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Abstract

Personalized medicine aims to provide tailored medical treatment that considers the clinical, genetic, and environ-
mental characteristics of patients. iPSCs have attracted considerable attention in the field of personalized medicine;
however, the inherent limitations of iPSCs prevent their widespread use in clinical applications. That is, it would be
important to develop notable engineering strategies to overcome the current limitations of iPSCs. Such engineering
approaches could lead to significant advances in iPSC-based personalized therapy by offering innovative solutions
to existing challenges, from iPSC preparation to clinical applications. In this review, we summarize how engineering
strategies have been used to advance iPSC-based personalized medicine by categorizing the development process
into three distinctive steps: 1) the production of therapeutic iPSCs; 2) engineering of therapeutic iPSCs; and 3) clinical
applications of engineered iPSCs. Specifically, we focus on engineering strategies and their implications for each step
in the development of iPSC-based personalized medicine.

Keywords Personalized medicine, Engineering strategies, Induced pluripotent stem cells, Next-generation
therapeutics

Introduction

Personalized medicine, also referred to as precision med-
icine, offers tailored medical treatment that considers
the clinical, genetic, and environmental characteristics
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of patients [1]. Advances in biotechnology and growing
awareness of quality of life have promoted a paradigm
shift from conventional medicine toward personalized
medicine. Conventional medicine provides patients with
guidelines established through empirical- and mecha-
nism-based treatment [2]. Although this approach con-
siders patient heterogeneity, it has limited potential for
optimized therapy or treating specific cases [3]. Person-
alized medicine has significant advantages over con-
ventional medicine by providing optimized therapy that
enhances treatment safety and efficacy while reducing
adverse effects. In addition, personalized medicine can be
applied to ultrarare diseases as well as preventive medi-
cine through disease modeling and diagnosis [4]. There-
fore, personalized medicine improves patient health by
providing customized therapies according to an indi-
vidual’s biological information [5], resulting in improved
recovery time and clinical failure rates [6, 7].

In 2006, Takahashi and Yamanaka first reported the
generation of iPSCs by delivering four key transcription
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factors (OCT3/4, SOX2, ¢-MYC, KLF4) into murine
adult fibroblasts using retroviral vectors [8]. These gen-
erated iPSCs exhibited typical embryonic stem cell-like
characteristics, including the morphology, growth behav-
ior, and expression of distinctive embryonic stem cell
markers [9]. iPSCs also have the potential for self-renewal
and pluripotency. The discovery of iPSCs led to dramatic
improvements in personalized medicine [9]. As iPSCs are
derived from a patient’s cells, they are promising candi-
dates for disease modeling, drug screening, and genetic
modification. iPSCs also have significant advantages; for
example, they are unencumbered by ethical issues (unlike
embryonic stem cells), they can differentiate into almost
every cell type, and they are highly immunocompatible
because they are harvested and reprogrammed from the
patient’s own cells [10].

Despite abundant research on iPSCs in relation to per-
sonalized medicine, numerous obstacles remain to the
successful production of high-quality iPSC therapeutics;
these include reprogramming efficiency, expansion, dif-
ferentiation capabilities, and quality control [11]. These
limitations impede the development of high-quality
iPSC products. However, engineering strategies have the
potential to overcome these limitations and facilitate the
widespread use of iPSCs in personalized medicine [12].
The development process of iPSC-based personalized
medicine can be divided into three distinct steps. The
first step is the production of therapeutic iPSCs. In this
step, patient biopsies can either be reprogrammed into
iPSCs in the hospital (in-hospital iPSCs) or sent away
for the production of commercialized therapeutic iPSCs
(which includes commercialized iPSCs and personalized
iPSC line banking) [13, 14]. Various supporting tech-
niques are used to produce therapeutic iPSCs, such as
tissue treatment, reprogramming, expansion, and auto-
mated systems for iPSC production [15]. The second
step is the engineering of therapeutic iPSCs. Engineering
strategies such as the paracrine effect [16], differentiation
[17], biomodulation [18], and pharmaceuticals [19] offer
various opportunities for applying therapeutic iPSCs
to personalized medicine. These strategies can either
improve the performance of iPSC therapeutics or impart
new functions. The third step is the clinical application
of engineered iPSCs. Individual or combined engineering
strategies can be used in clinical applications. The appli-
cation of engineered iPSCs could involve personalized
tissue regeneration, personalized cancer therapy, and
drug development identified through drug screening of
the iPSCs derived from the patient’s cells [20].

While other reviews on iPSCs have highlighted on bio-
materials, generation techniques, and clinical applica-
tions, we focused on how engineering strategies can be
comprehensively applied in iPSC-based personalized
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medicine ranging from iPSC preparation stage to clini-
cal applications. In this review, we provide a classifica-
tion to categorize the existing researches with state of the
art engineering technologies. In this review, we highlight
how engineering strategies have been applied to advance
iPSC-based personalized medicine by categorizing the
development process into three distinctive steps. For
each step of iPSC-based personalized medicine develop-
ment, we focus on the engineering considerations and
their implications (Fig. 1). First, we introduce the prepa-
ration of therapeutic iPSCs, which include in-hospital
iPSCs, commercialized iPSCs, and personalized iPSC
lines, as well as supporting techniques. We then discuss
recent progress in engineering strategies for generating
iPSC functions suitable for personalized applications.
Third, we review recent progress in the clinical applica-
tion of iPSCs for personalized medicine. Finally, we dis-
cuss the remaining limitations, challenges, and prospects
for engineering strategies in iPSC-based personalized
medicine.

Preparation of iPSCs for personalized medicine
iPSC preparation is regarded as the primary stage in the
therapeutic application of iPSCs for personalized medi-
cine. Therefore, in this section, we focus on “Step 1: Pro-
duction of therapeutic iPSCs” (Fig. 1). There are three
major approaches for producing therapeutic iPSCs: 1)
production of in-hospital iPSCs; 2) production of com-
mercialized iPSCs; and 3) production of personalized
iPSC lines. Each approach involves different procedures
and additional scientific processes for the preparation of
therapeutic iPSCs (Table 1). A common initial stage is the
collection of patient biopsies from different parts of the
body, such as the skin, blood, liver, hair follicles, or urine.
After biopsy collection, the following stage involves the
production of either in-hospital iPSCs or commercialized
therapeutic iPSCs [13, 14]. Commercialized therapeutic
iPSCs can either be produced from fully automated pro-
cesses (commercialized iPSCs) or established as person-
alized iPSC lines for personalized use. Both in-hospital
and commercialized therapeutic iPSCs hold great prom-
ise for personalized medicine. The approach to produce
in-hospital iPSCs could provide an immediate supply of
patient-specific cells. On the other hand, commercializ-
ing the therapeutic iPSCs can significantly increase the
productivity and quality compared to those of in-hospital
iPSCs.

General techniques for iPSC preparation

Reprogramming techniques

Several reprogramming techniques are available for
producing iPSCs, including biochemical, chemical, and
mechanical reprogramming approaches. One of the
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Fig. 1 Overview of iPSC engineering steps for personalized medicine. Step 1: Production of therapeutic iPSCs (three approaches). Approach 1.
Production of in-hospital iPSCs. Patient biopsy collected from skin, blood, liver, hair follicles, or urine is reprogrammed by reprogramming factors
integrated with viral and non-viral vectors for the production of iPSCs. In-hospital iPSCs are then expanded for further use. Approach 2. Production
of commercialized iPSCs. Patient biopsy is collected from the hospital and sent to a company for commercialization. Fully automated processes
are used for commercialized iPSC production, followed by a quality assessment. Approach 3. Production of personalized iPSC lines. Patient biopsy
is collected from the hospital and sent to a company. Samples are reprogrammed to produce commercialized iPSCs. The commercialized iPSCs are
further expanded using bioreactor systems. Purification stages should be performed before the establishment of personalized iPSC lines. Step 2.
Engineering of therapeutic iPSCs (four approaches). Approach 1. Engineering iPSCs for paracrine effects. iPSCs release different types of secretomes
and regulate cell fate, such as proliferation, angiogenesis, and cell migration. Approach 2. Engineering iPSCs for differentiation. iPSCs are
differentiated by electromagnetic factors, mechanical factors, and biomaterial factors. Approach 3. Engineering iPSCs for biomodulation. Different
types of engineering techniques are used for biomodulation. iPSC-derived immune cells (T-cells, NK cells) are used for immunomodulation,
whereas CRISPR, TALEN, and ZINC fingers are used for genetic modification, which includes disruption, transgene insertion, and gene correction.
Approach 4. Engineering iPSCs for pharmaceuticals. Engineering strategies such as organoids, in vitro models, and extracellular vesicles are used
for pharmaceuticals. Step 3. Application of engineered iPSCs (three approaches used in various combinations). Approach 1. Tissue regeneration.
Engineered iPSCs can either be directly injected or transplanted with scaffolds. Approach 2. Cancer therapy. iPSCs are used for tumor regression
through various combinations of engineering strategies. Approach 3. Drug development. Engineered iPSCs are used for drug development

and drug screening

simplest procedures produces iPSCs from adult human
dermal fibroblasts, where four Yamanaka transcrip-
tion factors (OCT3/4, SOX2, c-MYC, KLF4) play a key
role [8]. Countless studies have established reprogram-
ming processes based on different viral (Lentivirus, Sen-
dai) and non-viral (MiniCircle, Episomal, mRNA, and
microRNA) reprogramming vectors [40]. Occasionally,
reprogramming factors may diverge and some additional
transcriptomic factors and/or small molecules may be
added to achieve the outcome. For example, Armijo et al.
suggested that patient fibroblasts can be reprogrammed
using a lentivirus encoding the reprogramming factors
OCT4, SOX2, c-MYC, KLF4, NANOG, and LIN28 sup-
plemented with small molecules [69]. Recently, for a
patient carrying the atrial septal defect mutation for con-
genital heart disease in the GATA4 gene, a urine sample

was reprogrammed by lentiviral particles containing
human POU5F1, SOX2, KLF4, ¢c-MYC, and RFP to pro-
duce iPSCs via epigenetic modification [70]. Currently,
the most promising and reliable viral vector for repro-
gramming cells to produce in-hospital iPSCs is the Sen-
dai virus. Previous studies have demonstrated the process
of sampling fibroblasts through skin punch biopsies and
reprogramming them using the Sendai virus expressing
the four major factors OCT4, SOX2, KLF4, and ¢c-MYC
[71-73]. In addition, a study comparing six reprogram-
ming techniques according to their transcriptomic and
epigenomic differences (lentivirus, Sendai, MiniCircle,
episomal, mRNA, and microRNA) found that Sendai-
virus-based reprogramming was the optimal method for
generating human iPSCs [40]. Moreover, a T-cell repro-
gramming technique based on the Sendai virus has been
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employed for the generation of iPSCs, whereby a small
amount of human peripheral blood was collected and
reprogrammed by activated T-cells and mutant Sen-
dai virus encoding human OCT3/4, SOX2, KLF4, and
¢-MYC [74]. Retroviral reprogramming is another viral-
based reprogramming technique for producing iPSCs.
For example, a previous study isolated dermal fibroblasts
from patients carrying parkin gene mutations, then
reprogrammed these cells using retroviruses carrying
OCT4, SOX2, KLF4, and ¢-MYC, providing a potential
therapy for the treatment of Parkinson’s disease [75].
Patient-specific pluripotent stem cells for neurological
disease applications have been produced through sev-
eral common reprogramming methods, such as retroviral
and lentiviral integration of OCT4, SOX2, c-MYC, KLF-
4, Cre-loxP recombination, PiggyBac transposon, small
molecules, protein-based, and microRNA factors [76].
Episomal-based reprogramming is also a prominent
reprogramming method for the production of iPSCs.
Through this method, patient samples are collected and
reprogrammed by an episomal non-integrated procedure.
For example, to produce neuron cells, patient biopsies
were collected from peripheral blood and reprogrammed
using episomal plasmids encoding the transcription fac-
tors OCT3/4, SOX2, KLF4, LIN28, and L-MYC, result-
ing in their successful differentiation into neurons [77].
Moreover, to determine targeted iPSCs, a reprogram-
ming technique combining episomal plasmids with small
molecules has been established for adult fibroblasts [25].
For the clinical treatment of strokes, which represent a
severe health problem in the modern world, in-hospital
iPSCs can be generated from patient fibroblasts. That is,
an electroporation reprogramming technique has been
used for the integration of episomal plasmid vectors com-
prising OCT3/4, KLF4, SOX2, L-Myc, and Lin28 [26].
Esanov et al. suggested reprogramming patient fibro-
blasts using non-viral, integration-free episomal plas-
mids combined with OCT4, NANOG, TRA-1-81, and
SSEA4 [27]. mRNA is another key tool for iPSC repro-
gramming. One study compared two different repro-
gramming methods for fibroblasts collected from the
patient’s foreskin; one sample group reprogrammed by
transduction with an integrating lentiviral vector encod-
ing SOX2, OCT4, LIN28, and NANOG, whereas the
other was reprogrammed using non-integrating mRNAs
encoding SOX2, OCT4, LIN28, KLF4, and c-MYC. They
found that the mRNA-reprogrammed sample was differ-
entiated into otic cell types and concluded that it was the
safest way of inducing pluripotency [29]. Another study
involving the reprogramming of a urine-derived cell line
concluded that the mRNA reprogramming technique is
a fast and reliable method [30]. Another study produced
in-hospital iPSCs from a 50-year-old female patient by
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reprogramming somatic fibroblasts via the transfection
of synthetically modified mRNA encoding transcription
factors [78].

Expansion techniques

Continuous production of iPSCs or iPSC-based products
is another important consideration for increasing cost-
effectiveness of iPSCs. From this point of view, the expan-
sion of iPSCs is recognized as a significant factor in the
field of personalized medicine for continuous treatment.
The best way to solve this issue is to use an expansion
system that has been used for cell expansion, optimized
for iPSCs. For example, human iPSCs can be expanded
to 2.3x 10° (maximum cell density) using vertical-wheel
bioreactors within 1 to 7 days and used for continuous
innovative cell-based treatment [43]. Similarly, iPSC-
derived macrophages can be produced using stirred-tank
bioreactors within 10 to 15 days and used for continuous
innovative cell-based treatment (Fig. 2A) [41]. Micro-
carrier-based platforms are also popular for iPSC pro-
duction. For example, degradable gelatin methacryloyl
microcarriers were employed in a reliable, scalable, and
affordable method for the expansion and rapid harvest
of iPSCs using an inexpensive and bespoke microfluidic
step-emulsification apparatus, which achieved expansion
of 8.8 to 16.3 times within eight days (Fig. 2B) [45]. In
any commercialized product, a high yield within a short
time is desirable. Therefore, researchers have developed
an expansion-based spinner culture medium approach
for the high-yield, large-scale generation of macrophages
using iPSCs. These macrophages exhibit cytokine release,
phagocytosis, and chemotaxis for drug screening [46].
Moreover, the inflection of signaling pathways through
different enzymatic or gene editing activities is another
reliable technique for the production of iPSCs. In addi-
tion, modulating signaling pathways by inhibiting glyco-
gen synthase kinase-3b with CHIR99021 can promote
human iPSC neural progenitor proliferation in a cell den-
sity-dependent manner, enhancing iPSC expansion by 10
to 25 times, which is beneficial for extensive drug screen-
ing and tissue engineering activities [50].

Production of in-hospital iPSCs

The main purpose of in-hospital iPSCs is an immedi-
ate use of patient-derived iPSCs to promote therapeu-
tic effect. In this approach, appropriate biopsy location,
reprogramming technique, and additional factors to
increase reprogramming efficiency should be consid-
ered for the successful production of in-hospital iPSCs.
Biopsies collected from different parts of the body are
considered somatic cells. These primary somatic cells can
be reprogrammed into iPSCs by different types of repro-
gramming factors with the help of viral and non-viral
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vectors [40]. In-hospital iPSCs may also be subjected to
additional expansion processes using tissue culture dish
or multi-culture flasks for their immediate use in the
hospital [14]. The biopsy location is an important consid-
eration when producing in-hospital iPSCs. For targeted
iPSC production, Sharma et al. demonstrated that, in
patients with TRNT1-associated Retinitis pigmentosa,
skin samples should be collected from the upper, non-
sun exposed arm and reprogrammed by viral transduc-
tion with the transcription factors OCT4, SOX2, KLF4,
and ¢-MYC [81]. Human peripheral blood is considered
a major source of sample collection because it involves
the most accessible and least invasive procedure for in-
hospital iPSC production by a non-integrating episomal
plasmid approach with SOX2, KLF4, L-MYC, LIN28, and
EGFP reprogramming factors [82]. Several researchers
have proposed novel strategies to increase reprogram-
ming efficiency. For example, Wang et al. demonstrated
a nanoscale puncturing strategy for the efficient pro-
duction of in-hospital iPSCs (Fig. 2C). Specifically, after
collecting patient fibroblast cells, an integration-free
plasmid containing OKSM reprogramming factors along
with hairpin RNA p53 was used for cellular reprogram-
ming, and diamond nanoneedles were used for cell
puncturing [79]. Recently, various reprogramming tools
have been suggested to boost iPSC generation tech-
nology. With the help of bioinformatics tools, GBX2,
NANOGPS, SP8, PEG3, and ZIC1 were used for iPSC
generation in a patient with Parkinson’s disease, resulting
in a remarkable increase in the number of iPSC colonies
[83]. In addition, a microfluidic approach has been devel-
oped by which cells can pass through the channel of 30
to 80% smaller diameter and creates transient holes to
defuse materials into the cytosol. Through this approach,
reprogramming efficiency has increased 10-folds com-
pared to that of electroporation (Fig. 2D); this technique
enables the reliable and affordable production of iPSCs
for without using vectors [80]. In summary, for the suc-
cessful production of in-hospital iPSCs, it is important to
consider the biopsy location, reprogramming technique,
and additional transcriptomic factors.

Production of commercialized iPSCs

The main purpose of commercialized iPSCs is to
increase the productivity and quality of iPSCs through
commercialization. In this approach, appropriate
expansion techniques, automated production pro-
cesses, and quality control should be considered for the
successful production of commercialized iPSCs. Briefly,
biopsies collected from hospital are sent to a com-
pany for commercialization. Various fully automated
processes (e.g., reprogramming, proliferation, and
expansion) are employed to produce commercialized
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iPSCs [62]. After the fully automated processes, qual-
ity assessment is a major requirement for the success-
ful commercialization of iPSCs and for ensuring patient
safety [67]. Many scientists have developed fully auto-
mated or semi-automated iPSC production lines [64].
Compared to manual systems, fully automated systems
have many advantages for reducing contamination.
Indeed, a completely automated technology has been
developed that allows human iPSCs to remain undiffer-
entiated for 60 days under an automated culture system
(Fig. 2E) [15]. Humans are a major source of biological
contamination; therefore, delaying human involvement
at the biomaterial production site is highly beneficial.
To achieve this aim, a fully automated system has been
designed for the generation of footprint-free hiPSCs,
ranging from human fibroblasts expansion, isolation,
and reprogramming. A high-speed microscope and
image-based dilution calculation confirmed the in-
processes quality control. Through this process, iPSCs
expressed sustainable pluripotency for at least 5 weeks.
(Fig. 2F) [65]. In addition, artificial intelligence (AI)-
based machine learning techniques are useful for the
fully automated production of commercialized iPSCs,
with a k-NN classifier achieving a classification accu-
racy of 62.4% [67]. Moreover, Truong et al. presented
a repeatable and scalable procedure for performing
human iPSC culture and differentiation using TECAN
Fluent automated cell culture workstations. This tech-
nique generated patient-derived retinal pigment epi-
thelial cells for use in drug testing and other clinical
applications [63].

Quality assurance during commercialized iPSC pro-
duction is vital for ensuring patient safety. For example,
Elanzew et al. established a fully automated system that
encompasses fibroblast expansion to in-process quality
control, as well as the determination of dilution ratios.
This system was subsequently used for high-quality and
industrial-scale drug screening and disease modeling
[65]. Currently, new technologies are commonly inte-
grated with AL Recently, an automated system integrated
with Al-based microscopy was established for cell sort-
ing, which boasts 88% sensitivity and 98% specificity for
human iPSC identification and has widespread appli-
cations in tissue engineering, therapeutic applications,
and disease models [62]. Reducing production costs is
another important aspect of commercialized iPSC pro-
duction. According to previous research, the use of a
synthetic culture system without growth factors together
with three chemicals, fewer recombinant proteins, and
commercially available media can reduce costs associated
with the production of commercialized iPSCs from either
human dermal fibroblasts or peripheral blood mononu-
clear cells [51].
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Production of personalized iPSC lines

The main aim of the personalized iPSC lines is to estab-
lish an individual biobank for preventive purposes. The
personalized iPSC lines can be utilized for disease mod-
els or expanded and stored in sufficient quantities for
future treatment. In this approach, biopsies sent to a
company undergo reprogramming, expansion, and puri-
fication to establish a patient-specific iPSC line. Numer-
ous automated processes have been established for the
required reprogramming, bioreactor-based expansion,
GMP compliance quality control, and purification of
iPSCs [60]. Personalized medicine uses biological data
from genetic information or biomarkers according to
the profile of the specific person requiring treatment or
medication, enabling faster clinical decision-making. To
achieve this goal, patient-specific personalized iPSC line
banking is required, with some countries already estab-
lishing such iPSC lines. For example, Genetic disorder is
a major cause of organ dysfunction. Therefore, a previ-
ous study created a patient-specific iPSC line by silencing
mutant collagen genes related to Osteogenesis imperfecta
through gene targeting by an adeno-associated virus [84].
Furthermore, CRISPR/Cas9-dependent insertion/dele-
tion techniques have been used to establish personalized
iPSC lines through passage-matched isogenic controls
in a single step, providing a platform for the rapid devel-
opment of loss-of-function disease models [55]. As part
of a personal genome project in Canada, footprint-free
personalized iPSC lines were established from four vol-
unteers, which can be used to identify variant-preferred
healthy control lines and specific disease settings [59].
Moreover, personalized iPSC lines can be a solution to
the problem of establishing a commercial cord blood
bank with no risk to the donor, thereby enabling the
treatment of neonates with genetic disorders or congeni-
tal deformities [85]. Another recent study established a
personalized iPSC line of therapeutic candidates for type
II collagenopathy treatment. Specifically, iPSCs derived
from limb-bud-like mesenchymal cells were used to pro-
duce chondrocytes and cartilaginous tissues for drug
screening and tissue engineering [54].

One study generated clinical-grade personalized
iPSC lines from patient-specific fibroblasts to produce
iPSC-derived retinal cells within an FDA-registered,
c¢GMP-compatible facility with xeno-free reagent in an
ISO class 5 environment [86]. Moreover, Zhu et al. sug-
gested a procedure for generating human iPSC lines from
CD34 cord blood cells and differentiating them into reti-
nal cells using small molecule-based retinal induction
under cGMP-compliant conditions, thereby generating
transplantable photoreceptors [60]. Another study suc-
cessfully produced personalized iPSC lines under GMP-
compliant conditions through the Sendai virus-based
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reprogramming of peripheral blood cells and their dif-
ferentiation into CD34+ hematopoietic stem cells [61].
Recently, a standard protocol was developed for the pro-
duction and quality control of clinical-grade iPSC lines
within a regulatory framework [87]. A quality approach
to manufacturing is mandated by GMP laws, allowing
businesses to reduce or completely avoid instances of
contamination, confusion, and mistakes. Furthermore,
the effectiveness of a GMP-compliant method of produc-
ing iPSC lines was confirmed through a phase 1 open-
label clinical trial in subjects with steroid-resistant acute
graft versus host disease, which represents a milestone in
the production of personalized iPSC lines [24]. Generally,
treating patient-specific diseases is facilitated by stor-
ing all of the genetic and immunological data of an indi-
vidual. Thus, personalized iPSC line banking is the best
option for personalized medicine. The major require-
ments for personalized iPSC line banking are as follows:
a fully automated mechanism, low production costs, high
affordability, high production rate in a short time, GMP
compliance with no contamination, final product and in-
process quality control and assessment, patient safety,
and a controlled transportation and storage system.

Engineering strategies of iPSCs for personalized
medicine

In this section, we focus on “Step 2: Engineering of thera-
peutic iPSCs” (Fig. 1). This stage is the most important
in terms of improving the function of iPSCs for person-
alized medicine. Here, we cover the four engineering
approaches for developing optimized iPSCs according
to different goals: 1) engineering iPSCs for paracrine
effects; 2) engineering iPSCs for differentiation; 3) engi-
neering iPSCs for biomodulation; 4) engineering iPSCs
for pharmaceuticals. Specifically, we discuss the recent
research trends and future perspectives. Approach 1 is
related to the regulation of cellular behavior and function
(e.g., proliferation, migration, and growth factor expres-
sion) through the paracrine effect of engineered iPSCs.
Approach 2 is related to engineering techniques (e.g., bio-
chemical, electromechanical, and biomaterials factors)
for promoting the differentiation of iPSCs. Approach 3 is
related to the biomodulation of iPSCs (e.g., T-cell, CAR-
T-cell, NK cell, and gene modulation) for cancer therapy.
Approach 4 is related to in vitro engineering tools (e.g.,
organoids, organ-on-a-chip models, extracellular vesi-
cles) for pharmaceutical development.

Engineering iPSCs for paracrine effects

The main purpose of engineering iPSCs for enhancing
paracrine effect is an engineering approach that can max-
imize the secretion of growth factors and cytokines to
promote tissue regeneration. In other words, engineering
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iPSCs can be an effective modulator of paracrine effect.
In this section, we review the engineering approaches of
iPSCs to maximize the paracrine effect for personalized
medicine. From this point of view, engineering iPSCs
is defined as an engineering tool to maximize parac-
rine effects. Autologous cell therapies are arguably one
of the most personalized forms of medicine, whereby
a patient’s cells are used to generate a patient-specific
product that is only administered back to the original
donor [88]. In recent decades, iPSC-based autologous
cell therapies have received substantial attention in terms
of enabling patient-specific treatment for personalized
medicine applications [89]. Injected iPSCs not only have
therapeutic efficacy on their own but also promote the
functional improvement of the surrounding environ-
ment through paracrine effect [90]. Recent studies have
reported the promotion of cell proliferation, cell migra-
tion, and growth factor expression through paracrine
effect of engineered iPSCs [16, 91]. Ai et al. suggested
an interesting approach to maximize paracrine effect of
iPSC-derived cardiomyocytes, thereby overcoming poor
cell viability and engraftment rates of cell-based thera-
pies. Prior to transplantation, they transfected VEGF
mRNA to iPSC-derived cardiomyocytes to achieve
overexpression of VEGF. The over-expression of VEGF
facilitated cell proliferation in transplanted site, thereby
promoting ventricular remodeling [92]. Also, Munarin
et al. introduced a strategy of enhancing paracrine effect
of implanted muscle tissue by locally delivering angio-
genic factors. They found that local administration of
angiogenic factors resulted in increased volumetric net-
work density with enhanced host vascularization into
implanted cardiac tissue [93]. Liang et al. also reported
that the conditioned medium of reprogrammed iPSCs
(CM-iPSCs) accelerates wound healing in a mouse cuta-
neous wound model through enhanced angiogenesis and
cell migration (Fig. 3A). This study reported that growth
factors in the conditioned medium of iPSCs promote skin
regeneration by maximizing paracrine effect, thereby
confirming tissue regeneration through paracrine effect
of reprogrammed iPSCs [16].

Engineering iPSCs for differentiation

The main aim of engineering iPSCs for differentiation is
to maximize cell function, which is a key factor in regen-
erative medicine [99]. In this section, we review engineer-
ing approaches of iPSCs to maximize the differentiation
for personalized medicine. Another form of iPSC-based
personalized tissue regeneration involves the transplan-
tation of scaffolds conjugated with iPSCs. The most sig-
nificant factor to be considered in scaffold engineering
is the improvement of the differentiation efficiency of
iPSCs. Following the increased interest in personalized
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medicine, studies have investigated different engineer-
ing approaches for promoting the differentiation of iPSCs
using scaffold-based biomaterials, electromagnetic, and
mechanical stimulation [94, 95]. In particular, a bioma-
terial-based strategy for effective iPSCs differentiation
requires the following conditions: excellent biocompati-
bility, adequate mechanical properties, good physical and
chemical properties, high wear resistance, high corrosion
resistance and low immune reactivity. The biomaterial-
based engineering strategies under these conditions will
be the most important future factor in providing efficient
differentiation and safety of iPSCs for application of per-
sonalized medicine. For example, Ji et al. reported that a
3D bioprinting scaffold composed of alginate and gelatin
bio-inks promoted the differentiation of iPSCs into endo-
metrial cells (Fig. 3B). They also determined the optimal
conditions for promoting iPSC differentiation and sug-
gested the application of this natural polymer-based 3D
scaffold for the repair of the uterine endometrium [94].
This study showed that natural polymer-derived bioink
and bioprinting engineering technology could promote
the differentiation of iPSCs, showing bioprinting technol-
ogy is promising in terms of using various microstruc-
tures or biomaterials to promote iPSCs differentiation.
Electrical stimulation is a powerful strategy that can be
used to promote differentiation of iPSCs. They affect the
voltage-gated ion channels on the cell membrane, and
thus promote cell metabolism. The electrical stimulation
has been reported to enhance neurogenic, cardiomyo-
cyte, and myogenic differentiation [100-102]. Recently,
several studies have introduced the effect of magnetic
stimulation on neurogenic differentiation of iPSCs. Liu
et al. have reported on the effect of magnetic stimulation
frequency on the neuronal differentiation of iPSCs. Their
study revealed that high frequency magnetic stimuli pro-
mote glutamatergic neuron differentiation, whereas low
frequency and intermittent theta-burst magnetic stimuli
may promote the generation of mature neuron formation
[103]. Mechanical stimulation also provides significant
cue that affects iPSC differentiation. For example, Dou
et al. proposed a microdevice platform for characteriz-
ing the effect of mechanical strain on the cardiomyocyte
differentiation of iPSCs (Fig. 3C). By applying cyclical
strains of varying magnitudes (5%, 10%, 15%, and 20%)
to a monolayer of iPSC-cardiomyocytes, they measured
the contractile stress during mechanical stimulation and
quantified the effect of different mechanical strain mag-
nitudes on the contractility and maturation of iPSC-
cardiomyocytes. Their study confirmed the correlation
between mechanical strain and iPSC-cardiomyocyte dif-
ferentiation through the engineering platform [95]. To
summarize, previous studies have used elaborately and
precisely designed engineering strategies to promote
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the differentiation of iPSCs and elucidate the differentia-
tion mechanism, thereby improving the potential for the
transplantation of scaffolds conjugated with iPSCs.

Engineering iPSCs for biomodulation

The main aim of engineering iPSCs for biomodulation
is to improve the function of immune substances to
increase the efficiency of cell-based immunotherapy. In
this section, we review engineering techniques to maxi-
mize and modulate the function of iPSCs-derived cells
for cancer treatment. Cell-based immunotherapy, such
as CAR T-cell therapy, has received tremendous atten-
tion in the field of cancer therapy, especially in patients
who are refractory to other therapies [104]. Despite rapid
advances in autologous therapies for cancer, several chal-
lenges remain, including the high cost, challenges to
large-scale manufacturing, and unsuitability for lympho-
penia patients [104]. iPSCs may be able to overcome these
challenges because of their unique self-renewal prop-
erties and capacity to be genetically engineered [105].
Also, iPSCs can be differentiated into different immune
cells, such as T-cells, NK cells, invariant NK T-cells, and
macrophages [106]. Recently, engineering biomodula-
tion studies have utilized the advantages of iPSCs for
cancer therapy [18, 107, 108]. For example, human iPSC-
derived NK (hnCD16iNK) cells and anti-CD20mAb
improve regression of B-cell lymphoma and hnCD16iNK
cells together with anti-HER2 mAb increase the sur-
vival of cancer xenograft model (Fig. 3D). From these
significant findings expressed hnCD16iNK in combina-
tion with mAbs shows high effectiveness against hema-
tologic malignancies and solid tumors [96]. Li et al. also
reported that NK cells derived from human iPSCs have a
typical NK cell phenotype and improved antitumor activ-
ity compared with non-CAR-expressing cells. Moreo-
ver, NK cells derived from human iPSCs significantly
inhibited tumor growth, prolonged survival in vitro, and
demonstrated in vivo activity similar to that of T-CAR-
expressing T-cells. These studies suggest the substantial
potential for NK cells differentiated from iPSCs in cancer
therapy applications [18]. Furthermore, Kawamoto et al.
proposed advanced methods in which cytotoxic cells are
mass-produced by engineering iPSCs for the regenera-
tion of T-cells. Specifically, iPSCs produced from T-cells
inherit rearranged T-cell receptor genes; thus, all regen-
erated T-cells should express the same T-cell receptors
with no cytotoxicity [108].

Engineering iPSCs for pharmaceuticals

Drug development

Engineering iPSCs can contribute to develop innovative
therapeutics with enhanced efficacy. In this sub-section,
we review engineering techniques for the development
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of personalized pharmaceuticals or nanomedicines
(e.g., cell-based therapeutics and cell-free therapeu-
tics). Recently, iPSCs have become attractive candidates
for cell therapy-based regenerative medicine. Ma et al,,
introduced a novel strategy of using iPSC-derived orga-
noids for localized scleroderma therapy. According to
their findings, the iPSC-derived organoids could not
only alleviated skin fibrosis but also facilitated the recov-
ery of skin-associated functions [109]. Several studies
have highlighted the potential of iPSCs for developing
nanomedicines. Zhou et al. proposed using iPSC-based
exosomes as a latent tool for the treatment of pulmo-
nary fibrosis (Fig. 3E); these exosomes were shown to
increase the miR-302a-3p level and silence TET1 and
miR-302a-3p activity, which then helps to express the
iPSC-based exosomes and mitigate pulmonary fibrosis
[97]. This study shows that iPSC-derived exosomes can
enhance cell migration and can be a candidate for new
drug development. In addition, Tang et al. proposed
novel thermosensitive chitosan hydrogels loaded with
iPSC-derived exosomes which can provide sustained
release of miRNA present in the exosomes. The proposed
hydrogels could significantly promote corneal epithelium
and stroma regeneration [110].

Drug screening

Engineering iPSCs can also facilitate drug development
by providing personalized drug screening platforms. In
this sub-section, we review engineering techniques for
the developing in vitro platforms (e.g., organoids, sim-
ple in vitro models, and organ-on-chips). Patient-derived
iPSCs can be applied in multiple critical in vitro stud-
ies, such as in vitro disease modeling, toxicity screens,
drug development, drug delivery. Furthermore, patient-
derived iPSC models are more suitable for phenotypic-
based drug discovery because they share the same
genetic background with patients and may exhibit the
same disease phenotypes. Therefore, large amounts of
research have recently been conducted on iPSC-based
in vitro models (e.g., organs-on-chips, organoids) for
drug screening. For example, Park et al. reported the use
of iPSC-based microvascular endothelium interfaced
with astrocytes and pericytes in a microfluidic human-
like organ-on-a-chip. Microvascular endothelium expres-
sion created the strictness by the differentiation of iPSC
under hypoxic conditions. This type of chip model can
be used to introduce drugs and antibiotics through the
blood-brain barrier [111]. Moreover, Thomas et al. sug-
gested a precise gene editing procedure to model renal
disease based on kidney organoids differentiated from
iPSCs that can validate ciliopathic renal phenotypes and
reveal the underlying pathogenic mechanisms. Their
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kidney organoids hold great promise in high-throughput
personalized therapeutic screening (Fig. 3F) [98].

Applications of engineered iPSCs for personalized
medicine

Patient-specific iPSCs can be used for the regeneration
of damaged tissues [112], disease treatment [113], drug
screening [114], and drug development [115], and provide
solutions to overcome the limitations of conventional
off-the-shelf therapy. Recent advances in biotechnol-
ogy offer a variety of engineering strategies that can be
used to impart or promote the function of iPSC-based
products (Table 2). In this section, we focus on “Step 3:
Application of engineered iPSCs” (Fig. 1). Specifically, we
introduce the clinical applications of engineered iPSCs to
personalized medicine, which can be classified into three
approaches: 1) tissue regeneration; 2) cancer therapy; and
3) drug development. Various combinations of the engi-
neering approaches presented in Sect. 3 can be applied
to advance iPSC-based personalized medicine. For exam-
ple, engineering biomaterials can create biochemically
and structurally relevant microenvironments suitable for
personalized tissue regeneration [116]. These engineered
biomaterials can also be used as carriers to promote the
survival and proliferation of transplanted cells, result-
ing in clinically successful outcomes [117]. In addition,
genetically modified iPSCs can be used to create personal
in vitro models for drug screening [118] or generate sta-
ble immune effectors for cancer therapy [119].

Tissue regeneration

Personalized tissue regeneration can involve either scaf-
fold transplantation or direct injection. For scaffold
transplantation, it is important to ensure that the materi-
als, architectures, physicochemical properties, and tissue
constructs are individualized according to the patient’s
needs. Edri et al. suggested a novel approach for engi-
neering cardiac, cortical, spinal cord, and adipogenic tis-
sue implants from one small tissue biopsy (Fig. 4A). That
is, they generated personalized hydrogels by efficiently
combining autologous iPSCs and extracellular matrix,
where both the cells and the hydrogels are derived from
the patient so do not induce an immune response. They
suggested promising approach to efficiently bioengineer
autologous tissue construct with any tissue type [175].
Moreover, Montgomery et al. introduced a promising
strategy to deliver murine iPSC-derived neural progeni-
tors with fibrin-based scaffolds. Owing to their proper-
ties suitable for affinity-based drug delivery systems,
many studies have been conducted on developing cell-
based delivery platform using fibrin scaffolds. They, for
the first time, proposed a strategy including a rapid and
efficient protocol for forming embryonic bodies from
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iPSCs and maximizing subsequent neuronal differentia-
tion. They proposed efficient approach for a personalized
spinal cord injury therapy [176].

Another approach for tissue regeneration involves
directly injecting iPSCs into patients. Immune responses
and differentiated states of iPSCs are important issues
for this approach. For example, Lu et al. compared the
wound healing effect of iPSC-derived therapeutics on
non-human primates by subcutaneously injecting autol-
ogous and allogeneic iPSCs into immune response-free
monkeys. The results demonstrated the superior wound
healing capabilities of autologous iPSCs to their allo-
genic counterparts [90]. Recently, several researchers
have reported human clinical trials of iPSCs [13, 180].
Sugimoto et al. proposed the first-in-human clinical trial
of autologous iPSC-derived platelets (Fig. 4B), in which
iPSCs were efficiently expanded and differentiated during
GMP-grade production. The iPSC-derived platelets were
then administered to a patient who experienced systemic
post-transfusion purpura-like complications and had no
compatible donor, with no adverse effects. As the first
clinical trial using iPSC-derived platelets, this study pre-
sent feasibility and significant insight for iPSC-based per-
sonalized medicine [177].

Cancer therapy

The potential applications of iPSCs for personalized can-
cer treatment can be divided into two. The first appli-
cation is the replacement or repair of damaged tissue
caused by radiotherapy and surgery conducted to elimi-
nate tumors [181]. As autologous iPSCs are free from
immune responses and ethical issues, they can provide
various strategies to repair damaged tissues by engineer-
ing the patient’s cells from healthy tissue. For example,
Zhang et al. employed an iPSC-derived conditioned
medium to alleviate gamma-irradiation-induced lacri-
mal gland injury. They found that the iPSC-derived con-
ditioned medium reduced inflammatory responses after
radiation therapy by suppressing p38/JNK signaling,
which suggests that iPSCs have the potential to treat can-
cer radiotherapy-related injury [182].

The second application involves the significant advan-
tages of iPSCs for cancer immunotherapies [183].
Although existing cell-based immunotherapies for cancer
treatment have undergone substantial advances, limita-
tions such as high cost, difficulty in large-scale produc-
tion, and unsuitability for lymphopenia patients hinder
their widespread clinical use [104]. However, the use of
iPSCs combined with engineering strategies can over-
come the current limitations of cancer immunotherapy.
iPSCs can be continuously expanded and differentiated
to acquire an unlimited supply of various immune cells
[119]. For example, Iriguchi et al. introduced a scalable
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Fig. 4 Specialized applications of iPSCs for personalized medicine. a Personalized hydrogels for engineering diverse fully autologous tissue
implants, which were efficiently generated by combining autologous iPSCs and extracellular matrix. As both the cells and the hydrogels are

derived from the patient, they do not induce an immune response. Reproduced with permission from Ref. [175]. b The first-in-human clinical

trial of iPSC-derived platelets (iPLAT1). The iPLAT1 study completed the administration of iPSC-platelets for the first time and confirmed the safety

in an allo-PTR patient who would otherwise have no HPA-compatible donor. No adverse events were observed during the administration

of autologous iPLAT1. Reproduced with permission from Ref. [177]. ¢ Development of an engineered exosome delivery system. The engineered
exosomes, BT-Exo-siShn3, targeted osteoblasts specifically and contained siRNA to silence the Shn3 gene, which enhanced osteogenic
differentiation and decreased autologous RANKL expression. Reproduced with permission from Ref. [178]. d Drug screening platform using iPSCs
derived from a patient with ultrarare diseases. The iPSC platform validated the safety and efficacy of the screened drugs. The efficacy of the screened
drugs was also investigated in a patient with Leigh-like syndrome, who showed an enhanced physical state after three years of clinical trials.

Reproduced with permission from Ref. [179]

method to establish T-cells using iPSCs derived from
antigen-specific cytotoxic T-cells or T-cell receptor-
transduced iPSCs. They also described culture systems
for the efficient differentiation of iPSCs into T-cells.
Their study represents a novel strategy for the large-scale
production of T-cells and their clinical application to
cancer immunotherapy [184]. In addition, the applica-
tion of CAR engineering to iPSC-derived immune cells
can achieve effective treatment by specifically targeting
tumor-associated antigens. Li et al. engineered iPSC-
derived NK cells to express chimeric antigen receptors
(NK-CAR-iPSC-NK cells), which significantly suppressed

tumor growth in an ovarian cancer xenograft model
while exhibiting reduced cytotoxicity. The proposed NK-
CAR-iPSC-NK cells have substantial potential in cancer
immunotherapy [18].

Drug development

Engineering iPSCs is expected to further advance the
innovative application of iPSCs to personalized medicine,
for example, mutation-specific therapies, early detection
strategies, personalized disease prevention, personalized
drug testing, and personalized medicine development
[183]. In this section, we focus on the personalized
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application of iPSC-based therapeutics. Several studies
have developed nanomedicines from iPSC-derived extra-
cellular vesicles. Extracellular vesicles secreted by iPSCs
have great potential for cell-free regenerative medicine
[185]. In specific, Cui et. al., engineered an iPSC-derived
exosome to develop a bone-targeting gene delivery sys-
tem (Fig. 4C). The engineered exosomes not only showed
intrinsic anti-osteoporosis function but also exhibited an
ability to deliver siRNA to osteoblasts to enhance thera-
peutic effect. Their study shows the potential of exosome
for personalized medicine through the development of
nanomedicines that can target specific diseases [178].
Besides, various studies have reported the efficacy of
iPSC-derived extracellular vesicles in targeting specific
diseases such as cardiac diseases [186], ischemic dis-
eases [187], neurodegenerative diseases [188], and cancer
therapy [189]. Moreover, with the help of personalized
platforms established from iPSCs, it is possible to help
patients make rational decisions in clinical trials. Sequi-
era et al. developed a personalized drug screening plat-
form using iPSCs from a patient with ultrarare diseases
(Fig. 4D), then used the platform to evaluate the effi-
cacy of three drugs over three years of clinical trials. The
results indicated an enhanced physical state in the patient
with Leigh-like syndrome. Moreover, the iPSC-based
pre-screening platform helped the patient make safe and
effective decisions in a personalized manner [179]. These
findings provide next-generation strategies for develop-
ing iPSC-based personalized medicine.

Limitations, challenges, and prospects

Limitations and challenges

Engineering iPSCs for therapeutic applications has huge
potential for personalized medicine, which may be able
to overcome the limitations of conventional disease treat-
ments. Despite the many advantages of iPSCs for person-
alized medicine, there are still several limitations to be a
promising tool for therapeutic applications.

First, the reprogramming efficiency, safety and effi-
cacy are major considerations of iPSC-based personal-
ized medicine. The efficiency of iPSC reprogramming
is typically low, with the formation of tumorigenesis
another drawback to the application of regenerative med-
icine [190]. Teratoma formation is critical challenge for
iPSC-based therapeutic applications [191]. An equally
important consideration is the potential for disease
development from the viral and non-viral vectors, as well
as the reprogramming factors, which may induce a criti-
cal condition in the patient [192]. The cell survival rate
after transplantation is worthy of consideration. The
number of transplanted cells engrafted in the damaged
tissues depends on the disease condition and age of the
patient. Additionally, once iPSCs are familiarized with
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the specific treatment region, they are generally targeted
by innate and adaptive immune responses via the host
body’s immune system [193]. Recently, various studies
have been proposed to reduce the immune rejection of
iPSCs using CRISPR/Cas9-mediated genetic engineering
[194].

Second, the lack of internationally approved regula-
tory guidelines for the production protocols of in-hos-
pital iPSCs, commercialized iPSCs, and personalized
iPSC lines hinders the application of iPSCs to personal-
ized medicine. Moreover, in-process sterility systems for
checking bacterial contamination (Mycoplasma) or viral
contamination should be established according to the
recommended quality control guidelines of USP, Euro-
pean Pharmacopoeia, or other recognized regulatory
bodies. In addition, internationally accredited and stand-
ardized methodologies for delivering iPSCs to the tar-
geted area have not yet been established. This is currently
the greatest limitation, especially for critical organs, as
well as ensuring reliable clinical staff for the iPSC deliv-
ery program. To resolve abovementioned limitations, the
global alliance for iPSC Therapies (GAiT) has recently
published the minimum requirements of quality control
testing of iPSC [195].

Finally, regarding the production of therapeutic iPSCs,
high costs associated with their production, characteri-
zation, and quality assessment are also a major limita-
tion of therapeutic applications and commercialization
[192]. First, iPSC identification should be performed dur-
ing treatment, from the biopsy stage to the end-product
stage, by single tandem repeat profiles in an accredited
laboratory to confirm and ensure cell activities. Second,
purity validation must also be confirmed for patient
safety. To confirm patient wellbeing, internationally rec-
ognized and standardized purity qualification methods
should be established from the sample collection stage
to the end stage of therapeutic application. Third, con-
stant reproducibility should be maintained from the ini-
tial stage of the iPSC production line through to the end
point of personalized treatment, which requires consid-
eration of the isolation methods, cell culture conditions,
engineering strategies, and methods of application [192].
Finally, after the production of commercialized therapeu-
tic iPSCs, maintaining the appropriate conditions in stor-
age and transportation facilities, e.g. pH, temperature,
and humidity, represents an immense challenge [196].
These issues can be overcome with help of fully auto-
mated production systems. Recently, Paull et al., devel-
oped a modular, robotic platform for automated iPSC
reprogramming, characterization, and differentiation
to achieve minimal manual intervention [64]. Although
some automated isolation, reprogramming, expan-
sion, and in-process quality checking systems have been
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established, these should be integrated into an organized
system [65].

Prospects

Undoubtedly, iPSC-based regenerative therapy will
become an important aspect of personalized medicine
in future, with abundant research already bringing us
closer to this goal. Notably, the development of iPSC
lines has eliminated the ethical issues and religious con-
cerns associated with embryonic stem cells but main-
tained their excellent pluripotency properties [190]. The
risk of immune rejection has already been reduced and
will likely be completely removed in the near future.
Additionally, with the development of personalized iPSC
line banking, it is now possible to store patient-specific
genetic and immunological information and apply per-
sonalized regenerative therapy via automated proce-
dures according to GMP regulatory criteria [86]. Some
fully automated iPSC line production techniques with
integrated quality assurance have also been proposed
[87]. Although establishing personalized iPSC line bank
is costly and time consuming, it would be a reliable and
effective solution for personalized therapy in the future.
Additionally, regarding disease modeling, disease-caus-
ing factors can now be identified by the microfluidics
model for different patients. High-throughput screening
for drug testing and toxicity prediction is also undergoing
continuous development. In the meantime, gene editing
technology to correct mutations for genetic disease treat-
ment has been made possible through CRISPR, TALEN,
and ZINC finger techniques [55]. Nevertheless, the mass
production of commercialized therapeutic iPSCs accord-
ing to the proper regulatory guidelines, involving appro-
priate quality assessments, and conducted in accredited
GMP-compliant facilities remains a substantial challenge
for regenerative therapy. To accomplish this, the Global
Alliance for iPSC Therapies has proposed critical quality
attributes and recommended test methods for produc-
ing clinical-grade iPSC lines for therapeutic applications
[195]. Once the various limitations and challenges are
overcome, engineered iPSCs could become a key tool for
the personalized medical treatment of many life-threat-
ening diseases.

Conclusion

Personalized medicine provides a tailored medical treat-
ment based on the unique clinical, genetic, and environ-
mental characteristics of individual patients. Moreover,
engineering strategies offer a wide range of opportunities
for advancing iPSC-based personalized medicine. In this
review, we summarize how engineering strategies have
been applied to advance iPSC-based personalized medi-
cine by categorizing the process into three distinctive
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steps: 1) production of therapeutic iPSCs; 2) engineering
of therapeutic iPSCs; and 3) application of engineered
iPSCs. For each step, we discuss the various engineering
approaches and their implications. Although there are
still many limitations to the use of iPSCs in personalized
medicine, including reprogramming efficiency, large-
scale production of therapeutic iPSCs, the possibility of
teratoma formation, commercialization, and regulatory
approval, the engineering strategies presented in this
review can help overcome these limitations. Undoubt-
edly, iPSC-based personalized therapy will become a val-
uable and innovative medical solution in the near future.
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