed in the previous section, as well as the 
stochastic equilibrium model of carbon prices.

Parameter settings

Initial carbon quota setting

To promote high-quality, sustainable socioeconomic development, China must main-
tain a stable medium- and long-term growth trend in gas power while ensuring that coal 
power serves as regulatory support and power transfer in the power system. Therefore, 
we assumed a 10% share for gas-fired power generation in 2040 based on the IEA’s (IEA 
2017) forecast for China’s energy generation share and calculated the average growth 
rate of the share between 2020 and 2040 from the share for 2020.

In a high-electrification scenario (47–80 billion tons), Zhang et al. (2021b) budgeted 
CO2 emissions from China’s coal-power sector from 2019 to 2050.We set the CO2 emis-
sions from coal power in the thermal power industry for 2021–2050 based on the carbon 
peak time node, with a 2 °C temperature control target. Thus, using MATLAB, we ran a 
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simulation that inversely performed the proportion of coal generation (which is guaran-
teed to be less than 40% in 2040 as a function of time t) for the period 2021–2050:

Assuming the share of gas power grows from 2040 to 2050 at the average growth rate 
of 2020 to 2040, CO2 emissions from energy consumed by the thermal power indus-
try can be projected. An annual smoothing curve of CO2 emissions from the thermal 
power industry for the period 2021–2050, as shown in Fig. 6, could be fitted. Total CO2 
emissions peak around 2025 at 4.03 billion tons, followed by a sharp decline to achieve 
carbon neutrality around 2050. CO2 emissions in 2040 are used as proxy variables for 
the initial CAs under the conditions of meeting electricity demand6, temperature control 
targets, and energy generation share.

Other parameter settings

(1)	 To achieve the carbon peak target by 2030 in China, we take 2021–2030 as a com-
pliance period (i.e., T = 10).

(2)	 In the BAU scenario, cumulative emissions from the thermal power sector are 
calculated by multiplying the energy generation share in 2005, the energy carbon 
intensity, and total electricity demand in the corresponding year.

(3)	 The depreciation factor of the abatement equipment is taken as δ = 0.2 (Xu and 
Zhang 2020).

(4)	 The fluctuation factor of the CO2 emissions reduction required for the thermal 
power industry is taken as σ I = 0.02 (Carmona et al. 2009).

Annual emissions = electricity generation × coal power carbon intensity

= annual electricity demand × coal power share × carbon intensity.

Fig. 6  CO2 emission budget for the thermal power sector from 2020 to 2050 under a 2 °C target

6  According to the “Outlook”, for the continuity of the numerical simulation curves, the average annual growth rate of 
electricity demand for 2021–2030 is taken to be 3.6% on average for 2020–2025 and 2025–2030, and the average annual 
growth rate of electricity demand for 2030–2050 is taken to be 2%.
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(5)	 The average values of Tianjin’s power coal and LNG prices in 2020 are taken 
as the proxies of initial coal and natural gas prices for China, which are 
Pc
0 = 454.17 Yuan/ton and Pg

t = 2.41 Yuan/m3, respectively.
(6)	 The volatility coefficient, σ = 0.1517, and the Hurst exponent, H = 0.6456, for 

energy-switching prices of the thermal power industry in Tianjin are taken as proxy 
parameters for China.

Energy carbon-emission intensity, energy generation efficiency, and thermal efficiency 
are all taken the same values as described in “Parameter estimation for the stochastic 
model” section. The values of all of the parameters are shown in Table 4.

Scenario simulation

We set three different peaking time points for 2025, 2026, and 2027, assuming a constant 
carbon-peak value for coal power. We obtained the trend in optimal emission reduc-
tions and the desired equilibrium prices of CAs in the thermal power industry annually 

Table 4  Values for all parameters

Parameter symbols Parameters/Units Parameter values

T Compliance period (year) 10

Pc 0 Initial coal price (Yuan/ton) 454.17

Pg0 Initial natural gas price (Yuan/m3) 2.41

hc Coal thermal efficiency (tcoal/MWh) 0.378

hg Natural gas thermal efficiency (tgas/MWh) 101.158

ec CO2 emission intensity for coal power (tCO2/MWh) 0.897

eg CO2 emission intensity for gas power (tCO2/MWh) 0.388

ηc Generation efficiency for coal power 0.311

ηg Generation efficiency for gas power 0.326

r Risk-free interest rate 0.0252

H Hurst exponent 0.6456

σ Volatility coefficient for energy-switching prices 0.1517

δ Depreciation rate of abatement equipment 0.20

σI Volatility coefficient for emission-reduction demand 0.02
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during the compliance period (2021–2030) using scenario simulations under different 
peak year scenarios (Fig. 7).

In Fig. 7, both optimal emission reductions and desired equilibrium CA prices show 
an annual increasing trend in different carbon-peak years. This is primarily due to the 
fact that the abatement strategy causes economic fluctuations. To alleviate the impact 
of this shock, the government will encourage thermal power companies to make small 
abatement payments in the beginning and then gradually increase abatement levels. The 
equilibrium price of CAs is equal to the current cost of the cheapest emission-reduction 
strategy, and during the abatement process, businesses typically choose the lower-cost 
reduction technology. Following full implementation of the low-cost emission-reduction 
strategy, enterprises select the next low-cost emission-reduction technology, resulting 
in an annual increase in the equilibrium prices of carbon trading (Chevallier et al. 2019). 
Moreover, in the early stages of the compliance period, the later the peak time, the 
higher the corresponding optimal emission reductions and CA equilibrium prices. This 
is primarily due to the fact that, in the early stages, the later the peak time is reached, 
the greater the pressure on businesses to reduce emissions. Then, they increase emission 
reductions, which raises abatement costs; thus, the equilibrium prices of CAs also rise. 
In the latter stages of the compliance period, the opposite is true. Overall, the difference 
in peak time point has little effect on optimal emission reductions and CA equilibrium 
prices. This is primarily due to a small change in the peak CO2 emissions of different 
years to ensure that the 2 °C temperature control target could be met under high electri-
fication levels.

Parameter sensitivity analysis

Initial CAs influence the change in optimal emission reductions, whereas CA equilib-
rium prices are affected by factors such as the Hurst exponent and volatility for energy-
switching prices, abatement equipment depreciation, and initial carbon quotas. This 
section focused on the impact of changes in these parameters on optimal emission 
reductions and CA equilibrium prices.

Effect of the Hurst exponent on the equilibrium price of carbon allowances

In the previous section, we established that energy-switching prices exhibit long-run 
dependence. The Hurst exponent was set to 0.6456 by default. To investigate the effect 
of the Hurst exponent on the equilibrium price of CAs, we chose the values 0.5165 and 
0.7747 after 20% fluctuations up and down from the default value.

As illustrated in Fig. 8, as the Hurst exponent increases, the curve for the CA equi-
librium price oscillates less and the trajectory becomes smoother, while all other 
parameters remain constant. This is primarily determined by the fractional Brownian 
motion’s long-term dependence. If the equilibrium price of carbon quota trading rises 
(falls) in the first period, it is more likely to rise (fall) in the second, and the larger the 
Hurst exponent, the stronger the long-term dependence of fractional Brownian motion. 
Thus, in the late compliance period, the corresponding equilibrium price with a larger 
Hurst exponent falls more noticeably. The main factor influencing the Hurst exponent 
is energy price, which also implies that energy price influences the equilibrium prices of 
CAs indirectly.
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Effect of volatility coefficient for energy‑switching prices on the equilibrium price of carbon 

allowances

Volatility was set to 0.1517 by default. For the sensitivity analysis of the equilibrium 
price of CAs, the values 0.1062 and 0.1972 after 30% up and down fluctuations from 
the default value were chosen.

For the majority of the compliance period, the equilibrium price of CAs decreases 
with increasing volatility, as shown in Fig. 9. The more volatile the market, the more 
significantly the curve fluctuates. Occasionally, the equilibrium prices of CAs under 
the three volatilities are approximately equal. This is mainly because when volatil-
ity rises, so does the opportunity for energy-switching prices to rise or fall, causing 
the equilibrium carbon-trading price to change in the same direction; these two out-
comes tend to cancel each other out (Hull 2018). As a result, around the peak time 
point of 2025, the equilibrium price of CAs with high volatility converges to the case 
with low volatility.
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Effect of depreciation rate of abatement equipment on the equilibrium price of carbon 

allowances

The depreciation rate of the enterprises’ abatement equipment was set to 0.20 by default. 
For the sensitivity analysis of the equilibrium price of CAs, values of 0.14 and 0.26 were 
chosen after 30% up and down fluctuations from the default value.

As illustrated in Fig. 10, the higher the depreciation rate of abatement equipment, the 
higher the equilibrium price of CAs. This is primarily because a higher depreciation rate 
raises the variable cost of obtaining one unit of electricity using clean equipment, which 
raises the variable cost of reducing one unit of emission, causing the marginal abatement 
cost to rise. However, due to the small depreciation rate value, the overall change is not 
exceptionally large, and the 30% change in value is also small.

Effect of initial carbon allowances on optimal carbon‑emission reductions and the equilibrium 

price of carbon allowances

We investigated the sensitivity of carbon-emission reductions and equilibrium prices to 
changes in initial CAs by varying the percentage of energy generation target so that the 
initial CA fluctuated by 30% up and down.

With all other parameters held constant, Fig. 11a shows that the higher the initial CAs 
in each year, the lower the optimal carbon emission reduction for the thermal power 
industry. This is primarily because with more initial carbon quotas, more are allocated 
to each thermal power enterprise, which reduce the pressure on enterprises to lower 
emissions, and they will not reduce carbon emissions by replacing coal power with gas 
power. Thus, the thermal power industry’s optimal carbon-emission reduction will be 
reduced accordingly.

As shown in Fig. 11b, when the initial carbon quota increases each year, the equi-
librium price of carbon quotas for thermal power enterprises decreases slightly. On 
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the one hand, as initial carbon quotas increase, more are granted to individual ther-
mal power enterprises. As the number of tradable quotas in the carbon-trading mar-
ket grows, the equilibrium price of carbon quota trading falls. On the other hand, 
with more initial carbon quotas, there is less pressure on each thermal power enter-
prise to reduce emissions, less initial investment in clean-energy equipment, and 
more CO2 released by power generation. Then, enterprises will need to buy more 
carbon allowances through the carbon market to offset CO2 emissions. Addition-
ally, investment in clean-energy power generation equipment is relatively large, busi-
nesses typically choose to purchase CAs to reduce emissions, eventually raising the 
equilibrium price of CAs. Under the combined effect of these factors, the equilib-
rium prices of the carbon market, in which thermal power companies participate, 
will eventually decrease only slightly.

We draw the following conclusions using numerical simulations.
Despite different carbon peak years for the thermal power industry, the indus-

try’s marginal abatement cost will show a low and then high increase trend, as other 
industries are closely related to the thermal power industry, and the government will 
inevitably choose to reduce emissions at a low cost first to avoid affecting national 
economic development. Therefore, both the optimal emission reductions and the 
desired equilibrium trading prices in the carbon market show an increasing trend 
over time.

The greater the Hurst exponent, the smoother the equilibrium trading price curve. 
An increase in the volatility coefficient for energy-switching prices lowers the equi-
librium price of CAs, but it also creates a situation similar to low volatility. Increased 
depreciation of an enterprise’s abatement equipment raises the enterprise’s marginal 
abatement cost, raising the equilibrium carbon-trading price. An increase in initial 
CAs reduces optimal carbon-emission reductions and lowers thermal power com-
panies’ equilibrium trading prices. With higher initial CAs, the required emission 
reductions during the compliance period will be lower, as will the optimal emission 
reductions. The supply and demand for CAs influence the equilibrium trading price. 
The simulation results show that supply has a greater impact than demand, causing 
the equilibrium trading price to fall slightly overall.
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Conclusions
Existing studies on the optimal emission reduction and the equilibrium price of CAs 
for thermal power enterprises are relatively deficient based on a comprehensive consid-
eration of stochastic energy-switching and CA trading prices. Focused on the goal of 
achieving carbon peak, this study took into account the CA trading cost and abatement 
cost of energy generation and built a stochastic optimization model with the total enter-
prise compliance cost minimized. The stochastic optimization model was transformed 
into a solvable HJB partial differential equation combining the fractional Itô’s formula 
and the dynamic optimization principle. By solving this equation, we obtained the opti-
mal trading and emission-reduction volumes for a single enterprise. Furthermore, the 
optimal volume of emission reductions and the equilibrium price of CAs for the entire 
society were determined. Furthermore, using thermal power companies that participate 
in the national carbon market as an example, we ran scenario simulations and parameter 
sensitivity analyses. The following are the study’s main findings.

First, an empirical distribution of historical data on energy-switching prices in Guang-
dong and Tianjin revealed “peaks and tails” in the prices. Thus, we chose the fractional 
Brownian motion model to describe the dynamic changes, and we deduced that CA 
prices follow the stochastic differential equation model of mixed fractional Brownian 
motion. The empirical distribution of historical CA price data validated the model’s 
reasonableness. The comparison of the parameter fitting results with real data revealed 
that the fitted trajectory was similar to the real one, confirming the estimation method’s 
accuracy.

Second, the scenario simulations revealed that the equilibrium price of desired CAs 
and the optimal emission reductions of thermal power enterprises under different peak 
years had the same annual trend throughout the compliance period. The later the peak 
time in the early part of the compliance period, the higher the equilibrium price and 
optimal emission reduction. The trend reversed in the latter part of the compliance 
period. This finding indicated that the increasing CA prices would compel thermal 
power companies to promote emission reductions.

Third, the larger effect of the Hurst exponent determined by energy-switching prices 
on CA equilibrium prices suggested that the magnitude of energy price changes could 
significantly affect CA equilibrium prices. An increase in the volatility coefficient could 
result in a situation where the chances of an increase or decrease in the equilibrium 
prices of CAs cancel each other out, with the prices eventually convergent to those of 
low volatility.

Finally, the adjustment to the initial CA clearly had a negative impact on optimal emis-
sion reduction. It had a two-way effect on CA equilibrium prices, with the offset having 
a negative but insignificant effect. The depreciation rate also had a minimal effect on the 
equilibrium price of CAs.

Policy implications

Our findings make theoretical and practical implications for policy makers. First, the 
Chinese government should strengthen macrocontrol and appropriately raise the 
CA price in the carbon market to encourage enterprises to reduce their emissions. In 



Page 23 of 27Sun and Dong ﻿Financial Innovation            (2023) 9:12 	

particular, the government may tighten quota supply in order to return the CA price 
to a reasonable range, increasing the cost of external carbon purchases by thermal 
power enterprises. As a result, power companies may be forced to take measures such 
as increasing investment in emission-reduction technologies, improving research and 
development and application of advanced technologies, and increasing the proportion 
of clean-energy generation to meet actual electricity demand. This could encourage 
thermal power enterprises to transition from high-emission coal-fired to green and low-
carbon energy sources in order to meet the emission reduction target. Furthermore, the 
competent authorities could adjust the rules of the carbon offset mechanism flexibly in 
response to actual market conditions in order to regulate the carbon trading price.

Second, in order to avoid large changes in carbon quota prices and improve the energy 
market’s transmission mechanism to carbon quota prices, the government should 
macro-regulate energy prices using market-based instruments. This study discovered 
that fluctuations in energy prices could affect the Hurst exponent, significantly influ-
encing carbon quota prices. Natural gas is priced by the government in China and is 
therefore insensitive to international market forces; as a result, the government should 
implement a reasonable pricing method based on market value and gradually link natu-
ral prices to more market-oriented alternative energy prices around the world. Further-
more, the government could adjust the natural gas guiding price based on supply and 
demand in the energy market to deepen the natural gas price reform. Moreover, these 
measures could prevent gas speculation, avoid market disruption and protect national 
energy security to stabilize energy-switching costs between coal and natural gas.

Third, the government should develop a reasonable initial CA allocation scheme to 
help businesses meet their carbon-reduction targets. This study found that initial CAs 
had a significant impact on thermal power enterprises’ carbon-emission reduction. The 
national carbon emissions trading market is in its early stages, and the allocation system 
of the carbon emission rights is relatively lax. As a result, the government should estab-
lish clear carbon-emission targets for thermal power companies. Initial carbon quotas 
could be allocated to individual enterprises based on targets in order to mitigate shocks 
to enterprise production behavior and solve problems of fair competition among enter-
prises and carbon-market efficiency, motivating enterprises to participate in carbon 
market trading.

Limitations and suggestions for future research

This study has some limitations. Because the national carbon market was not officially 
launched for an extended period of time, there is a scarcity of time-series CA price data. 
This study could only use the Hurst index and the volatility parameter estimated from 
historical data on natural gas and coal prices in the pilot city of Tianjin as proxy variables 
for these two parameters in the national energy-switching price model to be consistent 
with the operating provinces and cities in the carbon market. Notably, future updates to 
the CA price data on the national carbon trading market will remove this impediment. 
Furthermore, a jump-diffusion fractional Brownian motion model will be considered in 
the future to describe the dynamics of the coal-to-gas conversion cost caused by interna-
tional contingencies, such as epidemics and wars. Furthermore, renewable energy power 
generation is an efficient way to meet carbon reduction targets and promote sustainable 
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development in the power industry. The conversion of thermal energy to renewable 
energy sources, such as wind power and photovoltaics, could be a promising research 
area.

Appendix A
Derivation for carbon‑allowance prices to satisfy the dynamic process

For any enterprise i , the emission reduction αi
t = α

(

t, xit ,Ct ,Pt
)

 and trading strategy 
β i
t = β

(

t, xit ,Ct ,Pt
)

 shall be a function of the state process Z
(

xit ,Ct ,Mt

)

 . For conveni-
ence, we define gt = rert

erT−ert
 . For any thermal power company, let its trading and abate-

ment strategies be given by

αI
t = 0 yields

Substituting equation (A.1) into Eq. (4), we get the dynamics for the process xit:

Solving for Eq. (A.3), we obtain

Integrating the above equation with respect to i over I yields, together with Eq. (A.2), 
we have

Appendix B
Proof for the theorem 1

Proof  Theorem 1 can be proven using the method of undetermined coefficients. We 
observe that the optimal value function can be given by.

From the boundary condition, we know that.

lim
t→T

1
A1(t)

= lim
t→T

1
B1(t)

= lim
t→T

1
B2(t)

= 0,A2(T ) = A3(T ) = B3(T ) = D(T ) = 0.

Substituting Dtω,Dcω,Dmω,Dxω,D
2
cω,D

2
mω and D2

xω into Eq. (16), we obtain

(A.1)αi
t =

δ

δ + 2υ
gtx

i
t +

Mt − Ct

δ + 2υ
, β i

t =
2υ

δ + 2υ
gtx

i
t +

Ct − Mt

δ + 2υ
.

(A.2)Ct = Mt + δ gtx
I
t .

(A.3)dxit = −
rert

erT − ert
xitdt + σ idWt .

(A.4)xit =
erT − ert

erT − 1
xi0 +

(

erT − ert
)

∫ t

0

σ i

erT − ers
dWs.

(A.5)dCt = rCtdt + σMtdB
Q
H (t) + δgtσ

IdWt .

ω(t, x, c,m) = A1(t)x
2 +A2(t)c

2 +A3(t)m
2 + B1(t)cx + B2(t)mx + B3(t)cm+D(t).
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Solving the above expression yields

To simplify the notation, we define �(t) =
∫

e2rt+σ 2t2H dt , then C = − 1
2δ(δ+2ν)

�(T ) . 
Substituting Eqs. (B.2) and (B.3) into the optimal value function deduces the minimiza-
tion cost for the enterprise i.
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