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Abstract

Background: In this paper, we study the right time for an investor to stop the
investment over a given investment horizon so as to obtain as close to the highest
possible wealth as possible, according to a Logarithmic utility-maximization objective
involving the portfolio in the drift and volatility terms. The problem is formulated as an
optimal stopping problem, although it is non-standard in the sense that the maximum
wealth involved is not adapted to the information generated over time.

Methods: By delicate stochastic analysis, the problem is converted to a standard
optimal stopping one involving adapted processes.

Results: Numerical examples shed light on the efficiency of the theoretical results.

Conclusion: Our investment problem, which includes the portfolio in the drift and
volatility terms of the dynamic systems, makes the problem including
multi-dimensional financial assets more realistic and meaningful.

Keywords: Optimal stopping, Path-dependent, Stochastic differential equation (SDE),
Time-change, Portfolio selection

Background
Optimal stopping problems, a kind of dynamic optimization problems allowing investors
to stop investment any time before the maturity in order to maximize their profits or
minimize their costs, are of great interest and of importance in various fields such as
science, engineering, economics, management, and particularly in financial investment.
In reality, choosing a proper time point to stop investment is of importance to hedge
risk and to realize maximum return for investors. In practice, it is extremely hard to find
the point at which the realized return is maximized, and therefore the investor tries to
sell at a price which is as close to the maximum as possible. To help determine this time
point, researchers have made significant effort toward the theory of optimal stopping,
and Shiryaev et al. (2008) is one of the typical representatives along this line of research.
In the field of mathematical finance, furthermore, optimal stopping has been extensively
studied for pricing American-style options, which allow option holders to exercise the
options before or at the maturity.
The theory of optimal stopping developed in pricing American options can be further

applied to determine an optimal stopping point so as to maximize return from financial
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investment for economic agents. Nevertheless, it is extremely hard to let investors realize
the highest return, and therefore, the objective is to minimize the distance between the
time point at which the investment is stopped and that at which the maximum return
can be realized. For example, Ceci and Bassan (2004) study the mixed optimal stopping
and stochastic control problems with semicontinuous final reward for diffusion processes
and give some properties of the value function. Dayanik and Karatzas (2003) investigate
the optimal stopping problems for one dimensional diffusions and showed how to reduce
the discounted optimal stopping problem for an arbitrary diffusion process to an undis-
counted one for standard Brownian motion. Choi et al. (2004) study an investor’s decision
to switch from active portfolio management to passive management and modelled it to
a mixture of a consumption-portfolio selection problem and an optimal stopping prob-
lem. Chang et al. (2009) consider the optimal stopping problem for stochastic differential
equations with random coefficients. Shiryaev et al. (2008) address the optimal stopping
issue in an equity market by considering a log-normal price process.
The mean-variance approach originated by Markowitz (1952, 1959) has been a cor-

nerstone of asset allocation, investment analysis and risk management. In this literature,
Merton’s (1969, 1971, 1973) seminal work is considered a benchmark on continuous-
time portfolio selection. The single period model is extended by Li and Ng (2000) for
multi-period case and developed by Zhou and Li (2000) for continuous-time one, respec-
tively. The work of Li and Zhou (2006) reveals the high opportunity of a Markowitz
mean-variance strategy hitting the expected return target before the maturity date. Nat-
urally, investors also hope to decide when to stop the investment over a given investment
horizon so as to maximize their profits. This idea has been further developed to deter-
mine the optimal selling time for one stock by Shiryaev et al. (2008), who determined
a time point at which investors can sell risky assets as close to the maximum return as
possible. This again highlights the efficiency of the mean-variance analysis in the field
of investment and portfolio selection. Naturally, an investor also hopes to know the
time point to stop the investment over a given investment horizon so as to maximize
the profit.
In this paper, we devote to choosing an optimal point at which an investor stops the

investment among multi assets for gaining maximum benefit. The investor is expected
to maximize her personal utilities and to minimize the difference between the realized
return at the stopping point and her potentially maximum return. Compared with the
work of Shiryaev et al. (2008), we consider the utility function of a quadratic form instead
of a relative error criterion. And since multi financial assets are considered, the drift
and volatility terms involve the portfolio. These make our analysis more realistic and
meaningful.
The rest of the paper is organized as follows. In “Formulation” section, we formu-

late the problem to a two-stage problem in which the investor is expected to maximize
her personal utilities and to minimize the difference between the realized return/wealth
at the stopping point and her potentially maximum return/wealth. We first derive the
optimal portfolio of the sub-problem by stochastic controls methodology. Then substi-
tuting the optimal portfolio into the dynamic systems, we have the optimal stopping time
problem with the wealth process without the control variable in the drift and volatility
terms. Using time-change technique, the nonadapted problem is transformed into a stan-
dard optimal stopping problem. Numerical examples are presented in “Methods” section
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to demonstrate the theoretical results. “Results and discussion” section 4 concludes the
work. Some technique details are relegated to an Appendix.

Formulation
Throughout this paper (�,F ,P, {Fs}s≥0) is a fixed filtered complete probability space on
which defined a standardFs-adaptedm-dimensional Brownianmotion {W (s), s ≥ 0}with
W (0) = 0, and ̂T > 0 is given and fixed, representing the terminal time of an investment
horizon.
There is a financial market in whichm+1 securities (or assets) are traded continuously.

One of the securities is a risk-free asset, whose price follows
{

dS0(t) = rS0(t)dt, t ≥ 0,
S0(0) = s0 > 0,

(1)

where r > 0 is the interest rate. The other m securities are risky assets, whose prices
follows

⎧

⎪

⎨

⎪

⎩

dSi(t) = Si(t)
{

bidt +
m
∑

j=1
σijdWj(t)

}

, t ≥ 0,

Si(0) = si > 0, i = 1, 2, · · · ,m,
(2)

where b := (b1, b2, · · · , bm)′ is the appreciation rate, σ := (σij)m×m is the volatility, and
σ ′σ is positive definite.
Consider an agent, with an initial endowment x0 > 0 and whose total wealth at time

s ∈[ 0, T̂] is denoted by x(s). Assume that the trading of shares is self-financed and takes
place continuously, and that transaction cost and consumptions are ignored. Then x(·)
satisfies

⎧

⎪

⎨

⎪

⎩

dx(s) =
{

rx(s) +
m
∑

i=1
(bi − r)πi(s)

}

ds +
m
∑

j=1

m
∑

i=1
σijπi(s)dWj(s), 0 ≤ s ≤ T̂ ,

x(0) = x0,
(3)

where πi(s), i = 1, 2 · · · ,m, denotes the total market value of the agent’s wealth in the
i-th stock. We call the process π(s) := (π1(s),π2(s), · · · ,πm(s))′ a portfolio of the agent.
Define the running maximum wealth process

M(s) = max
0≤u≤s

x(u), s ≥ 0.

Assume that an investor can stop investment at any point before a pre-specified date
̂T > 0. The question is to choose an optimal portfolio and to determine the right time
to stop investment. The main objective of this study is to determine conditions for which
the investor should sell her shares. Ideally, the investor would like to exit when the value
is highest, which is at time s, such that x(s) = αM(̂T). More generally, the investor may
have an investment target that is a fraction of (or possibly equal to) the maximum value,
αM(̂T), where 0 < α ≤ 1.With this objective, we assume that the investor chooses an exit
time to minimize the mean squared difference between exit value and investment target
value. We formulate it to the following optimal stopping problem:

min
0≤τ̂≤̂T

E
[

x(τ̂ ) − αM(̂T)
]2 , (4)

subject to

⎧

⎨

⎩

max
π(·)

E
[

ln(x(̂T))
]

,

subject to (x(·),π(·)) satisfy (3).
(5)
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Note that the above two-stage problem setting is very insightful. It is more realistic
than those addressed in Shiryaev et al. (2008) since m-dimensional financial assets are
considered and the drift and volatility terms involving the portfolio.

Methods
Before further developing techniques derived in Shiryaev et al. (2008), we know the
optimal portfolio of sub-problem (5) via stochastic control method

π̂(s) ≡ (π̂1(s), π̂2(s), · · · , π̂m(s))′ = (σσ ′)−1(b − r1)x(s), (6)

where 1 = (1, 1, · · · , 1)′ is anm-dimensional column vector.
Substituting (6) into (5) yields the wealth process x(·)without the control variable in the

drift and volatility terms

{

dx(s) = x(s)
{

(r + |θ |2)ds + θ ′dW (s)
}

,
x(0) = x0,

(7)

where θ = σ−1(b − r1).
This is similar to the case in Shiryaev et al. (2008), but it is more mathematically

complex. By virtue of a time-change technique, there exists a one-dimensional standard
Brownian motion B(s), s ≥ 0, on (�,F ,P) such that

θ ′W (s) = B(β(s)), 0 ≤ s ≤ T̂ ,

where β(s) := |θ |2s.
Set t := |θ |2s, Eq. (7) is equivalent to

{

dx(t) = x(t) {μdt + dB(t)} ,
x(0) = x0,

(8)

where μ = r
|θ |2 + 1. Thus, the problem (4) is equivalent to

min
0≤τ≤T

E
[

x(τ ) − αM(T)
]2 (9)

over τ ∈ T , the set of all Ft-stopping time τ ∈[ 0,T], where T = |θ |2̂T . Consequently,
the value function associated with problem (9) is

V (t, x,M) = min
t≤τ≤T

E
[

(x(τ ) − αM(T))2|Ft
]

= min
t≤τ≤T

E
[

x(τ )2 − 2αx(τ )M(T) + α2M(T)2|Ft
]

= min
t≤τ≤T

E
[

x(τ )2 − 2αx(τ )E[M(T)|Fτ ]+α2
E[M(T)2|Fτ ]

∣

∣Ft
]

.

(10)

Defining ν := μ − 1
2 , we rewrite

x(t) := x(0) exp(νt + B(t)), M(t) := x(0) exp
(

max
0≤u≤t

(νu + B(u))

)

.
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Denote ψ(t, x(t),M(t)) = E[M(T)|Ft] and φ(t, x(t),M(t)) = E[M(T)2|Ft]. Then

ψ(t, x(t),M(t)) = E[M(T)|Ft]

= E

[

x(0) exp
(

max
0≤u≤T

(νu + B(u))

)

∣

∣

∣Ft

]

= E

[

x(0) exp
(

max
{

max
0≤u≤t

(νu + B(u)), max
t≤u≤T

(νu + B(u))

})

∣

∣

∣Ft

]

= E

[

x(0) exp
(

max
{

max
0≤u≤t

(νu + B(u)), (νt + B(t)) + max
0≤u≤T−t

(νu + B(u))

})

∣

∣

∣Ft

]

= E

[

x(t) exp
(

max
{

max
0≤u≤t

(νu + B(u)) − (νt + B(t)), max
0≤u≤T−t

(νu + B(u))

})

∣

∣

∣Ft

]

= E

[

x(t) exp
(

max
{

y, max
0≤u≤T−t

(νu + B(u))

})

∣

∣

∣y = max
0≤u≤t

(νu + B(u)) − (νt + B(t))
]

= x(t)G1
(

t, ln
(

M(t)
x(t)

))

,

(11)

where

G1(t, y) = E

[

exp
(

max
{

y, max
0≤u≤T−t

(νu + B(u))

})]

, (t, y) ∈[ 0,T]×[ 0,∞)

and

φ(t, x(t),M(t)) = E[M(T)2|Ft]

= E

[

x(0)2 exp
(

(

max
0≤u≤T

(νu + B(u))

)2
)

∣

∣

∣Ft

]

= E

[

x(0)2 exp
(

(

max
{

max
0≤u≤t

(νu + B(u)), max
t≤u≤T

(νu + B(u))

})2
)

∣

∣

∣Ft

]

= E

[

x(0)2 exp
(

(

max
{

max
0≤u≤t

(νu + B(u)), (νt + B(t)) + max
0≤u≤T−t

(νu + B(u))

})2
)

∣

∣

∣Ft

]

= E

[

x(t)2 exp
(

(

max
{

max
0≤u≤t

(νu + B(u)) − (νt + B(t)), max
0≤u≤T−t

(νu + B(u))

})2
)

∣

∣

∣Ft

]

= E

[

x(t)2 exp
(

(

max
{

y, max
0≤u≤T−t

(νu + B(u))

})2
)

∣

∣

∣y = max
0≤u≤t

(νu + B(u)) − (νt + B(t))
]

= x(t)2G2
(

t, ln
(

M(t)
x(t)

))

,

(12)

where

G2(t, y) = E

[

exp
(

(

max
{

y, max
0≤u≤T−t

(νu + B(u))

})2
)]

, (t, y) ∈[ 0,T]×[ 0,∞).

It follows (10) that

V (t, x,M) = min
t≤τ≤T

E
[

x(τ )2−2αx(τ )ψ(τ , x(τ ),M(τ ))+α2φ(τ , x(τ ),M(τ ))|Ft
]

, (13)

which is governed by
⎧

⎪

⎨

⎪

⎩

max
{

LV ,V − x2 + 2αxψ − α2φ
} = 0,

VM(t,M,M) = 0,
V (T , x,M) = (x − αM)2,

(14)

where the operator L is defined by

L f (t, x,M) = ft(t, x,M) + μxfx(t, x,M) + 1
2x

2fxx(t, x,M).

The value function V (t, x,M) satisfies

V (t, λx, λM) = λ2V (t, x,M),
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because scaling both x(t) and M(t) by the same positive constant at a time t prior to the
terminal time T results in the payoff (x(T)−αM(T))2 being scaled by the same constant.
In particular, if

U(t, ln z) = V (t, 1, z), 0 ≤ t ≤ T , z ≥ 1,

then we may determine V (t, x,M) as

V (t, x,M) = x2V
(

t, 1, Mx
) = x2U

(

t, ln
(M
x
))

, 0 ≤ t ≤ T , 0 < x ≤ M.

According to Eq. (13) and expressions of G1 and G2, we have

V (t, x,M) = min
t≤τ≤T

E
[

x(τ )2 − 2αx(τ )ψ(τ , x(τ ),M(τ )) + α2φ(τ , x(τ ),M(τ ))
∣

∣Ft
]

= min
t≤τ≤T

E

[

x(τ )2 − 2αx(τ )2G1
(

τ , ln
(

M(τ )
x(τ )

))

+ α2x(τ )2G2
(

τ , ln
(

M(τ )
x(τ )

))

∣

∣Ft
]

= min
t≤τ≤T

E

[

x(τ )2
(

1 − 2αG1
(

τ , ln
(

M(τ )
x(τ )

))

+ α2G2
(

τ , ln
(

M(τ )
x(τ )

))) ∣

∣

∣Ft
]

= min
t≤τ≤T

E

[

x(τ )2G
(

τ , ln
(

M(τ )
x(τ )

))

∣

∣Ft
]

,

(15)

where G(t, y) = 1 − 2αG1(t, y) + α2G2(t, y).
Equation (15) implies that Eq. (9) is equivalent to a standard optimal stopping problem

with a terminal payoff G and an underlying (adapted) state process

Y (t) = ln
(

M(t)
x(t)

)

, Y (0) = 0.

Following the dynamic programming approach we consider the problem below

U(t, y) = inf
τ∈TT−t

Et,y[G(t + τ ,Y (t + τ))] ,

where Y (t) = y under the probability Pt,x with (t, y) ∈[ 0,T]×[ 0,∞) given and fixed, and
Ts in general denotes the set of all F-stopping times τ ∈[ 0, s] for s > 0.
In fact, U satisfies the following dynamic programming equation (or variational

inequalities)
⎧

⎪

⎨

⎪

⎩

max { ̂LU ,U − G} = 0, (t, y) ∈[ 0,T]×[ 0,∞),
subject to Uy(t, 0+) = 0, t ∈[ 0,T),

U(T , y) = G(T , y), y ∈ (0,∞),
(16)

where the operator ̂L is defined by

̂L f (t, y) = ft(t, y) − (ν + 2)fy(t, y) + 1
2 fyy(t, y) + 2(ν + 1)f (t, y).

Hence, the original problem is transferred into finding U. Since x(·) has stationary
independent increments and Y (·) is a Markovian process, we rewrite

U(t, y) = inf
0≤τ≤T−t

E[G(t + τ ,Yy(τ ))] ,

where Y (·) under P is explicitly given as

Yy(t) = y ∨ ln
(

M(t)
x(t)

)

, t ≥ 0.

Theoretically, we have derived a region in which the venture capitalist may sell the
shares they hold, given the pre-determined relationship between her target return and the
expected maximum return.
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Theorem 1 The holding region is

C = {(t, y) ∈[ 0,T]×[ 0,∞) : U(t, y) < G(t, y)},
while the exit region is

D = {(t, y) ∈[ 0,T]×[ 0,∞) : U(t, y) = G(t, y)}.
Also, an optimal exit time is

τ ∗ = inf
{

t ∈[ 0,T] :
(

t, ln
(

M(t)
x(t)

))

∈ D
}

.

Results and discussion
To investigate comparative statics, we present one numerical example in which we change
the value of the parameter α. Following the standard approach for estimating the above
problem via the finite difference approach, we solve the mathematical formulation given
in Eq. (16) by imposing a uniform grid on the (t, y) domain. A Crank-Nicolson scheme
is adopted for the discretization of the partial differential equation and the semi-infinite
interval for y is truncated at a sufficiently large value of y. The derivative boundary condi-
tion is discretized using a forward difference approximation. For the results shown below,
we take the grid spacing to be 0.005 for y and 0.001 for t dimensions.
Let m = 3. The interest rate of the bond and the appreciation rate of the m stocks are

r = 0.05 and (b1, b2, b3)′ = (0.1, 0.12, 0.15)′, respectively, and the volatility matrix is

σ =
⎡

⎢

⎣

0.3000 0 0
0.2000 0.3464 0
0.2500 0.1443 0.4082

⎤

⎥

⎦ .

Then

θ := σ−1(b1 − r, b2 − r, b3 − r)′ = (0.1667, 0.1058, 0.1055)′.

Using Theorem 1 and the parameter value of α ranging between 0.8 and 1, we observe
that the exit region decreases as the value of α increases, as shown by the combined
picture at the right-bottom corner of Fig. 1.

Fig. 1 α = 0.8, 0.85, 0.9, 0.95, 1
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Conclusion
This paper considers an optimal stopping time point for the investor who is expected
to maximize her personal utilities and to minimize the difference between the realized
return at the stopping point and her potentially maximum return. Our utility function of
a quadratic form is more general than that of a fraction form where the denominator may
be zero in Shiryaev et al. (2008). Furthermore, our investment problem, which includes
the portfolio in the drift and volatility terms of the dynamic systems, makes the problem
including multi-dimensional financial assets more realistic and meaningful.

Appendix A: expression of function G1

We now derive the explicit expression of the function G1, defined by

G1(t, y) = E

[

exp
(

max
{

y, max
0≤u≤T−t

(νu + B(u))

})]

= ∫∞
y ezdP

(

max
0≤u≤T−t

(νu + B(u)) ≤ z
)

+ eyP
(

max
0≤u≤T−t

(νu + B(u)) ≤ y
)

.

Note that

P

(

max
0≤u≤T−t

(νu + B(u)) ≤ z
)

= 

(

z−ν(T−t)√
T−t

)

− e2νz

(−z−ν(T−t)√

T−t

)

.

According to the standard normal distribution, we have
∫∞
y ezd


(

z−ν(T−t)√
T−t

)

= ∫∞
y ez 1√

2π(T−t)e
− (z−ν(T−t))2

2(T−t) dz

= e(ν+ 1
2 )(T−t)

[

1 − 

(

y−(ν+1)(T−t)√
T−t

)]

.

Assume that ν �= − 1
2 . Then

∫∞
y ezd

[

e2νz

(−z−ν(T−t)√

T−t

)]

= ∫∞
y 2νe(1+2ν)z


(−z−ν(T−t)√
T−t

)

dz + ∫∞
y e(1+2ν)zd


(−z−ν(T−t)√
T−t

)

= − 2ν
1+2ν e

(1+2ν)y

(−y−ν(T−t)√

T−t

)

− 1
1+2ν e

(

ν+ 1
2
)

(T−t)
[

1 − 

(

y−(ν+1)(T−t)√
T−t

)]

.

Thus

G1(t, y) = ey

(

y−ν(T−t)√
T−t

)

− 1
1+2ν e

(1+2ν)y

(−y−ν(T−t)√

T−t

)

+ 2(1+ν)
1+2ν e

(

ν+ 1
2
)

(T−t)
[

1 − 

(

y−(ν+1)(T−t)√
T−t

)]

.

In addition, note that when ν = − 1
2 ,

∫∞
y ezd

[

e2νz

(−z−ν(T−t)√

T−t

)]

= ∫∞
y ezd

[

e−z

(−z−ν(T−t)√

T−t

)]

= − ∫∞
y 


(−z−ν(T−t)√
T−t

)

dz + ∫∞
y d


(−z−ν(T−t)√
T−t

)

= y

(−y−ν(T−t)√

T−t

)

−
√
T−t√
2π e−

(x+ν(T−t))2
2(T−t) + ν(T − t)

[

1 − 

(

y+ν(T−t)√
T−t

)]

−

(−y−ν(T−t)√

T−t

)

.



Li et al. Financial Innovation  (2017) 3:28 Page 9 of 10

Thus

G1(t, y) = 1 − 

(

y−(ν+1)(T−t)√
T−t

)

− y

(−y−ν(T−t)√

T−t

)

+
√
T−t√
2π e−

(y+ν(T−t))2
2(T−t)

−ν(T − t)
[

1 − 

(

y+ν(T−t)√
T−t

)]

+ ey

(

y−ν(T−t)√
T−t

)

.

Appendix B: expression of functionG2

We now derive the explicit expression of the function G2, defined by

G2(t, y) = E

[

exp
(

max
{

y, max
0≤u≤T−t

(νu + B(u))

})2
]

= ∫∞
y e2zdP

(

max
0≤u≤T−t

(νu + B(u)) ≤ z
)

+e2yP
(

max
0≤u≤T−t

(νu + B(u)) ≤ y
)

.

Note that

P

(

max
0≤u≤T−t

(νu + B(u)) ≤ z
)

= 

(

z−ν(T−t)√
T−t

)

− e2νz

(−z−ν(T−t)√

T−t

)

.

According to the standard normal distribution, we have
∫∞
y e2zd


(

z−ν(T−t)√
T−t

)

= ∫∞
y e2z 1√

2π(T−t)e
− (z−ν(T−t))2

2(T−t) dz

= e2(ν+1)(T−t)
[

1 − 

(

y−(ν+2)(T−t)√
T−t

)]

.

Assume that ν �= −1. Then
∫∞
y e2zd

[

e2νz

(−z−ν(T−t)√

T−t

)]

= ∫∞
y 2νe2(1+ν)z


(−z−ν(T−t)√
T−t

)

dz + ∫∞
x e2(1+ν)zd


(−z−ν(T−t)√
T−t

)

= − ν
1+ν

e2(1+ν)y

(−y−ν(T−t)√

T−t

)

− 1
1+ν

e2(ν+1)(T−t)
[

1 − 

(

y−(ν+2)(T−t)√
T−t

)]

.

Thus

G2(t, y) = e2y

(

y−ν(T−t)√
T−t

)

− 1
1+2ν e

2(1+ν)y

(−y−ν(T−t)√

T−t

)

+ 2+ν
1+ν

e2(ν+1)(T−t)
[

1 − 

(

y−(ν+2)(T−t)√
T−t

)]

.

Also, note that when ν = −1,
∫∞
y e2zd

[

e2νz

(−z−ν(T−t)√

T−t

)]

= ∫∞
y e2zd

[

e−2z

(−z−ν(T−t)√

T−t

)]

= −2
∫∞
y 


(−z−ν(T−t)√
T−t

)

dz + ∫∞
y d


(−z−ν(T−t)√
T−t

)

= 2y

(−y−ν(T−t)√

T−t

)

− 2
√
T−t√
2π e−

(y+ν(T−t))2
2(T−t) + 2ν(T − t)

[

1 − 

(

y+ν(T−t)√
T−t

)]

−

(−y−ν(T−t)√

T−t

)

.
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Thus

G2(t, y) = 1 − 

(

y−(ν+2)(T−t)√
T−t

)

− 2y

(−y−ν(T−t)√

T−t

)

+ 2
√
T−t√
2π e−

(y+ν(T−t))2
2(T−t)

−2ν(T − t)
[

1 − 

(

y+ν(T−t)√
T−t

)]

+ e2y

(

y−ν(T−t)√
T−t

)

.
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