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Abstract

Accurate forecasting of changes in stock market indices can provide financial managers
and individual investors with strategically valuable information. However, predicting the
closing prices of stock indices remains a challenging task because stock price movements
are characterized by high volatility and nonlinearity. This paper proposes a novel
condensed polynomial neural network (CPNN) for the task of forecasting stock
closing price indices. We developed a model that uses partial descriptions (PDs)
and is limited to only two layers for the PNN architecture. The outputs of these PDs
along with the original features are fed to a single output neuron, and the synaptic
weight values and biases of the CPNN are optimized by a genetic algorithm. The
proposed model was evaluated by predicting the next day’s closing price of five
fast-growing stock indices: the BSE, DJIA, NASDAQ, FTSE, and TAIEX. In comparative
testing, the proposed model proved its ability to provide closing price predictions
with superior accuracy. Further, the Deibold-Mariano test justified the statistical
significance of the model, establishing that this approach can be adopted as a
competent financial forecasting tool.

Keywords: Stock market forecasting, Polynomial neural network, Partial description,
Genetic algorithm, Multilayer perceptron

Introduction
Stock index forecasting is the process of making predictions about the future performance

of a stock market index based on existing stock market behavior. Over the last few

decades, stock index modeling and forecasting has been an important and challenging task

for researchers in both financial engineering and mathematical economics. Stock market

behavior is very much like a random walk process, and the serial correlations are econom-

ically and statistically insignificant. Stock market forecasting is regarded as a difficult and

intricate undertaking in financial time-series forecasting because of the uncertainties

involved in the movement of the markets, the highly volatile nature of the markets, nonlin-

earities, discontinuities, the movement of other stock markets, political influences, and the

psychology of individuals, along with many other macro economic factors (Abdoh and

Jouhare 1996; Oh and Kim 2002; Wang 2003). Studies of stock price prediction such as

(Huang et al. 2008; Liu et al. 2009) have employed various economic factors, including oil

prices, exchange rates, interest rates, stock price indices in other countries, and domestic/
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global economic situations. All these factors have proven to be important elements influen-

cing the markets. As increasing amounts of money are invested in the stock market by in-

experienced investors, institutions, brokers, and speculators, there is an increased tendency

for investors to become anxious about the future trends of stock prices. Consequently, an

effective and more accurate forecasting model is needed to predict stock market behavior.

If the direction of the market can be predicted successfully, investors may find better guid-

ance, and the financial rewards could be substantial.

In recent years many new methods for modeling and forecasting the stock market have

been developed. Despite these efforts, the forecasting accuracy of these models remains

an issue in stock market research. To address this challenge, we developed an efficient

model for stock market forecasting that proposes a condensed polynomial neural network

(PNN) architecture for predicting stock index closing prices. The model includes partial

descriptions (PDs) and is limited to only two layers for the PNN architecture. The outputs

of these PDs, along with the original features, are fed to the output layer, which has one

neuron. The weight vectors and biases of the CPNN are explored by a GA.

The remainder of this paper is organized as follow: Section “Literature Review” provides

a review of the developments in the literature of this field. Section “Model development”

describes the architecture details of the forecasting model. Our experimental results are

presented and analyzed in Section “Experimental results and analysis”, and Section 5offers

our concluding remarks along with our proposals for the direction of future research.

Literature review
For many decades, linear models served as the basis of traditional statistical forecasting in

financial engineering. However, because of the presence of noise and non-linearity in the

financial time series, such traditional methods seldom proved effective. In comparison,

nonlinear dynamics proposes that past prices help to determine future prices in a financial

time series, but not in a straight forward way. The relationship between past prices and fu-

ture prices is nonlinear, and this non-linearity implies that past price changes can have wide

ranging effects on future prices. Several statistical techniques have been used extensively

for stock market prediction (Ravichandran et al. 2007). Among these approaches, moving

averages (MA), auto-regressive integrated moving averages (ARIMA), auto-regressive

conditional heteroscedasticity (ARCH), and generalized ARCH (GARCH) have received

wide acceptance and have been used successfully in various engineering, economic, and

social applications. For example, an ARCH-M model augmented by an information diffu-

sion indicator was proposed in (Xie and Wang 2015) for U.S. stock return forecasting.

However, since these models were developed to address certain types of problems, they

lacked the ability to capture the non-linearity of other types of time series.

The Box-Jenkins method using an auto regressive moving average (ARMA) linear model

was applied extensively in many areas of time series forecasting (Box and Jenkins 1976).

The combination of the ARIMA-GARCH model was suggested for predicting the move-

ment of selected stocks in India (Narendra Babu and Eswara Reddy 2015). Separately, the

GARCH model showed its superior capability in modeling and forecasting exchange rate

volatility (Abdullah et al. 2017). Huang and Kou (2014) proposed a kernel entropy manifold

learning approach to measure the relationship between two financial data points. They

claimed improved accuracy not only for financial warnings, but also for the criteria for

explaining and predicting stock market volatility. Huang et al. proposed a non linear
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manifold learning technique for early warnings in financial markets (Huang et al. 2017). A

wavelet-based approach for co-movement analysis of Asian stock markets against the FTSE

100 and S&P 500 was proposed in (Yilmaz and Unal 2016). A multi-criteria decision-based

approach for financial risk analysis was offered in (Kou et al. 2014), where the authors eval-

uated six popular clustering algorithms and eleven cluster validity indices over three

real-world financial data sets.

The last two decades have seen tremendous development in soft computing, including

artificial neural networks (ANNs), evolutionary algorithms, and fuzzy systems. This im-

provement in computational intelligence capabilities enhanced the modeling of complex,

dynamic, and multivariate non linear systems. Soft computing methodologies were applied

successfully to data classification, financial forecasting, credit scoring, portfolio manage-

ment, risk level evaluation, and other areas, producing improved performance. The advan-

tage of applying an ANN to stock market forecasting is that this approach incorporates

prior knowledge in the ANN to improve prediction accuracy. Use of ANNs also allows

adaptive adjustment to the models and nonlinear descriptions of the problems.

ANNs have been applied successfully in financial engineering, and they have gained wide

acceptance because of their superior learning and approximation capabilities. When the

mapping from the input to the output contains both, regularities and exceptions, the use

of an ANN is considered an effective modeling approach. ANNs have the ability to deal

with complex problems of structural instability. Neural networks (NNs) are analogous to

nonparametric, non-linear regression models. Their novelty lies in their ability to model

non-linear processes with few (if any) a priori assumption about the nature of the generat-

ing process. This characteristic is particularly useful in financial engineering applications

where much is assumed and little is known about the nature of the processes that deter-

mine asset prices.

It has been demonstrated that ANNs can learn highly non-linear models, have effective

learning algorithms, can handle noisy data, and are able to use inputs of various kinds.

Particularly, the multilayer perceptron architecture mostly applied as a forecasting model

and found to be similar to other complex non-linear models based on exponential GARCH

processes (Bollerslev 1986; Campbell et al. 1997). Among the earliest investigations, in1990

Kimoto et al. used a modular neural network to learn the relationships among various mar-

ket factors (Kimoto et al. 1990). They used several learning algorithms and forecasting

methods to develop a prediction system for the Tokyo Stock Exchange Prices Indexes

(TOPIX).The correlation coefficients produced by their model was found to be much

higher than those produced by using a multiple regression method. The researchers in

(Trippi and DeSieno 1992) combined the outputs of individual networks using logical oper-

ators to produce a set of composite rules. They demonstrated that their best composite

synthesized rule set system achieved a higher gain than obtained by previous research.

ANNs are used extensively in financial applications (Harvey et al. 2000; McGrath

2002; Kumar and Bhattacharya 2006). In 2005, Cao et al. (2005) used an ANN model

to predict stock price movements for firms traded on the Shanghai stock exchange.

The authors compared the predictive power using linear models to the predictive

power of the uni-variate and multivariate ANN models. Their results showed that

ANN models outperformed the linear models. These results were statistically signifi-

cant across the sample firms, and indicated that NN models are useful for stock price

prediction. Leigh et al. used ANN models and linear regression models to predict the
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New York Stock Exchange Composite Index (Leigh et al. 2005). Their results were ro-

bust and informative as to the role of trading volume in the stock market. Chen et al.

predicted the direction of return of the market index of the Taiwan stock exchange

using a probabilistic neural network model (Chen et al. 2003). Then they compared the

results to the generalized methods of moments (GMM) with a Kalman filter. In

addition, researchers have used combinations of multiple neural networks as ensemble

methods for improving prediction accuracy (Lahmiri 2018a; Lahmiri and Boukadoum

2015). A combination of individual models under series and parallel strategies was pro-

posed by Khashei and Hajirahimi for financial time series (Khashei and Hajirahimi

2017). Their empirical results indicated that the series combination strategy produced

more accurate hybrid models for financial time series forecasting.

Neuro-genetic hybrid networks have gained wide application for nonlinear forecasting

because of their broad adaptive and learning abilities (Kwon and Moon 2007). The most

widely used type of neural network s a back propagation neural network (BPNN), but it

has many short comings such as low learning rate, long computation time, and a tendency

to be stuck at the local minimum. Radial basis function (RBF) neural networks are also

popular for predicting the stock market. This type of network has better calculation and

spreading abilities, and stronger nonlinear mapping ability (Guangxu 2005).

Hybrid iterative evolutionary learning algorithms were shown to be more effective than

conventional algorithms in terms of learning accuracy and prediction accuracy (Yu and

Zhang 2005). Many researchers have adopted neural network models that are trained by

genetic algorithms (GAs) (Nayak et al. 2012). Hybrid models that combine nonlinear

models demonstrated better accuracies. Many researchers have used variations of this ap-

proach, for example by combining an ANN with evolutionary soft computing techniques

such as particle swarm optimization (PSO), GAs, and other nature and bio-inspired search

techniques. Compared to other evolutionary computing models, Gas and PSOs are most

popular. Recently, Nayak et al. (Nayak et al. 2017) proposed the application of a GA for

choosing the optimal parameters of ANN-based models. Here, the authors employed the

hybrid model to explore virtual data positions in a financial time series, incorporating them

to enhance the forecasting accuracy. Similarly, PSOs have been utilized in combination

with ANNs for stock price forecasting (Lahmiri 2018b; Lahmiri 2016), and to train quantile

regression neural networks for predicting financial time series volatility (Pradeepkumar and

Ravi 2017). GAs have shown promising ability to search the optimal parameters of higher

order neural networks for financial time series forecasting (Nayak et al. 2016a; Nayak et al.

2018; Nayak et al. 2016b).

From the literature, we can observe that use of a multilayer perceptron (MLP)

has been adapted by researchers as the most promising and frequently used fore-

casting approach. An MLP contains more than one hidden layer, and each layer

can contain more than one neuron. The input pattern is applied to the input layer

of the network, and its effect propagates through the network layer by layer. Dur-

ing the forward phase, the synaptic weights of the networks are fixed. In the back-

ward phase, the weights are adjusted in accordance with the error correction rule.

MLPs use this algorithm, known as back propagation, for learning. While MLPs

are popular, they have two well-known shortcomings: they suffer from slow conver-

gence, and they tend to stick in local minima. The research by Calderon and Cheh

in 2002 argued that the standard MLP network is subject to problems of local
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minima (Calderon and Cheh 2002). Moreover, there is no formal method for deriv-

ing an MLP network for a given classification task (Swicegood and Clark 2001). To

overcome the local minima, a greater number of nodes must be added to the hid-

den layers. However, increasing the hidden layers and adding more neurons in each

layer contribute to increased computational complexity of the network. Hence,

there is no direct method for finding an optimal MLP structure for solving a prob-

lem. The re fining process may suffer from long computational time because of it-

erative testing of various architectural parameters to adopt the most successful

network architecture.

Based on our review of the existing literature on stock market index forecast-

ing, we observed that important areas of present day research in stock market

forecasting include improving forecasting accuracy while adapting models to have

less computational complexity. Many of the latest evolutionary computation

models have been applied for this purpose (Chakravarty and Dash 2012; Rout et

al. 2013). Defining optimal architecture and parameters for an MLP is a matter

of trial and error, which is computationally very expensive. Given the black-box

nature and computational over load of this approach, we concluded that this

focus diverts researchers’ attention from other more simple and efficient models.

In1971, Ivahnenko (1971) suggested a PNN based on the group method of data

handling (GMDH).The GMDH is aimed at identifying the functional structure of

a model hidden within the empirical data. The main idea behind the evolution of

the GMDH is the use of feed-forward networks based on short-term polynomial

transfer functions whose coefficients are obtained using regression combined with

emulation of the self-organizing activity behind neural network learning (Farlow

1984). Prior research demonstrated that the GMDH is the best optimal simplified

model because it is simpler in structure than a traditional neural model, with

higher accuracy for inaccurate, small, or noisy data sets (Ketabchi et al. 2010).

AGMDH-type neural network based on a GA was used to predict the stock price

index of the petro chemical industry in Iran (Shaverdi et al. 2012). The results

obtained by using a GMDH-type neural network were excellent, and provided a

high level of performance in stock price prediction. Use of PNNs was suggested

and applied successfully for pattern and data classification tasks (Misra et al.

2006a; Misra et al. 2006b). The general approach is based on an evolutionary

strategy in which the PNN generates the population or the layers of neurons/

PDs, and selects and trains those PDs that provide the best classification. During

learning, the PNN model grows with a new population of neurons and increased

number of layers until a predefined criterion is met. Consequently, the complex-

ity of the network increases (Ivahnenko 1971; Misra et al. 2006a; Misra et al.

2006b). However, such models can be described comprehensively by a set of

short-term polynomials, thereby developing a PNN classifier. The coefficients of a

PNN can be estimated by least square fit.

In summary, the forecasting accuracy of these models is still an issue in stock mar-

ket research. In response, we propose a condensed PNN architecture for prediction of

stock closing prices. We developed the partial descriptions (PDs) and set a limit of

only two layers for the PNN architecture. The outputs of these PDs along with the

original features were fed to the output layer having one neuron. The weight vectors
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and biases of the CPNN were explored by a GA. The remainder of this paper explains

and evaluates the proposed model.

Model development
This section describes briefly the architecture of three intelligent neural forecasting

models considered in this research for the task of predicting one-day-ahead closing

prices of major stock markets. The first model is based on the well-known MLP,

the second is a radial basis function neural network (RBFNN-based) forecasting

model, and the third is the proposed condensed polynomial neural network

(CPNN). The MLP is trained with gradient descent as well as a genetic algorithm,

hence constructing two separate models (MLP-GD and MLP-GA). Similarly, the

CPNN model is first trained with the gradient descent method and a genetic algo-

rithm separately, forming two forecasting models: the CPNN-GD and CPNN-GA

forecasting models. The popular RBFNN architecture is described as well.

Multilayer perceptron

Multilayer perceptrons are among of the most widely implemented neural network top-

ologies. An MLP is capable of approximating arbitrary functions in terms of mapping abil-

ities. The feed forward neural network model considered here consists of one hidden

layer only. The architecture of the MLP model is presented in Fig. 1. The MLP performs a

functional mapping from the input space to the output space. The model discussed con-

tains a single hidden layer, and there are m neurons in this layer. Since there are n input

values in an input vector, the number of neurons in the input layer is equal to n. The first

layer corresponds to the problem’s input variables, with one node for each input variable.

The second layer is useful in capturing non-linear relationships among variables. This

model consists of a single output unit to estimate one-day-ahead closing prices. The neu-

rons in the input layer use a linear transfer function, and the neurons in the hidden layer

and output layer use a sigmoid function as presented in Eq.(1).

Fig. 1 Multilayer perceptron based forecasting model
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yout ¼
1

1þ e−λyin
ð1Þ

Where 푦표푢푡 is the output of the neuron, λ is the sigmoidal gain, and 푦푖푛 is the

input to the neuron. At each neuron j in the hidden layer, the weighted output z is

calculated as in Eq.2.

z ¼ f B j þ
Xn
i¼1

V ij � Xi

 !
ð2Þ

Where 푋푖 is the 푖
푡h input vector, 푉푖푗 is the synaptic weight value between the

푖
푡hinput neuron and 푗

푡hhidden neuron, and 푗 is the bias value. The output y at

the single output neuron is calculated as in Eq.3.

y ¼ f B0 þ
Xm
j¼1

W j � z
 !

ð3Þ

Where 푗 is the synaptic weight from the 푡hhidden neuron to the output neuron, z is

the weighted sum calculated as in Eq.2, and 퐵0 is the output bias. This output y is com-

pared to the desired output, the error is calculated, and then the error is propagated back.

The weight and other parameter values are adjusted by the gradient descent rule for min-

imal error signal generation. Because of the gradient descent neural network learning, this

approach is characterized by problems such as slow convergence and getting trapped in

local minima, both of which affect the prediction capabilities of the model.

However, the genetic algorithm performs a search over the whole solution space, finds

the optimal solution relatively easily, and does not require continuous differentiable ob-

jective functions. The problem of finding an optimal parameter set to train the MLP can

be regarded as a search problem in the space of all possible parameters. The parameter

set includes the weight set between the input-hidden layers, the weight set between the

hidden-output layers, and the bias value. This search can be performed by applying a gen-

etic algorithm. The chromosome representation for the GA is shown in Fig. 2.

The chromosomes of the GA represent the weight and bias values for a set of

MLP models. Input data along with the chromosome values are fed to the set of

MLP models. The fitness is obtained from the absolute difference between the tar-

get y and the estimated output ŷ . As the fitness value of an individual decreases,

the GA considers the individual to be a better fit for the next generation. We used

a binary encoding scheme for the experimental portion of our work. The weight

values between the input and the hidden layer neuron are represented as 푉11 to

푉푛푚. Weight values between the hidden and output layer are represented by 푊1

Fig. 2 GA Chromosome representation for MLP
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to 푊푚. The bias values of the hidden layer and output layer are represented by 퐵

1 and 퐵0, respectively.

Radial basis functional neural network

The RBFNN-based forecasting model is shown by Fig. 3. For the input layer, the

number of input neurons is determined based on the input signals that connect

the network to the environment. The hidden layer consists of a set of kernels that

carry out a nonlinear transformation from the input space to the hidden space.

Two parameters, the center and the width, are associated with each RBF node.

The center is determined during RBF training. Some of the commonly used kernel

functions are the Gaussian function, cubic function, linear function, and general-

ized multi-quadratic function, among others. We used the Gaussian function as

represented in Eq.4.

∅i xð Þ ¼ exp −
x−μik k2
2σ i2

 !
ð4Þ

Where ‖⋯‖ represents the Euclidean norm, 푥 is the input vector, 휇푖 is the

center, 휎푖 is the spread, and ∅(푥) represents the output of the 푖
푡h hidden

node. The output of the RBF network is calculated as in Eq.5.

ŷ ¼ f xð Þ ¼
XN
k¼1

wk∅k x−ckk kð Þ ð5Þ

Fig. 3 RBFNN based Forecasting Model

Nayak and Misra Financial Innovation  (2018) 4:21 Page 8 of 22



where ŷ is the network output, 푥 is an input vector signal, 푤 = [푤1,푤2,⋯,푤푁]
푇 is the weight vector in the output layer, N is the number of hidden neurons,∅
푘(∙) is the basis function, k is the bandwidth of the basis function, 푥 is the input

vector, 푐푘 = (푐푘1,푐푘2,⋯,푐푘푚) 푇 is the center vector for 푘
푡h node, and m

is the number of input features.

Proposed CPNN-GA model

The proposed model develops PDs for two layers i.e., there are two hidden layers.

The input layer is fed with the original input vector. The first hidden layer de-

velops PDs with all pair combination of input features, which generates polyno-

mials of degree 2. The PDs generated in the first hidden layer are utilized to

develop the PDs in the second hidden layer. Each PD tries to approximate the

input-output relationship of the data set. The optimal numbers of PDs yielding bet-

ter performance are selected on an experimental basis with the hope of getting an

improved result in subsequent layers. The optimal sets of PDs along with the ori-

ginal features are given as input to the neuron at the output layer. The weight vec-

tors and biases are optimized by the GA. The proposed model can be represented

as in Fig. 4.

The PDs in the first hidden layer are constructed by each possible pair of inde-

pendent input features. If there are m input features, the number of PDs becomes

mC2 . These PDs are utilized for the construction of PDs in the second hidden

layer. The PDs in the second hidden layer are constructed with a polynomial of

degree 4. The following algorithm can discover the index of the input features for

each PD.

These networks come with a high level of flexibility, as each PD can have a dif-

ferent number of input variables and can exploit a different order of polynomial

(linear, quadratic, cubic, etc.). Unlike neural networks whose topologies commonly

are fixed prior to all detailed (parametric) learning, the CPNN architecture consid-

ered in this research is not fixed in advance. Instead, it becomes fully optimized

both structurally and parametrically. The high-level procedure of the CPNN

through which the weight and biases are optimized by the GA can be described as

follows.

Nayak and Misra Financial Innovation  (2018) 4:21 Page 9 of 22



GAs are well-liked for global search optimization tasks that involve a population of poten-

tial solutions in the form of chromosomes. A GA will attempt to locate the best solution

through the process of artificial evolution. GAs are based on biological evolutionary theory,

and they are used to solve optimization problems that work by encoding the parameters in-

stead of using the parameters directly. The process consists of the following repeated artifi-

cial genetic operations: evaluation, selection, crossover, and mutation. The weights and

other parameters are optimized by the GA, and then used to train the network. The fitness

of the best and average individual in each generation increases towards a global optimum.

Employing this method, the proposed model first defines a network structure with a

fixed number of inputs, and a single output as shown in Fig. 1. Second, the model em-

ploys the GA to find the optimal weight and bias vectors, as it is capable of searching a

Fig. 4 Proposed Condensed PNN model
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large search space. The hybrid of the neural network and GA can select the optimal

weight sets as well as the bias value for prediction. The major steps of the GA-based

CPNN model can be summarized as follows.

Experimental results and analysis
This section explains the experimental portion of our work, including the preparation

of input data, the simulated parameters for the two forecasting models, and the results

from the models.

Preparation of input data

For this experiment, we considered the daily closing prices of a major stock index of

each of the five fastest growing stock exchanges from January through December 2014.

Table 1 provides further details of the data set under consideration. The historical data

were collected from https://in.finance.yahoo.com/, an openly available source.

The sliding window technique was used to select the training and test patterns for

the forecasting models. The daily closing prices of a stock were represented as a finan-

cial time series. A window of fixed size was moved over the series by one step each

time. In each move, a new pattern was formed that could be used as an input vector.
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The size of a window can be decided experimentally. The number of closing prices

included by the window was represented as the bed length (window size), and the num-

ber of times the window moved to generate a training set was treated as the training

length. Each time the sliding window moved one step ahead, the data for one closing

price was dropped from the beginning and the data for one new closing price was

included at the end. Therefore, two consecutive training sets produced minimal change

in the nonlinear behavior of the input-output mapping. For this experiment, a sliding

window took only five values for the input layer, and only three patterns were presented

to build a model. The training and test patterns generated for one-day-ahead forecast-

ing using this sliding window technique are presented below. Here the bed length

(window size) is represented as blen, and the training length is given as l. In general,

the training data with window size = blen and training length l is:

Training data Training target
x ið Þ
⋮

x iþ lð Þ

x iþ 1ð Þ
⋮

x iþ l þ 1ð Þ

⋯ x iþ blenð Þ
⋮ ⋮
⋯ x iþ l þ blenð Þ

⋮
⋮
⋮

x iþ blenþ 1ð Þ
⋮

x iþ l þ blenþ 1ð Þ

The test data is shown below:

Test data Test t arget
x iþ l þ 1ð Þ x iþ l þ 2ð Þ ⋯ x iþ l þ blenþ 1ð Þ ⋮ x iþ l þ blenþ 2ð Þ

For preprocessing the raw daily closing prices, the prices must be normalized first

because the neural models can process normalized values robustly for learning and

generalization. Researchers have tried various data normalization techniques, and the

sigmoid method was found most suitable (Nayak et al. 2014). For our work, the original

closing prices were normalized using a sigmoid data normalization formula as given by

Eq.6. Each window treated as a training set was normalized separately.

x¼ 1

1þe−
xi−xmin

xmax−xmin

� � ð6Þ

Where 푥푛표푟푚 is the normalized price, 푥푖 is the current day closing price, and 푥

푚푎푥 and 푥푚푖푛 are the maximum and minimum prices contained within the

window, respectively. The record to be tested was also normalized using Eq. 6, but its

value was not used for deriving the 푥푚푎푥 and 푥푚푖푛 values i.e., the target value

could reside outside [푥푚푎푥, 푥푚푖푛]. Then the normalized data were used to form a

training bed for the network model.

Table 1 Stock Indices (daily closing price) considered for experiment

Index Period No. of data

BSE 2-Jan-2014 to 31-Dec-2014 248

DJIA 3-Jan-2014 to 31-Dec-2014 249

NASDAQ 3-Jan-2014 to 31-Dec-2014 250

FTSE 3-Jan-2014 to 31-Dec-2014 252

TAIEX 2-Jan-2014 to 28-Dec-2014 248
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Performance metrics

For this research, we used four metrics for evaluation: the MAPE, POCID, ARV,

and Theil’s U. The mean absolute percentage error (MAPE) is a performance

metric that allows comparative measurement of prediction accuracy across experi-

ments using the data for different stocks. The formula for the MAPE is repre-

sented as shown in Eq.7.

MAPE ¼ 1
N

XN
i¼1

xi−x̂ij j
xi

� 100% ð7Þ

Here, xiis the actual closing price, and x̂iis the estimated price (after de-normalization

of closing prices).

The second metric used was the prediction of change in direction (POCID),

which is particularly important for stock trend forecasting. The POCID may be

considered more important than the MAPE, because if the direction of a stock

trend can be predicted more accurately, investors may have better guidance that

could lead to substantial monetary gain. The POCID can be represented as shown

in Eq.8 and Eq.9.

POCID ¼
PN

i¼1Trendi

N
� 100 ð8Þ

where

Trendi ¼ 1; if xi−xi−1ð Þ x̂i−x̂i−1ð Þ >0
0; otherwise

n
ð9Þ

This measure gives an account of the number of correct directions when predict-

ing the next closing prices in the financial time series. The ideal value of the

POCID for a perfect predictor is 100, so the prediction model is shown to be more

accurate as the value becomes closer to100.

The third evaluation measure used was the average relative variance (ARV). The

ARV can be calculated as in Eq.10.

PN
i¼1 x̂i−xið Þ2PN
i¼1 x̂i−X
� �2 ð10Þ

If the ARV value of the forecasting model is equal to 1, then the performance

of the model is the same as calculating the mean of the financial time series. If

the ARV value is greater than1, the model is considered to be performing worse

than the mean. However, if the ARV value is less than 1, the model is considered

to be performing better than simply calculating the mean. Hence, as the value

becomes closer to 0, the forecasting model becomes more accurate.

The fourth measure considered in our evaluation of the models was Theil’s U. This

metric, which compares the performance of the model with a random walk model, can

be calculated by using Eq.11.
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U of Theil ¼
PN

i¼1 xi−x̂ið Þ2PN
i¼1 xi−xiþ1ð Þ2 ð11Þ

If the value of the result is equal to 1, then the model in question provides the same

performance as the random walk model. If the result is greater than 1, the model is

considered as performing worse compared to a random walk model. The model is per-

forming better than a random walk model if the Theil’s U result is less than 1. Hence, a

model’s performance is considered better as the value comes closer to 0.

Experimental setting

Let the 푘
푡hinput pattern vector to the model be given by 푋푖 = [(1),(2),…,푥

푖(푚)]. Taking a combination of two inputs from the input pattern 푋푖, we get

another expanded list. This list can be represented by 푋푖′ = [푥푖(1)∗푥푖(2),…,푥

푖(1) 푥푖(푚),……,푥푖(푚− 1)∗푥푖(푚)]. Each element of the expanded vector 푋

푖′ is applied to generate PDs for the next layer. The polynomial functions are

applied as the basis function to generate PDs for the second layer and let the PDs

are represented as Xi
̿T .

In this experiment the optimal number of input signals was chosen as five.

Therefore, the number of PDs generated in the first layer was ten, and in the

second layer was 45. The PDs in the first and second layer were of degree 2 and 4

respectively. As mentioned earlier, PDs were developed and limited to two layers

of the PNN architecture. Given the input X
T
k , the model produces an output ŷðkÞ

that acts as an estimate of the desired value. The output of the linear part of the

model is computed as shown:

y0 ið Þ ¼ X
T
i �W ið Þ þ b ð12Þ

Where b represents the weighted bias input, and (푖) denotes the weight values for

the 푖
푡h pattern. This output is then passed through a nonlinear function, in this case

sigmoid activation, to produce the estimated output ŷðiÞ:

ŷ ið Þ ¼ 1

1þ e−λy
0i

ð13Þ

The error signal (푖) is calculated as the difference between the desired response and

the estimated output of the model.

e ið Þ ¼ y ið Þ−ŷ ið Þj j ð14Þ

The error signal (푘) and the input vector are employed by the weight update

algorithm to compute the optimal weight vector. To overcome the difficulties of

back propagation, we employed the GA for global search optimization. The

network has the ability to learn through training by the GA. During the training,

the network is repeatedly presented with the training vector and the weights, and

biases are adjusted by the GA until the desired input-output mapping occurs.
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The error is calculated by Eq.14, and our objective is to minimize the error func-

tion as in Eq.15 with an optimal set of weight vectors.

E ið Þ ¼
XN
i¼1

e ið Þ ð15Þ

During the experiment, various possible values for the model parameters were tested,

and the best values were recorded. The suitable parameter values obtained during the

simulation process were called simulated parameters, and they are presented in Table 2.

We adopted binary encoding for the GA. Each weight and bias value consisted

of 17 binary bits. To calculate the weighted sum at the output neuron, the deci-

mal equivalent of the binary chromosome was used, with a randomly initialized

population of 50 to 60 genotypes. The GA was run for a maximum 250 to 300

generations for different models. Parents were selected from the population by

the elitism method, in which the first 10% of the mating pools were selected

from the best parents and the rest were selected by a binary tournament selec-

tion method. New offspring were generated from these parents using uniform

crossover followed by a mutation operator. In this experiment, the crossover

probability varied between 0.5 and 0.6, and the mutation probability was taken as

0.02 to 0.05. In this way the new population that was generated replaced the

current population, and the process continued until convergence occurred. The

fitness of the best and average individuals in each generation increased toward a

global optimum. The uniformity of the individuals increased gradually leading to

convergence.

Result analysis

This sub section describes the results obtained from the forecasting models. The

models considered were a gradient descent-based MLP (MLP-GD), GA-based

MLP (MLP-GA), radial basis functional neural network (RBFNN), CPNN trained

with gradient descent (CPNN-GD), and the proposed CPNN trained with a GA

(CPNN-GA). The same training and test data sets were supplied as input signals

to all the models considered. Each model was simulated 10 times for each

training and test data set, and the average error was considered for comparative

analysis. Table 3 presents the MAPE, POCID, Theil U, and ARV values generated

from all the forecasting models considering all five financial time series.

Table 2 Simulation parameters for MLP-GA and CPNN-GA forecasting model

Parameters Forecasting models

MLP-GA CPNN-GA

Population size 60 50

Gene Size (bit) 17 17

Crossover probability (Cp) 0.6 0.5

Mutation probability (mc) 0.02 0.05

Selection method Elitism Elitism

Max. no. of generation 300 250
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It is clear from Table 3 that the proposed CPNN-GA outperformed the other

models for all five data sets. The best error statistic values are highlighted in

bold face. For the BSE index, MLP-GA generated the best POCID value, i.e.

94.00%. For the DJIA, FTSE, and TAIEX, the CPNN-GA model performed better

for all error statistics compared to the other models. Except for a few cases, the

average forecasting performance of the CPNN-GA was found quite satisfactory.

To make the comparative study even more specific, the percentage gain in MAPE

reduction was calculated as follows, as presented by Fig. 5.

MAPE gain ¼ MAPE of existing model − MAPE of proposed modelð Þ
MAPE of existing model

� 100%

ð16Þ

The average MAPE gain over CPNN-GD considering all data sets was

15.70844%, which demonstrates the contribution of the GA. The gain was

57.16491% over RBFNN. Similarly, the average MAPE gain over MLP-GA and

MLP-GD was 13.41896% and 88.0456%, respectively. It can be observed easily

that the proposed model provided substantially better performance compared to

the other models. The error statistic values obtained from CPNN-GD and

MLP-GA were found to be closer to that of CPNN-GA, which was not in so in

Table 3 Performance of the forecasting models on five stock indices

Stock
Index

Error
Statistic

Forecasting Models

CPNN-GA CPNN-GD RBFNN MLP-GA MLP-DG

BSE MAPE 0.082532 0.087403 0.151002 0.084635 0.761849

ARV 0.011522 0.015524 0.017282 0.013280 0.127503

POCID 92.55 88.98 83.25 94.00 82.86

U of Theil 0.072205 0.090023 0.250044 0.082372 0.388572

DJIA MAPE 0.086603 0.092601 0.550872 0.100535 0.523583

ARV 0.012955 0.015524 0.041224 0.019282 0.075002

POCID 94.35 89.34 85.74 89.23 81.75

U of Theil 0.049713 0.052285 0.277258 0.058302 0.484922

NASDAQ MAPE 0.009263 0.009975 0.013964 0.011765 0.056570

ARV 0.034508 0.081764 0.087792 0.084112 0.272843

POCID 96.57 92.00 88.15 91.33 82.45

U of Theil 0.076244 0.076245 0.100572 0.079990 0.552932

FTSE MAPE 0.025923 0.041221 0.096658 0.027925 0.521705

ARV 0.038155 0.064845 0.500325 0.077359 0.532601

POCID 95.75 94.47 82.35 88.47 80.92

U of Theil 0.080005 0.082545 0.250660 0.105502 0.499725

TAIEX MAPE 0.042113 0.054159 0.083155 0.054211 0.380937

ARV 0.025390 0.062900 0.076225 0.210045 0.278608

POCID 95.55 92.22 85.65 91.73 85.75

U of Theil 0.039577 0.058222 0.448025 0.042275 0.472895
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the case of RBFNN and MLP-GD. The prediction accuracies of the models were

enhanced when GA was adopted to search the optimal model parameters.

For a clearer view of CPNN-GA’s performance, the actual prices vs. estimated closing

prices are plotted and presented by Figs. 6, 7, 8, 9, 10.

Further comparison of the performance of the models was provided by recording

their computation times. The experiments were carried out on a computer system

equipped with an Intel ®core™ i3 CPU, 2.27 GHz, with 2.42 GB memory, using

MATLAB-2009. The computation times (in seconds) are summarized in Table 4.

Comparing the computation times, we can observe that the proposed CPNN-GA

forecasting model required the least amount of time, averaging a computation time
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Fig. 6 Actual v/s estimated closing prices by CPNN-GA for BSE indices

Fig. 5 MAPE gain of CPNN-GA over CPNN-GD, RBFNN, MLP-GA, and MLP-GD considering five stock indices.

CPNN-GD, RBFNN, MLP-GA, MLP-GD
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of only 51.692 s for five data sets. Clearly, the GA provided faster convergence

than the GD technique.

To discover the exact benefits of the proposed model, we used the

Deibold-Mariano (DM) test to determine the statistical significance. The DM test

(Diebold and Mariano 1995) is a pair-wise comparison of two or more time series

models for forecasting a particular variable of interest. Let the actual time series

is {yt; t = 1, ⋯, T} and the two forecasts are {ŷ1t ; t ¼ 1;⋯;T } and {ŷ2t ; t ¼ 1;⋯;T }.
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Fig. 8 Actual v/s estimated closing prices by CPNN-GA for NASDAQ indices
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Fig. 7 Actual v/s estimated closing prices by CPNN-GA for DJIA indices
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The objective was to test whether the forecasts were equally good or not. Let the

forecast errors be defined as eit ¼ ŷit−yt ; i ¼ 1; 2 . Let the loss function associated

with the forecast be defined as g(eit) = |e2it|, and let the loss differential between

the two forecasts be dt = g(e1t) − g(e2t). The null hypothesis and the alternative are

defined as follows:

H0 : E(dt) = 0 ∀ t, indicating that the two forecasts have the same accuracy

Halt : E(dt) ≠ 0, indicating that the two forecasts have different levels of accuracy.
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Fig. 10 Actual v/s estimated closing prices by CPNN-GA for TAIEX indices
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Fig. 9 Actual v/s estimated closing prices by CPNN-GA for FTSE indices
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The DM-statistic defined as:

DM ¼ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŷd 0ð Þ þ 2

Ph−1
k¼1ŷd kð Þ

T

s ð17Þ

where, d is the sample mean of the loss differential, h is the forecast horizon,

and γ̂dðkÞ is an approximation of the auto-covariance of the loss differential γd(k)

at lag k. The null hypothesis of no difference is rejected if the DM statistic value

falls outside the range of -푧훼/2 to 푧훼/2, i.e. |퐷푀| > 푧훼/2, where 푧훼/2 is the

upper z-value from the standard normal table corresponding to half of the de-

sired 훼 level of the test. Consider the significance level of the test is 훼 = 0.05.

Since this is a two-tailed test, the lower critical z-value corresponding to − 0.025

is − 1.96, and the upper critical z-value corresponding to 0.975 is + 1.96. The

computed DM statistic values obtained are summarized in Table 5. The results

show that the DM statistics obtained always were outside of the critical range.

Hence, the null hypothesis of no difference between the CPNN-GA and other

model was rejected.

Conclusion
To provide improved prediction of the closing prices of stock market indices, this

paper proposed a novel GA-weighted condensed polynomial neural network

(CPNN-GA) model. This model generates PDs for the first and second layers of

degree two and four, respectively. A generic algorithm is utilized to select the

optimal synaptic weight set and biases of the model. These weight and bias values,

along with the input features, are fed to the output neuron. The prediction

performance of the proposed model was compared experimentally to the

Table 5 Computed DM statistic values from all models and stock indices

Index C CPNN-GD RBFNN MLP-GD MLP-GA

BSE P 2.2140 1.9809 −2.0245 2.7353

DJIA N 1.9821 2.4503 3.3005 −4.1782

NASDAQ N 2.5344 −2.7863 2.4577 2.0016

FTSE – −2.5662 3.2655 2.5575 2.0516

TAIEX G −2.2427 2.4373 −3.1565 2.0096

A

Table 4 Computation time from all models

Model Stock Index Average

BSE DJIA NASDAQ FTSE TAIEX

MLP-GA 65.55 60.45 60.65 57.62 55.95 60.044

CPNN-GD 65.79 64.69 66.25 60.31 62.43 63.894

CPNN-GA 51.33 51.35 51.64 52.57 51.57 51.692

MLP-GD 96.37 92.14 90.65 91.66 92.26 92.616

RBFNN 90.53 82.35 75.66 72.35 87.39 81.656

Nayak and Misra Financial Innovation  (2018) 4:21 Page 20 of 22



performance of a CPNN-GD, MLP-GD, MLP-GA, and RBFNN model, all of which

have been employed for forecasting next days’ closing prices of a real stock market.

Data for five major fast-growing stock market indices were considered for this

work. The experimental results and statistical significance tests proved the super-

iority of the proposed model over the others, demonstrating that the proposed

CPNN-GA model can be considered an efficient and promising forecasting model

for the stock market.

Future work may include exploration of the applicability of the proposed model

in other domains. Also, other meta-heuristics may be employed to search the opti-

mal parameters for the model.
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