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Abstract

Steroid hormones are one of the major bioactive molecules responsible for the coordinated regulation of
biological processes in multicellular organisms. In insects, the principal steroid hormones are ecdysteroids,
including 20-hydroxyecdysone. A great deal of research has investigated the roles played by ecdysteroids
during insect development, especially the regulatory role in inducing molting and metamorphosis. However,
little attention has been paid to the roles of these hormones in post-developmental processes, despite their
undisputed presence in the adult insect body. Recently, molecular genetics of the fruit fly Drosophila
melanogaster has revealed that ecdysteroid biosynthesis and signaling are indeed active in adult insects, and
involved in diverse processes, including oogenesis, stress resistance, longevity, and neuronal activity. In this
review, we focus on very recent progress in the understanding of two adult biological events that require
ecdysteroid biosynthesis and/or signaling in Drosophila at the molecular level: germline development and the
circadian clock.
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Introduction
Steroid hormones play indispensable roles in modulat-
ing a broad range of biological processes in nearly all
multicellular organisms [1–3]. Steroid hormones are
biosynthesized from sterols, such as cholesterol, by
members of specific steroidogenic enzymes in special-
ized steroidogenic tissues [4]. Once produced, steroid
hormones are circulated in hemolymph and are easily
transported to target cells to act as ligands for the
nuclear receptor family of transcription factors [5].
The steroid hormone-nuclear receptor complexes affect
gene expression in target cells, triggering a hormone-
dependent response.

In insects, the major steroid hormones are ecdysteroids,
also known as molting hormones. Ecdysteroids, especially
the most biologically active form 20-hydroxyecdysone
(20E), play essential roles in coordinating developmental
transitions, such as larval molting and metamorphosis
[2, 6]. 20E activates a heterodimeric nuclear hormone
receptor complex of proteins encoded by the Ecdysone
receptor (EcR) and ultraspiracle (usp) genes [7–10]. This
heterodimer regulates the expression of ecdysone-
responsive genes by binding to specific promoter
sequences called ecdysone response elements. In
contrast to the long history of studies of EcR/USP
and its downstream gene cascades, identification and
characterization of ecdysteroidogenic enzymes have
only been achieved within the last 15 years. So far,
there are at least 10 essential ecdysteroidogenic en-
zymes that are expressed in ecdysteroidogenic tis-
sues/organs, such as the larval prothoracic gland
(PG), during embryonic and larval development [2].
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The timing of molting and metamorphosis are mainly de-
termined by dynamic temporal fluctuations of hemolymph
ecdysteroid pulses and the subsequent activation of the
ecdysteroid-dependent gene cascade [11]. Previous studies
have also demonstrated that many genetic mutants of EcR,
usp, ecdysteroid-inducible genes and ecdysteroidogenic en-
zyme genes exhibit clear defects of molting and/or meta-
morphosis [2, 12]. Therefore, a large body of literature has
described the roles of ecdysteroids to trigger such drastic
developmental changes. By contrast, whereas a low but sig-
nificant amount of ecdysteroids are undoubtedly present in
adult stages, temporal changes of the hemolymph titer are
ill-defined [13]. Furthermore, after the completion of devel-
opment, the adult insects no longer display visible changes
of either morphology or physiology. Perhaps for these rea-
sons little attention had been paid to the functions of ecdys-
teroids in adult insects.
In the past decade, however, molecular genetic studies

using Drosophila have revealed some important aspects of
ecdysteroids in adult physiology [14]. In this review, we
specifically focus on very recent progress in understanding
two adult biological events that require ecdysteroid bio-
synthesis and/or signaling in Drosophila at the molecular
level: germline development and the circadian clock.

Review
Oocyte maturation and ecdysteroids: Stage-8 checkpoint
and lipid accumulation
The first evidence showing the role of ecdysteroids in
adult insects was reported by studies using the ovaries
of adult mosquitoes in the 1970s [15, 16]. These stud-
ies demonstrated that vitellogenin synthesis in the fat
body of mosquitoes is regulated by ovarian ecdyster-
oids [16]. After this discovery, genetic studies of ecdys-
teroids and oogenesis have mainly been conducted
using the convenient genetic model, the fruit fly D.
melanogaster.
In Drosophila, ecdysteroids are also detected in the

adult ovary [13, 17–19]. Genetic studies using mutants
of genes required for ecdysteroid biosynthesis have
proved that ovarian ecdysteroids are biosynthesized in
the ovary itself. For example, adult females with a
temperature-sensitive allele of ecdysoneless have a low
ecdysteroid titer in the ovary [19, 20]. More recently,
identification and characterization of a number of ecdys-
teroidogenic enzyme genes have enabled researchers to
show that these genes are expressed in nurse cells and/
or follicle cells of the adult ovary [19, 21–30]. Genetic
studies have also confirmed that at least two of the
ecdysteroidogenic genes, spook and phantom, are re-
quired for proper development of the ovary [27, 31]. In
addition, some ecdysone response genes also play essen-
tial roles in oogenesis [32].

While versatile roles of ecdysteroid signaling in the
development of the ovary of Drosophila have been
proposed [16], one important role is to act as a develop-
mental checkpoint during mid-oogenesis to ensure proper
egg production. The ovary of Drosophila is composed of
15–20 ovarioles that have continuously developing egg
chambers [33] (Figure 1a). Each egg chamber can be di-
vided into 14 stages based on morphological criteria. Stage
14 is the mature egg, and stage 1 is budding of the egg
chamber in the anterior of ovarioles, called the germarium
(Fig. 1a). During Drosophila oogenesis, there is a critical
developmental checkpoint around stage 8 [34]. In this
stage, a developmental decision is made in each egg cham-
ber to determine whether it will develop or die. While a
low concentration of ecdysteroids is essential for normal
oogenesis, a high concentration of ecdysteroids caused by
nutritional shortage induces apoptosis in the nurse cells of
stage 8 and 9 egg chambers [34, 35]. In this checkpoint,
ecdysone-induced protein 75 (E75) isoforms are involved
in inducing or suppressing apoptosis. While overexpres-
sion of E75A in the egg chamber induces apoptosis of the
nurse cells at stages 8 and 9 in fed flies, overexpression of
E75B suppresses it at stages 8 and 9 in starved flies, sug-
gesting that E75A and E75B have the opposite effect on
apoptosis: E75A induces apoptosis and E75B inhibits
apoptosis [36]. In addition, expression of E75 isoforms is
regulated by the BR-C isoform. BR-C Z2 and Z3 are not
expressed in the egg chambers at stages 8 and 9 under
feeding conditions, but are expressed in the follicle cells
under apoptotic conditions. Overexpression of BR-C Z2
or Z3 induces E75A expression and suppresses E75B
expression in the egg chambers at stages 8 and 9 [36].
This suggests that BR-C isoforms respond to the nutri-
tional signals and regulate the expression of E75A and
E75B expression to control apoptosis in the stage 8 egg
chamber (Fig. 2).
Notably, the ecdysteroid-dependent mid-oogenesis

checkpoint is also influenced by organismal metabolism
and external nutrient conditions, as illustrated by a re-
cent study [37]. During oogenesis, lipids are maternally
supplied to oocytes and the lipid storage is crucial for
the early stages of embryogenesis in many animals
[38, 39]. In Drosophila, lipids accumulate in the stage 10
oocyte via a low-density lipoprotein (LDL) receptor. A
recent study has demonstrated that ecdysteroid signaling
is required for lipid accumulation, and feeding behavior
is required for proper nutrition uptake (Fig. 2) [37]. EcR
mutant females have a defect in lipid accumulation and
exhibit reduced levels of the LDL receptor LpR2. The
expression of LpR2 is regulated by Sterol regulatory
element-binding proteins (SREBP), the important lipo-
genic transcription factor in response to ecdysteroid sig-
naling and dietary nutrients. In addition, adult-specific
dominant-negative EcR expression in the central nervous
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system (CNS) causes decreased levels in feeding behav-
ior and nutrient uptake in females. As oral administra-
tion of 20E induces nutrient storage [37], it is possible
that ecdysteroid signaling in the CNS may promote nu-
trient accumulation required for the proper level of egg
laying in females. However, it is unclear how follicle cells
perceive nutrient information regarding starvation or
feeding of individuals to control ecdysteroid levels.

Germline stem cells and ecdysteroids
In addition to the previously reported ecdysteroid-
dependent regulation of oogenesis, such as in mid-
oogenesis as described above, as well as oocyte maturation
and oviposition [32, 40], recent studies have revealed that
ecdysteroids also control very early steps of oogenesis,
namely niche formation, germline stem cell (GSC) behav-
ior, and cyst cell differentiation.
In the germarium in adult Drosophila females, 1–3

GSCs give rise to mature eggs (Fig. 1b). GSCs reside in a
specialized microenvironment called the niche that
maintains stem cell function by sending local niche sig-
nals into GSCs and controls symmetric or asymmetric

GSC division [41, 42]. GSCs can divide symmetrically to
produce daughter stem cells, or asymmetrically to pro-
duce daughter cells called cystoblasts that differentiate
into nurse cells and oocytes. The cystoblast undergoes
four mitotic divisions with incomplete cytokinesis to
form 15 nurse cells and one oocyte in each egg chamber
that is surrounded by somatic follicle cells.
The ovary of Drosophila has long been recognized as

one of the most powerful tools for investigating GSCs and
niches [43]. GSCs receive a somatic signal from niches
consisting of the terminal filament and cap cells, which
maintain GSC function (Fig. 1b). In the larval ovary, both
primordial germ cells (PGC, the precursors of GSCs) and
gonadal somatic cells (the precursors of niche cells) prolif-
erate and develop to form 16–20 GSC units of the adult
ovary [44]. Ecdysteroid signaling controls formation of
niche and stem cell precursors in the larval ovarian devel-
opment. Although knocking down of EcR or Usp function
in the somatic ovary at the early third instar does not
change developmental timing, precocious differentiation
of both niches and PGCs occurs in gonads of EcR or usp
RNAi animals at the early third instar [45]. However,

A

B

Fig. 1 Schematic representation of ovariole and germarium in Drosophila melanogaster. a The Drosophila ovary is composed of 15–20 ovarioles.
The continuous developing egg chamber is divided into 14 stages. Each egg chamber is composed of an oocyte, nurse cells and somatic follicle
cells. Vitellogenesis occurs after stage 8 egg chamber. b The germarium resides in the tip of the ovariole. Germline stem cells (blue) are
maintained by somatic niche cells comprising the terminal filament, cap cells, and escort stem cells (green). Germline stem cells produce another
stem cell by self-renewal and also divide asymmetrically to produce daughter cells called cystoblasts (red). The cystoblast divides four times with
incomplete cytokinesis to form 15 nurse cells and one oocyte in each egg chamber, which are enveloped by follicle cells (gray). Illustration in the
egg chamber shows proliferation and differentiation of cystoblasts from the 2-(left) to 16-cell stage. GSCs and cystoblasts can be identified by the
morphology of the spectrosome, a germline-specific membranous organelle (yellow). Developing cystocytes contain the fusome, a derivative of
the spectrosome that shows more branched morphology (yellow)
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overexpression of the dominant negative form of EcR at
the mid-third instar causes reduced size in the ovary and
niche [45]. These results suggest that the ecdysone recep-
tor represses precocious differentiation of both niches and
PGCs at the early third instar, and is required for niche
formation and gonadal development at the mid-third
instar (Fig. 2). In addition, this mechanism involves the
early ecdysone response gene, Broad-Z1. Ecdysteroid
signaling non-cell-autonomously activates Broad expres-
sion in the somatic ovary through EcR/Usp to form niche
and differentiating PGCs at the mid-third instar and later,
but not the early third instar [45]. In addition, loss of
ecdysone-induced transcription factor, E78 results in de-
creased cap cell numbers and fewer germline stem cells
[46], suggesting that ecdysteroid signaling controls niche
assembly to maintain the proper number of GSCs via E78
and Broad (Fig. 2).
GSCs are maintained by local niche signals and are also

affected by systemic ecdysteroid signaling. EcR mutant fe-
males show a reduced number of GSCs independent of in-
sulin signaling, suggesting that ecdysteroid signaling
directly regulates adult GSC proliferation and self-renewal
[47]. This regulation is mediated by E74, a transcription
factor known as an early responsive gene of ecdysteroids,
while other transcription factors, E75 and BR-C, are not

required for proper GSC proliferation (Fig. 2) [47]. More-
over, ecdysteroid signaling controls GSC proliferation by
interacting with chromatin remodeling factors such as
ISWI (an intrinsic epigenetic factor required for GSC fate
and activity) and Nurf301 (the largest subunit of the
ISWI-containing NURF chromatin remodeling complex),
suggesting that there is an essential link between ecdyster-
oid signaling and the intrinsic chromatin remodeling
machinery as a potential mechanism for promoting the
general transcriptional program [47].
GSCs undergo four rounds of synchronous division to

produce 2, 4, 8, and eventually 16 interconnected devel-
oping cysts (called cystocytes), the precursors of ovarian
follicles. Somatic follicle cells envelop each cystocyte to
form a follicle through 14 developmental stages and sup-
port proper differentiation. Ecdysteroid signaling is also
required for cyst differentiation. Overexpression of the
dominant-negative form of EcR in somatic escort cells
that envelop the GSC progeny disrupts early germ cell
differentiation [48]. In addition, mutants for ecdysteroid
signaling pathway components in escort cells show in-
creased levels of the cell adhesion molecules β-Catenin/
Armadillo, DE-Cadherin and a cytoskeleton component
Adducin [48]. These data suggest that ecdysteroid sig-
naling in somatic escort cells plays an important role in

Fig. 2 Different roles of ecdysteroids in regulating progression of oogenesis. Ecdysteroid biosynthesized in the stage 10 follicle cells regulates many
aspects of oogenesis to function in the early and mid-stage of the egg chamber. Stage 8 checkpoint is determined by nutritional status and regulated
by E75A and E75B. Starvation leads to apoptosis of the egg chamber via E75A, whose expression is negatively regulated by E75B under feeding
conditions Ecdysteroid signaling in the CNS mediates lipid accumulation at stage 10 egg chamber via SREBP and LpR2. Ecdysteroids also function in
early oogenesis at the germarium such as niche cell formation, follicle cell formation, GSC maintenance and cyst cell differentiation. EcR/USP are
expressed in the somatic niche cells or GSCs to control different ecdysone responsive genes. While E74 controls GSC proliferation, E75 affects 16-cell
cyst differentiation. Broad and E78 regulate niche cell formation during ovarian development in late larval stages
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controlling germ cell differentiation via regulation of cell
adhesion complexes required for the establishment of
physiological germline–soma interaction [48, 49]. More-
over, knocking down the components of EcR or E75 in
escort cells causes a reduced number of 16-cell cysts,
but not 2-, 4- and 8-cell cysts and disrupted follicle cell
formation, suggesting that ecdysteroid signaling has a
specific role in controlling entry into meiosis of 16-cell
cysts (Fig. 2) [50]. In addition, mutants for E78 show a
significant decrease in ovarian follicle cell numbers,
suggesting that ecdysteroid signaling is also required for
follicle cell survival (Fig. 2) [46].
In addition to the ovary, ecdysteroids are also detected

in the testis [13, 17, 18]. The role of ecdysteroids in stem
cell maintenance in the testis has been reported recently.
The Drosophila testis stem cell niche consists of a cluster
of non-mitotic somatic cells called the hub, which pro-
duces signals that maintain surrounding GSCs as well as
cyst stem cells (CySCs). CySCs produce cyst cells that are
required for differentiation to sperm from GSC daughters.
In this system, ecdysteroid signaling pathway components
are essential for the maintenance and survival of both
GSCs and CySCs [51]. Moreover, as well as the ovarian
GSC system, EcR genetically interacts with Nurf301 to
maintain these stem cells in the testis niche. These results
imply that ecdysteroid signaling is required for stem cell
maintenance beyond sexes at least in Drosophila [51].

Ecdysteroid signaling factors in the molecular machinery
of the circadian clock
Besides the germline, which is the most classical site of ac-
tion of ecdysteroids in adult insects, ecdysteroids also in-
fluence many other adult organs and tissues. Recent
studies have shown that ecdysteroids are involved in adult
neuronal function, including the control of learning,
memory, and behavior [52–55]. Particularly, very recent
studies have unraveled the ecdysteroid-dependent regula-
tion of circadian clocks in insects, especially Drosophila.
Circadian clocks coordinate rhythmic behaviors and

help living organisms adapt to the daily cycling of envir-
onmental conditions [56]. Circadian clocks provide the
obvious advantage of anticipatory preparation for pre-
dictably recurrent conditions, which cannot be achieved
by direct responses to conditions that have already com-
menced. The molecular machinery of the circadian clock
has been extensively studied in Drosophila, where the
circadian master clock comprises about 150 neurons lo-
cated in the central brain [57]. The oscillation of the
clock is thought to be generated by a molecular mechan-
ism that is composed of transcriptional-translational
autoregulatory feedback loops of the clock genes, such
as period (per), timeless (tim) Clock (Clk), and cycle (cyc)
[58, 59]. The CLK-CYC heterodimer directly activates
transcription of per, tim, vrille (vri), Par Domain Protein

1 (Pdp1ϵ) and clockwork orange (cwo) by binding to their
promoters [60, 61]. Conversely, the induced TIM and
PER inhibit the activity of CLK-CYC in the nucleus,
which allows the clock to be oscillated. The clock oscil-
lation is also modulated by Clk transcription, which is
first repressed by VRI and then activated by PDP1ϵ.
CWO also directly activates transcription of per, tim, vri,
Pdp1ϵ by binding to their promoters.
The timing of developmental transitions, such as molt-

ing and eclosion, are regulated by a circadian clock in
some insects, in which the circadian clock appears to
control ecdysteroid biosynthesis in the PGs. For ex-
ample, in the blood-sucking bug Rhodnius prolixus and
the leafworm Spodoptera littoralis, ecdysteroid titers
fluctuate with a daily rhythm and such temporal
changes control the timing of molting during develop-
ment [62, 63]. In Drosophila, the timing of transition
from pupae to adults is gated by the timing of ecdyster-
oid biosynthesis, which is under control of the circadian
clock components in not only PG cells, but also in neur-
onal cells of the brain [64, 65]. By contrast, the relation-
ship between ecdysteroids and circadian clocks has been
largely unknown until recently, but some pioneer stud-
ies focusing on this issue have been reported in recent
years.
For example, E75 and unfulfilled (unf; DHR51), which

encode nuclear receptors, have been identified as com-
ponents of the molecular clocks in the Drosophila pace-
maker neurons, as knockdown of E75 and unf in the
clock neurons lengthen the free-running period [66].
E75 and UNF bind to per regulatory sequences and act
together to enhance the CLK/CYC-mediated transcrip-
tion of the per gene (Fig. 3) [66]. Notably, E75 has also
been recognized as a component of molecular clocks in
other animals. For example, in the firebrat Thermobia
domestica, a primitive insect, normal rhythmic expres-
sion of E75 and nuclear hormone receptor 3 (HR3) is re-
quired for the persistence of locomotor rhythms [67].
Interestingly, HR3 and E75 are orthologs of mammalian
clock genes, Rorα and Rev-erbα. Despite these mechan-
istic divergences, the notion that Rorα and Rev-erbα ho-
mologs are integral to the molecular oscillators in both
insects and mammals highlights the significance of
transcriptional regulations via nuclear receptors in
metazoan circadian clocks [66, 67].
In addition to nuclear receptor-mediated regulation,

another type of the feedback loop of ecdysteroid signal-
ing has been implicated in the Drosophila circadian
clock by studies on a gene called Early gene at 23 (E23)
encoding the ABC transporter (Fig. 3) [68, 69]. The E23
knockdown flies lengthen circadian period with an in-
creased expression of the clock gene vri. E23 and vri are
positively regulated by 20E in pacemaker neurons,
whereas E23 negatively regulates 20E-dependent signaling
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[69]. Considering that E23 protein depresses the 20E re-
sponse in cultured cells [69], this ABC transporter might
cause the reduction in intracellular level of 20E. Taken to-
gether, E23 forms its own feedback loop in the ecdysteroid
response through the E23 function itself and ecdysteroid-
mediated vri expression (Fig. 3) [69].
Consistent with the fact that 20E is involved in the

regulation of the circadian clock, EcR is expressed in
circadian neurons [70], and the double knockdown flies
of EcR and usp exhibit the abnormal circadian pheno-
type [69]. It is therefore important to identify transcrip-
tional targets of EcR/USP. E75 and E23 are the EcR-USP
targets in the clock neurons [71]. A recent study has also
reported that the microRNA let-7 is a target of EcR/USP
[72]. let-7 is the evolutionarily-well conserved micro-
RNA and involved in temporal regulation of develop-
ment and physiology in many animals [73]. Importantly,
let-7 targets the crucial clock component CWO. The
ecdysteroid-induced let-7 regulates the circadian rhythm
via repression of CWO, as up-regulation of cwo rescues
the circadian clock phenotype in flies overexpressing the

let-7-complex [72]. Taken together, ecdysteroid signaling
has multiple functions in controlling the circadian clock
in Drosophila adults at several levels of regulation, such
as the transporter-mediated, transcriptional and post-
transcriptional levels.

Conclusions
There is a growing body of evidence of the importance of
ecdysteroids in adult insects. Steroid hormones are small
and fat-soluble bioactive molecules that can be easily circu-
lated throughout the body and pass through the cell mem-
brane into cells [5]. Steroid hormones, therefore, have the
potential to rapidly and systemically orchestrate many types
of cells in the whole body. It is feasible that ecdysteroid sig-
naling is used to orchestrate individual biological events
not only in developing animals but also in adults, although
an actual benefit of signaling for adult insects has not been
fully elucidated. Curiously, steroid hormones are involved
in controlling germline development [74] and circadian
rhythms in mammals [75], implying that the functions of

Fig. 3 Scheme illustrating ecdysone signaling factors in the molecular machinery of the Drosophila circadian clock. The figure is modified from
Itoh and Matsumoto [92]. The signal of 20-hydroxyecdysone (20E), the most biologically active ecdysteroid, is transduced primarily through the
action of the specific receptor for 20E. This receptor is a heterodimer of Ecdysone receptor (EcR) and Ultraspiracle (Usp), which binds a specific
DNA element when 20E is present. The 20E-bound form of EcR/Usp complex activates transcriptions of vrille (vri) and Early gene at 23 (E23). The
CLK-CYC also activates transcriptions of period (per), vri and E23. The E23 protein specifically negates the 20E response. Furthermore, this EcR-Usp
complex starts the ecdysteroid cascade with the expression of E75. The E75 and UNF activate transcriptions of per
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steroid hormones in adults are, at least in part, evolutionar-
ily conserved.
One important unanswered question is the ecdysteroido-

genic cell(s) or organ(s) (other than the ovary) responsible
for biosynthesizing ecdysteroids after eclosion. While the
PG is the organ responsible for biosynthesizing ecdysteroids
during larval and early pupal stages, the PG degenerates
during pupal development and is eventually lost in the
adult stage [76–79]. It is possible that the ovary is the
source of circulating ecdysteroids in adult female
hemolymph, as has been shown in the cockroach Blattella
germanica [77]. Although the ovariectomized Blattella
female exhibits a reduced ecdysteroid titer, a substantial
amount of the hemolymph ecdysteroids remain [77]. In the
case of male adults, while several recent studies have identi-
fied the accessory gland as a site of ecdysteroid production
[80, 81], it is unclear whether accessory gland-producing
ecdysteroids systemically act in the whole body. Neuronal
subpopulations are a strong candidate for the unidentified
adult ecdysteroidogenic cells. 20E is detected in the brain
of Drosophila, and its expression is regulated by the clock
gene [72]. Second, some ecdysteroidogenic enzymes are
expressed in the brain in the honeybee Apis mellifera [82]
and in Drosophila (Yuko Shimada-Niwa, Sora Enya and
R.N., unpublished observation). Third, a clock neuron-
specific knockdown of the ecdysteroidogenic gene phan-
tom exhibits an abnormal free-running period in Drosoph-
ila [69]. It should be noted that vertebrate nervous
systems can biosynthesize de novo steroids, known as neu-
rosteroids, which modulate neuronal activities [83, 84]. By
extension, the possibility that de novo biosynthesized
ecdysteroids also act as neuromodulators and are required
for adult neuronal functions represents an attractive hy-
pothesis. To understand the regulatory mechanisms con-
trolling production of ecdysteroids in adult flies, it is
important to examine where ecdysteroidogenic enzyme
genes are expressed, and how their expression and activity
are regulated at cellular resolution.
Another interesting issue to be addressed is whether

ecdysteroids regulate GSCs and the circadian clock
cooperatively with juvenile hormone (JH), which is also
a key insect hormone that regulates molting and meta-
morphosis [85, 86]. It is well known that JH plays a
crucial role in controlling adult ovarian maturation in
many insects. In female Drosophila there is a functional
interaction between 20E and JH to regulate ovarian mat-
uration and oviposition [87]. A role of JH in regulating
the circadian clock has also been implied by a study on
the gene takeout, which encodes the JH binding protein.
takeout is essential for a circadian output pathway that
conveys temporal information to feeding-relevant me-
tabolism and activities [88]. However, whether and how
GSCs and circadian clocks are regulated by a crosstalk
between 20E and JH is still an intriguing open question.

In addition to the role of ecdysteroids in the adult stage
summarized in this paper, other ecdysteroid-dependent
biological events in the adult stage have also been re-
ported, such as stress resistance [54], lifespan [14, 89, 90],
and innate immunity [91]. A number of studies on verte-
brates have revealed that the actions of steroid hormones
play crucial roles in adult homeostasis. In this sense,
further investigation of the roles of ecdysteroids in adult
insects is needed to establish a secure foundation for the
use of insects as model organisms in steroid hormone re-
search. Considering the recent remarkable advances in
knowledge and resources of ecdysteroid biosynthesis and
signaling, it is likely that additional essential adult events
that are regulated by ecdysteroids will be found in the
future.
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